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Abstract

First, the generation of edge waves by a cylindrically spreading long wave and,

next, its damping due to the irregularity of coast are treated in two cases of the

epicontinental bottom configuration such as is treated by Sezawa,

1. Introduction

The study of edge waves in water seems to be initiated by Stokes (1846)‘
in case of water depth of a constant slope, and the extension to include the ;

higher modes ‘is made by Ursell (1952) ‘Oceanographical appllcatlon and
development of this theory have been made to storm surges by Munk et al
(1956) and Greenspan (1956). The effect of the constant Coriolis factor
on the edge wave behavoir and their generation has been investigated by Reid
(1958) and Kajiura (1958). . o
As stated above, however, their treatment of the problem is based ‘on the

water depth of linear slope. So their theory may not well be applied‘when.
onshore wave length is of comparable order to the width of the continental -
shelf, which will correspond, in the usual case, to the wave period of several _ ‘

ten minutes. : ,

- Now, the model of ocean bottom available Yo this latter case is;found in
a paper by Sezawa (1939), where the model is taken of the uniform water
depth on and outside the shelf, and the name eplcontmental wave’ is first
originated.

Of the edge wave problems, the question may naturally arise whether
edge waveés exist or not in the tsunami case. The tsunam1 recorder near
the coast shows multiply fluctuating wave trains altering the amplitude as
well as the period. This may be partly ascribed to the dispersion nature of
gravity waves or to the scattering of the wave energy by the strong irregularity

of the ocean bottom. The essential point, however, will be that the existence"

of the continental shelf and bays are most responsible factors to the above

described characteristics. In this connection, from the seismological Love

wave analogy, the natural picture will be that the continental shelf might
" produce the edge waves of Love type in the tsunami case.  Also, for an
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incoming solitary wave, the dispersive character of the edge waves will
produce the waves, which propagate with the group velocity, changing periods
and wave lengths as they propagate along the continent.

On the other hand, the strong possibility that the decay of wave energy
in its propagation will be very large owing to the bottom friction and the
non-linear breaking effect near the coast, might lead to the unimportance
of the edge waves. Also, the irregularity of the coast must be added to the
factors of decaylprocess when it is very large, though ‘it may necessarily
associated with the irregularity of the ocean bottom. :

The present paper is only a crude initial step to this problem and deals’
with the “epicontinental” case in both the generation and damping problem.
The former half of the paper describes the generation of edge waves in the
fundamental case when a periodic long wave spreads radially. outwards,*
and the latter half the damping of edge waves due to the irregularity of

. coast®* after the similar manner as that of Cox (1956).%%*

In the present paper, two cases are considered concerning the bottom
configuration, and adoptation of the first case is exclusively due to the
mathematical simplicity in spite of its rather unrealistic features. ‘

Lastly, it must be remarked that in the present paper the complete
neglection of the breaking effect near the coast is made and instead, the
condition of the total reflection at the coast is imposed of the onshore waves.
Certainly, the results obtained here may be more or less altered when this
effect is taken into account.

2. Generation

In this section, the problem will be treated when a primary incident
long wave spreads radially outwards from the disturbance origin in cases
where the bottom has a simplest configuration and then a more general form.
2.-1 Formulation and Solutiqn of the problem

In this article, the problem is dealt with in the simplest case when the
shelf and the ocean offing of it are uniform as shown in Fig. 1. The co-
ordinate axes are also shown in Fig. 1. .

Equations for long waves are given by

* Our first problem is quite similar to the.generation of Love waves (Sezawa, 1935)
and, of course, the results will be easily obtainable by changing the boundary conditions
and by making an appropriate correspondence of the physical quantities. However,
the analysis derived by the writer independently of Sezawa’s will be described to keep
a consistency througout the paper.

**  This damping problem was kindly suggested by Dr. Cox,

*¥** One of Dr. Cox’s works is on the conversion of a surface wave into internal
ones due to the irregularity of the ocean bottom with special application to oceanic
tides, use being made of the modern concepts of the wave power and the variance
spectrum of the ocean bottom. These concepts will be utilized also in the present

paper.
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where # denotes the velocity in the =x-direction, » in the y-direétién, g the
surface elevation, and % the undisturbed Watér depth, suffix 1 or 2-referring
to the quantlty in the region 1 or 2 respectlvely

© It is assumed that the center of a disturbance is located at (o, d) in the
region 2, and the incident wave generated is expressed by :
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Now the boundary conditions to be imposed are that the normal velocity at

" the boundary y=0 is zero, the volume tranSport and the surface élevation

are both continuous at the edge of the shelf y=L, -and the wave energy is -

finite at the infinity of y. Then, the solution for { is given by

- 4=0 y=1, | .
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Fig. 1 Model of a continental shelf,:

¢D)

ey Y )ei(ut—lz) dl
H

A +e asy —a
C1=S (aie™t ° +be ¢

€2=Cincident+ Xi: cie ,—agwyﬂw—m dl, .
where a{P=v'(I2—gq2), qi=0/¢cx, (k=1 2),
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and G(1)=af sinh agD L+%a§z) cosh aEDL' , | _' (245}

‘Let us denote the real roots of G(1)=0as %1, £l - , +1,, which lie between .
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lg1| and | g;| in the absolute value.* Then edge wave solution of the n-th
mode for the region >0 is given by integral around the pole Z, as follows:

1 4A—a<Z>F<z,,)—— cosh afPy . =)
M G' ) (2.6
h | e E?CI’ —)
C2=4A kz . agi)-F(ln) ————G7(Z)—— cosh a,DL e_al” (!/ LY+4lot—inx)
1 ) n

for sufficiently large x, where the dash on G(I) denotes the differentiation
with respect to /. (For the detail of integration method, see section 38.1)

Now, the power of the wave of the #-th mode averaged in time and space:
for positive x-direction is rendered by

LBV

‘(27

Then, the total power P+, of the above edge wave of the #-th mode given by

© 4 pg?l, A2 h 2, L) 2 A2 g
Pi=|, GV hay="PIRE () ialc‘f('zlgclz)l et

sinh 2 &$PL cosh? &SP L
»x[hl( L2 ) h S | e
The edge wave solution for £ and the total power P,~ in the negative x-region
are also obtained by replacing /, with —Z, in eqs (2-6) and (2-8) respectively..
‘The form of F(l) and the power of the incident waves will be calculated
in section 2. 3. '

Next, the solution will be given when the disturbane center is located.
inside the region 1. We assume that the incident wave is given by

() 2+io
Co. tneid. -ﬁAj Fy(De @Dt gy

—aD . (2-9)
Cf incid. '——AS Ff(l)e al (y—ad—itntiot dl, ygd. .

Then from the same boundary conditions as mentioned above, we have the:'
solutions for the surface elevation ¢ in the following form:

w, e
[Fs(L)e " +F,(I,)e """ ]

€1=2 Aag}g . Gy . [cosh ag,?(y—l,)
~ g (2) ) ‘
- hzaé’l') sinh « g,)(y——L)] &)
hladn

1) ‘
Comz Aagy - (P2 GT(%(Z") Do R0o-Ly - e (210

Also the power formula for P,+ is given as follows:

* This means physically that the propagation velocity of edge waves is between.

" the wave velocity inside the shelf and that in the open sea.




EDGE WAVES

~ D, —D,
pr_ PP | (D2 | Fr(ln)e % 4 e |2
"o [G/CL)T
1 sinh 2a[ L cosh? agi)L i’ o .
T T . - AN k L 7 D .. )
o ) e e

2.-2 Formulation and solution of the problem (general case) ‘
Here, the problem will be treated in case when the bottom has_a more
general form. We divide the ocean bed into two regions — the continental
shelf (rvegion 1) and the region off the shelf (regioh 2) — as illustrated in
Fig. 2. ‘The water depth of the shelf has an arbitrary form without zero .
depth, and the sea off the shelf is of cohstant depth, and is continuous at
the separation point y=L. The coordinate axes are also shown in Fig. 2.

Reywnl Regtlpnz

o3 % eyt
\% | _
x ' ‘

Fig, 2 Model of a continental shelf. o

Equations for long waves are same as in Sec. 2.-1, except the continuity
condition which is given in this case by

22 e Lom

/

Here it is assumed that the center of the disturbance is located at (o, d)
in region 2. ' o
Now, the solution in the region 1 is given by ' . L

C1‘§ ) & G Dy 1,7 Py, \ (2-12)

where two mutually independent solutions Y‘gw(y) (k=1, 2) Satisfy the equ-
ation: ) '

ax +i' dh ) dg¢

ay: h dy dy

In the region 2, except the incident wave it is sufficient for us only to
consider the solution of the form ‘

+< ;Z —l;)C.—:O o (2-13)
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+ ) '
Cz(sec) = S mcle——a,y +i(at—1z) . ) : (2_14)

—Q
where a;=V'(I12—q2), @=06/cs, c2=ghy and R,a;=0.

Here, the incident wave is supposed, as in section 2.-1, to have the form
(2-2). The boundary conditions is the same as in the preceeding section.
Then, the coefficients of eqs (2-12) and (2-14) are given by

2tA Y2 (c)

o= e ———————— . (L_d)
a; o azF([) G(l) e% ’
) (G LU=A PRI | (215
G( ) _
o=t 2 azF(l)”—G(l)— [V ()Y @(L)— YLV 2 (6)]
z'A
— . a;(2L—d)
- F(ex

where

GID=Y ()Y@ (L) =Y @ (L)Y (c)
—a [ YL 2 (6) =Y (Y (L)) (2-16)

Suppose that th_é real roots of G(I)=0 are [, £l (1.1=gs).* Here it
must be remarked that only the real roots of eq (2-16) are considered, since
otherwise evanescent or growing waves will be obtained and the latter cannot
be accepted from the physical point of view.

Then, we have the edge wave solution of the #-th mode by intergation
around the pole I, in the following form

€= —4 A.___a’(?‘; fg l(§"> coxin(z-2) . [V B (VS
~ Y (Y ()] eitor—tand | (2-17)
Gm—t A ) X’*) ceunce=n - (YL E © :

Y.(l) (C>Y(2)<Lj] . gtlat—inz)—ay,(y— L) ,

for positive lar"ge z. 'The solution for the negative a region will be obtained
by replacing I, with —Z,. ‘
Now, the edge wave of the n-th mode is given by*¥
=, - gilot—inz) o (2-18)

where

*  To our pi‘esen’u problem, the symmetry axis will be the y- axis. Hence we conclude
that the real roots of G(/)=0 are =/,, =£l,,.--. Moreover, from the above condition,
we may say that G(I) is a function of /2 and so G/(—D=-G'(D.

#*  This expression is derived easily by imposing the condition that the normal
velocity is zero at the coast, the volume transport as well as the surface elevation is
continuous at y=1L, and the evanescence of these quantities at the infinity of y.
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2,=7 DY -7 @r D, (2-19)

and /7, is the real root of eq (2-16).
Then the solution (2-17) is unified to a single expressmn

Lenti=0) (¥ (VR L-YE @Y EXL)]
Gy = Pa(L)
. ¢n(y) . gt{ot—Inz) , (2—20)

C=—44 a,- F<ln)

for positive z.
If we set as

r”h | paldy=1, - | (2-21)

Zln . Hln/alﬁ ‘
L) G -
Hence, we have P,t as follows

c

then | Pu(L) P=

Pyt = +Cam)® | F(L) P+ (L) - e-2em@=2)

YR orRw-rE <c>Y<”<L>1
G' (1) - Hun
Also, we have the power P, in the negative x—-dl{‘ectlon, replacmg 1, by -1, m :
eq (2-22), which is equal each other in the absolute value.
2.-3 The form of F(J) and the power of the primary incident wave
In this section, the function F(I) will be determined for further cal-
culation based upon the long wave theory in case when a periodic long wave
spreads radially outwards with circular symmetry. Since the incident wave

(2-22) '

is of a'circular symmetry, then we have the equation for a long wave in the.
following form, eliminating the time factor et .

0%t 1 ocC | : o
St =0 . (2-23)

where » is the distance measured from (o, d). Hence the solution of the
incident wave is rendered by the O-th order Hankel function of the 2nd kind
Cipc.=AHOC2) <427’) - (2‘24>
For further calculation, we need to transfqrm Hy®)(qr) into the follow-

ing form '

&

i [+ 1 ,
H0(2>(qzr)=+7~r—g emep—sn' dl for ¥'>0, - (22

w g

where a'=gz and y’=y—d (This relation is proved for 1nstance by Nakano
(1925)) Likewise, in the region y<d we have
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i (to 1 . .
Ho<2>(qgr)==——S — . gxy—a)—ilz d], - . (2-26)
. Jj—o (g .
and F(l) in the preceeding sections is given by
’ 1 )
F()=". (2-27)
[24} . .

Agymptotic expansion of Cine. gives the result

2 \Yz —i(er—1x)
Cine. = AH,®(ger) = ) E
€ ine. = AHo &) gar) A( ) 2-28)
Hence the mean power of the wave in the »-direction is given by
- ngqZ . ngAZ ) i— f 1
por =—p = 1€ = or large 7,
and the total powergPinc; of the wave is expressed by
' : - 2 pg2A2h
Pine. = § o, ds=2LLATE. (2-29)

2.-4 Nurmerical examples and discussions

So far, we have reduced the edge wave solution induced by the primary
disturbance, and the total powers for these waves are given. The power ratio
of the edge Waves generated to the primary wave will have the significant
importance, since the power is interprefced as the energy flow. Also, the
detailed kinematics on edge waves will give simple relations among the energy
flow, total energy, wave energy etec., although these are omitted here. On the
other hand, the amplitude ratios at the coast among the edge waves, directly
arriving waves, ete. will have important significance, comnsidering that the
observations have been exclusively made at the coast. '
Here, some numerical examples will be illustrated of sec. 2.-1 and 2.-2.
(a) Example of sec. 2.-1

- As numerical constants, we take 7T (wave period) =20 min, %;=1000m,
5;,=4000m and L=60km. The disturbance center is assumed to locate in
region 2. Inthis case, only one mode with /;=4.7x107 exists of the. edge
waves. Then we have the power ratio

Pt [Pine.—6.38 %102 exp[ —2 oi(d— L)]

Since Pinc. - is obtained by integration on the cdmplete circle around the |
disturbing center, the effective ratio of the power conversion will be four
times the above, that is, ' '

e. 7. ¢.=~25 % expl—2 agf)(_d—L)] 9%

The damping coefﬁcient,is, in this case, given by2 aff)%7.6>§10-7
~and the distance to decay as ¢! is d—L=10km.
(b) Example of sec. 2.-2
An example is given in case when %2=by? and »=0 (see Sec. 3-2). As
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numerical constants, we take 7T=52min:, 2;=~160m, A,=4km, ¢=10km, L=
50 km and the disturbance center is assumed to locate in region 2. In thls case
the existing mode of edge waves 1s only one Wlthll—l 1% 107 within the Iong
wave range. This case gives the effective conversion ratlo as follows o

. P”=1.

inc.

<4><

=9.7xexp[— ZaﬁDCd—L_)] %a:

and the distance to decay as e-! is about 100km. . - _

In both examples, it is remarked that the conversion ratio has an expo-
nential damping factor with respect to the distance d—L, and it is lai'gest "
when the disturbance center is at the edge of the shelf. This may well cor-
respond to one of the results by Greenspan (1956). The conversion ratio .
will, however, be largely dependent to the bottom structure as well as the
wave period. '

3. Damping due to the Irregular Coast _
Recently, Dr. Cox (1956) has made the investigation on the conversion
damping of surface waves into the internal ones with the special application
to the oceanic tides. 'This conversion is due to the irregular undulation of
the ocean bottom. - A
Quite the similar things will happen with the edge waves. That is, the
edge wave of a certain mode will be converted into the ones. of the various
modes when the wave travels along the coast having irregular undulation.
In the present section, this.problem will be treated based upon the perturbation .
procedure with respect to the amplitude of the irregular coast after the
method by him. R
This section is divided into two parts: first the special case, and next B
the general case as in sec. 2.
8.-1 Damping in the simplest case
3.-1.1 The formal solution of the problem
In this article, the problem is treated in the simplest case when an ocean’
bed is uniformly deep with a contlnental shelf of uniform depth, a coastal
line being irregular in a finite extent with a basic straight line (F1g 3). We “
take the coordinate axes as shown in Fig. 3. '
Equations for a long wave are the same as eq (2-1). ‘
Now, we set the deviation of the coastal boundary from the base line
as

y=s1(x) o @BD
where ¢ denotes the perturbation parameter equal to unity. Then we expand
~all the relevant quantities in the power series of & as follows:.
IV=/V0+8LKV1+82U/2+ ...... , ' (3.2)
C=Cot+eli+&% gt eeeeeee .
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Fig., 3 Model of an epicontinent.

: The consition to be satisfied at the coast is given by

D A . ‘
H(&I(m)—y} bdry—O or [au;,.x——v]bdry——o_. | (3-3)

Expanding the values in eq (8-3) at the coast in Taylor series, substituting
them into eq (3-8) and then equating the same power of ¢, we have the follow-
ing conditions:

@ p(0)=0, : (3-4)
dx a’l)o
1: —— — '::O .
€ p(0)— ——01(0) =4 1, =0 | (3-5)
d? 0w | o 0%, '
2 . hashil Rhdiall _ Y B Y —
& — {ul(O)H 2y 1o v2(0)—4 29 lo A o2 [0 0,

and so on. ‘

In the following, the quantities outside the shelf are denoted by subscript
2 or nothing and those inside by the subscript 1 or dash. ‘

Now, we assume that the O-th order edge wave is given by

€ =B cos.5;Leilot—tgn)—sa(y—L) |

¢/ = Bei(ot—tu=) cos 51y, ‘ (3-6)
62 o?
where 'S12=F“loz, 322=lo?‘»—§» cii=ghi, ct=gh,
s
and . tan s; L= 2%2 .
his

Terms of & no lower than the 1st power in eq (3-2) represent the gene-
rated waves by the finite patch of the rough boundary in passing of the in-
cident wave. The 1st order g‘eherated long waves can be calculated by the
boundary cdndition (8-5), the conditions of continuity.of surface elevation €
and the volume transport v% at the edge of the continental shelf y=L, and
the condition that the wave energy must be finite at y=oo, resulting in the ‘
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following formal expressions for the surface élevations  and .{':

e =Z-Bj+°° T (lok+g:2)S(lp+k) .AeiAkz—{az(y—-L.)dk’ (3-7) ‘
.—m< hl )0(2 CcOoSs d1L+'Z.C(1 sin al, ’ o | . : v i
C1/=Z.B§+OO h (bok+a:2)S (Lot k) . gikw—tasl
@ ( 7, )az cos arL+iar sin oy L |
. oty . )
. [cos ay(L—y)—1 Tty sin ay(L—») | dk 3.8

where
+o
=V (g2 -k, gi=ofes (i=1, 2) and x<m>=§ S(end.

Throughout all the calculatlon in this paper, we assume that the spectrum B
S (m) of the boundary is continuous and also has no branch point.

3.-12 Integration of the expressions (3-7) and (8-8)

We need here to introduce a virtual friction in order to av01d the in-
determination of the integrals (3-7) and (3-8). Also, to let the energy of
waves be finite everywhere from
the physical consideration and
the integrands in (347) and (3-
~ - 8) be one-valued functions of

- / 2, we choose as the plane of
s integration the top leaf of the
- Riemenn surfaces such .that Re
S % V(R ~g:)=0 and Rev' (k2 —q,)=0

) \3\ 4 after the method by Lapwood
>3t (1949). Taking this friction- =
into consideration, we must lay /\ '
the cuts as shown in.Fig. 4. -
Poles of the integrands on the

: real axis in (3-7) lie in the
Fig, 4 Branch points and cuts. ;. icval VARSI IES

lqz |,these

locations being denoted by I;<lZp<:: - I _ ,
Calculation of the eq (3-T)at a large distance from the origin is ‘made
by use of the steepest descent method. The virtual friction tending to zero,
the path of integration is shown in Fig. 5.
Under the above condition, the solution of the integral (8- 7) is given by

Ci=2mi 2. M « S(ly—1,) « evine—)/ (n2—g3?) - (y— L)+iot '
n==k g (_ln)

L i—1 B (g2 —loge sin 6)S(ly—q, sin 0)
V27 (ha/hi)gscos 6 cos (anL) 4 +i(a) . sin (arL) 4
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x>0 \ } 20

Fig.'5 . The path of integration for eq. (3-7).

: 27q, o g
. ——] . g—irgatic -
1/( ; ) cos @ - e—iraatiot | for x>0 and 6>sin ( I ) (39

&i=2 mi Z‘ B(?—EEZO)L) SUlo+1,) - eftna=y/(ni=as) - = )+iat

i—1 B(g’— g sin §) - S(h—gzsin 6)
V2 (hy/h)g: cos 8 eos (e L) +i(ar) s sin (L)

-+

2 7mgs —tran-hic q | ‘
V(222 . cos g - -t for z<0 and | 0] = sin- (-2 lk ). 310y
where x=7sinf, y=L+rcosf; A, B=—qsinb,

2 1 :
! —_ == . = 1/ 2. nz
9'(=1w) [( 7 ) vy Ko +L]l,,cosL a?—1

hz 2 g7 ]4._ NIV g2i—]2 .
and ( )4 or 2 denotes the value when k£ is replaced by A or B. '
The path of integration to calculate eq (3-8) at a large distance from
the origin is shown in Fig. 6.
Thus, in this case the solution of eq (3-8) is given by

C /___2”,z z B <¢]1 _'/ZO n)S(ZO n) . g—ilnz+iot
n=0 ( l)

- | cos Cano—L)i( szj ) sin (au(y=L) |

+i0 2 (g +bk) S+ B) B/ ) ap

_ ha \? . ,
7 ( h—) a2 c08? a1 L+ o sin? oL
1

+iBS - etkz . cos ayydk, for >0, (3-11)

Ci'=2mi Zm: B<412 + {‘)(l“>l‘s‘>(10 + ln) e«,;lnx-i-iat
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!:cos Ca)uCy— L)—z( sz: ) sin (m)n(y.—-.L)] \

+contr1but10n by the integral along I’ +qg, forvm<0, : , (3—12)

where (), denotes the value when % is replaced by ..

The last terms in the rlght-
hand side of the eqs(3-11) and (3-
12) arise from the integration along
the path I™-¢; and I'g: respectivel‘y, '
which ‘may tend to zero as & tends

-to infinity.* ‘
3.-1.3- Powers emitted by genetae-
ed Waves**

Power of waves is given by the
product p JV of the pressure p and
the orbital velocity J/.

Hence, the total poW'ers P,+and
P,— transmitted by the geheratéd
wave of the #-th mode in the posi-
tive and negative z-direction are

' Fig, 6 The path of integration
. far eq. (3-8).
given respectively by

n2Pg? By
6 A{g(—L)¥

[ i (e e (o () S

o v G- isaer

hy  V L2—q? e \ Ty / 2(a1dn
+z'< hzaz) ) 1—cos 2(eer), L. ], . o (3-13)
may /.,

“(a1)n
Pn_=Pn+(ln_)'— ln) .

Also, the total power Pf, w, Of the free radiating wave from the disturbing
center is given by

—n/2

) /2 N )
Prw=|" PAO)E - (3-14)

where P,(6) is given by

PG> thz(41 —logs sin 6)2cos? § - g2 - | SUy—gz sin 0) |? (3:15)

( 2 cos? § cos? (nl)a+(ap)a? sin? () 4

The total power transmitted from the negative z-direction by the primary edge
wave Py~ (wave number /) is glven by ' ‘

PAO)=

*  Wvaluation of these integrals will be that these to 1nﬁn1ty as 2 and in special
circumstances as s7! (See Ewing et al,, 1957)."
**  Space average is made to let powers of edge waves and a free one be independent.
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Py

2 22 2 of 1 /
_ _ P9 By [ hy  cos?s'L sin2s'L ] (3-16)

4o N ) s +L+ 2s’!

The function [S(#)[? in the above expressions is related to the variance
spectrum W(u) (W(m) is defined here as. <{A2(2)) = rm W{(k)dk ‘) of the
boundary in the following form ’ '
| 27| Sk |?

L
where L, is the dimension of the finite patch of the irregular boundary.
3.-2 General extension of the results of sec. 3.-1 V

In sec. 3.-1, we have treated the simplest case that the ocean bed is of
uniform depth having a continental shelf of constant depth. In general,
however, the edge wave behavior will be considerably modified when we take
into account of the bottom slope inside the shelf.
3.-2.1 - Formulation of the problem and its solutions .

For this purpose, we employ the ocean model of sec. 2.-2 (see Fig. 2)..
The equations for long waves are given as in sec. 2-2.
We assume here that all the relevant quantities are proportional to ei(st—i=)
then we readily have

Wk = (317

_9
u o Cv ‘
__ 9 , 45 3
v—‘ ic dy >’ ‘ (3-18)
dah av
g — ] ar he =2
ic€ tlhu+ dy v+ pZ

From these equations, we have the equation for §:

Tt o e ( S )e=0 (3-19)

dy? + R dy ' ay
Now, we determine the 1st order waves converted from the Oth order
edge wave of incidence, when this wave travels along the coast of the irzjegular

“boundary. The boundary condition at the coast has the following expression

av(;

di
1)1(6)—%0(0)‘2;—‘— A a—y ‘0. (3—20)
Now we assume that the Oth order edge wave is given by
C(O)Z ?m(}’)ei (ot—itma) - » (3——21)

where @, is expressed by eq. (2-19). .
Then, from the same‘boundary conditions as in sec. 3.-1, we have the
1-st order solution in the following form:

+o i(et—1z)

co= (""" @or o) TG, @)
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+o
Cz(l)zj Cz(l) . e—dﬂ-l-i(atﬂlx)dl’
]

' z L
where a,=\/ 12— :2 , Cot=ghy, and R.a;=0, :
S 2 , ,

and ™, 5®, ¢, are rendered by

wh= ccln + = D)Pu(0) = o (@] S U= DIV (L) + ¥ (L]

bh =——— G( 75 U= D)Pue)— %n”(c‘)]S(lm—l)[Yz<D'<L)+azYz<D<L)] (3-28)
cl( )= Zél) [lm(lm_'l)q)m(c)_ ¢m//(c)] S(lm_l)[Yl(l)(L)Yl(z)/(L)— YZ(Z)CL)YZ(D/(L)]
where S(u) is the boundary spectrum as before.

- Now, let the real roots of G(1)=0 be denoted as before by i, £l
For large positive z, we have the required solution by the integral around
the pole Z,: '

C V=277 - (= n)QDm(c) P’ (€)1 SUn—

[(Y“’ (Ly+an¥ 2’(L>>Y§33<y>

G'(Za)
~ (¥R L+ anY D ANTR (e )
D=2 75 - (2L~ n)q)m(c) ¢n11/<0)] S(lm n) [Y(D(L)Ygi) (L) Y%Z;)(L)YE};)/(L)]

G'(l.)
Xe_“l'n(v Z)+ilat—inz)
We readily obtain the solutlon for the region. w<0 if we replace l by —1..
The eq (3-24) represents just the edge wave of the #-th mode. Unifying the
expressions (3-24) by using the function @,, we get ' ’

[lm<lm,'— l’n)g)'nt(c)— ¢m”(0>] S<Zm_' ln)
G'(w)

EO=2
[Y“’(L)Y‘” (L= Y (LYZ)]
%(L) '

Now the power of the wave averaged in time and space in -the 2 dlrectlon
is given by

‘ ¢n(y>ei<0't—lna:). . ' (3—25)

— _ P9l 5
Hence, for the total power of the wave in the positive 2~ direction we have '

+o .2 2 273
Pt =["" Chpuy ay= L

LU= 5)Pu(e) = Pul (@) [2 [ SUn—L) 1| ¥ (LY (5 (L) = Y“’ <L>Y‘2><L>12
IGICLJ !Z |¢7»<L> lz '

x| 19u0o) 12y
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But now o
. / Lo .
@ k(L) . Clzm . M . g 20y, L , (”=m>’k
S hgpm* Pdy= 21, Hlm/alm . .
where .

Him=Y 5% (YR ()- ¥ (Y ().

Hence, the edge waves are mutually orthogonal under the abo{fe defined
orthogonal condition. If we apply the orthonormal function, the

2 lm 'Hlm/alm

clz = h(L) . G’(lm) et L
. Hlm im
and Pu(L)= 2 w6 </ o | (3-25)

Then, We have the followmg expression for P,* .

_ ng | LnCl— 1) P(€)— P’ (€) |2 - | SUm —ln) 2
Pn+_h<L> . Glcln) Hln/aln

1Y“’<L>Y‘2’ (L-YRIHYR' W 12, (326
for the region >0. The solution, P,— for the negative 2 is obtained by
replacing I, - by —1,. : A

Also, the incident power P,.® is given by .
@ _ PGn : o -
| P ="% - G
since . @, is. normalized to unity. Sl
A free scattered wave at a large distance from the disturbing center is

obtalned by the steepest descent path method in the quite snm]ar way as in
sec. 3-1, The result is given by

[lm(lm—qz sin 8)Pn(c)— Pn'(6)] S(lm—qz sm 0)

Cf. w. ==

G(gy8in 6)
- K(g;sin 6) - J 2% oo Geot-ard . (3-28)
where z=rsinf, y—L=rcosl o .
and K= YT (Ly- v Y L.

Hence, the‘tota] power of the free scattered wave is given by
/2 ’
Pt . =.j RO

where o o

-

This equation is derived easily first by subtracting the differential equation for. ¢,*
multiplied by ¢, from that for ¢, multiplied by e¢,* and then by the limit process
n-—m.

®
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(0)2”/)92(422) ha | lmCZm g, Sin ) Pwmc) — ¢”m<0> 2 - l S(lm_qz SIn- 6) IZ
g o : | Glgy sin &) |? '

~1K<qzsin9);2-cosze (329

In the following article, the numérical examples will be given for the power
ratio P, -/P,® as applications of sec: 8.-1 and 3.-2. A

For the physical 1nterperetatlon of the edge wave, we may conclude, ,
because of no damping in the direction of wave progress, that it is the wave
of total reflection both at the coast and at the edge of the shelf; prooeeding
along the coast inside the -shelf in the sense of ray theory. .

In the solutions, we have neglected the terms' arising from the 1ntegra1
along the cut paths, which may be interpreted as composed of waves which
reflect totally at the coast and partially at the edge of the shelf (See, Ewing
et al., 1957). This will, however, be justified from the following reason: The
edge waves, the freé radiating wave, or the integral along the cut paths satisfies
the wave equation independently of others. The former two solutions also
satisfy the boundary conditions independently, but the last does not. Since
there may be no other term as x—+too, the last term must tend to zero. That
is, the waves, which are very complicated around the disturbing area, tend to
be arranged gradually as they propagate farther, and finally the solutlon Wlll
be composed only of the edge waves "and the free radlatlng wave.

In the following, application will be made in case ‘when the Water depth
is given by h=by? in the region 1. From eq (3-19) and the depth given
here, we have the equation. for -¥'##(y) in the following form:

LSRN S
dyt "y ay gby?
On making a transformation _ o ‘ ‘ | :
c I , . -
C=y 2w
then we have eq. for w such that

—12>C ()

G 1 v olgb= A | ~o0.

dy* "y dy 72
Setting z=ily and VZ=76;*;%“, then we have the equation in the following’
from | . ‘ :
| ‘f;‘;’ +%-‘fl—’:+(l+ :z Jw=0, | (3.30)
and the solutions are | )
=I,(ly) or I+, (ly) when #2>0, ' (3-31)

—I| {(Iy) or I-1» {(Iy) when #2<0 and [Vl is not an 1nteger,
=I.,1(Iy) or K|, (Iy) when 1/2<O and | 7| is an integer.
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In general, the actual ocean bed seems to vary from the shore towards
the sea in such a form that »2 should be positive so long as we assume the
wave period of several ten miﬁutes, for instance, as an example shows of the
sea bed off the Sanriku Districts, where & is of the order 10 (c. g. s. unit)
This case will impose a rather tedious computation owing to the lack of tables
of the functions. ‘ '

3.-3 Numerical examples

Here, will be given the examples of the sec. 3.-1 and 8.-2

For the variance spectrum of the coastal boundary, we assume temporarily
the following form |

W(k)=A/R2, (3-32)
which is the same form as Cox has obtained in the analysis of the ocean bed
‘in the Atlantic. '

(a) Example of sec. 3.-1

As constants, we adopt the following: /A;=1000m, %,=4000m, L =60km
and the wave period 77=30min. This case gives only one edge wave mode
with wave number /;=2.74x10-7. Then we have the power ratio of the -
generated edge\wave to the incident one in the following ‘form' '

Py~ [ Py—=—1.56x10-12 AL,. (3-33)
The power ratio of the free scattered wave to the incident one is likewise
given by '

nlg.

Py, w./P0—=s‘ R(0)do=—5.06x10-8 AL,, (3-34)
where R(9)=P.(8)/P,~ indicates the relative power of the scattered wave
in the direction 6, and has the scattering characteristics shown in Fig. 7.
Here A and L,are taken in c. g. s. unit. In this case the power of the scattered

I-SL . ) .
_RO) 1o

Lo}

o5p

0 70 50 30 0 -0 30 %0 10 %o
e(degr‘e.e)

Fig. 7 The scattéering characteristics. |
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wave is about one-third of that of converted edge wave and the damping is
mainly determined by the latter effect (in this case the conversion is also
regarded as the reflection). To determine the power transmitted to the
positive x direction by the edge wave generated, the adopted spectral form
is inadequate since it is singular at Z2=0. N :

To estimate the constant A, let us assume that the _amplitude of the
undulratioh of the coast is 20 km for the wave length 200km. Then we may
have A=~=6X105 In this case, the damping is surprisingly large, and only
Ly=10 km gives the fully scattered state, so that the perturbatlon procedure
may fail. ‘ _

(b) Example of sec. 3. 3 \

For simplicity, we consider the case »=0. . Numerical constants
are given as follows: ¢=10km, L=50km, A=160m, Ay=4km, T=
52min.. This case gives only one edge wave mode in the long’ wave range
with /;—1.1X10-7,and the power ratio of edge wave generated to the inci--
dent one is given by ‘ : ’

P/ P®=10-1 AL,(10-4AL,) (335)

Then, for instance, when we apply the value A~6X10°% then the edge wave
suffers the damping at the rate of 6% decrease by 100 km advance in the
energy flow,

In the examples given: above, the larger damping in the former by the
order 102 may be due to the deeper depth at the coast, since the coasta]
wall is fully responsible for the reflection of the onshore wave and hence
the scattering when the coast is irregular.

4. Concluding Remarks.

So far, we have presented the general expressions and the special examples
on generation and damping of edge waves. Power concept after Dr. Cox
has adopted throughout the present paper to grasp the edge wave characte-
ristics on the whole and to make the treatment easy especially in sec. 8 of
the damplng problem. Simple kinematics may connect it with the wave energy
with relative case.though it was not discussed here.

It is noted that the generation of edge waves strongly depends on the
distance of the disturbance center from the shelf in the exponential form
‘when the center is in the open sea, and the conversion damping is propor-
tional to the variance spectrum, although, of course, the geometrical structure
of the ocean bed may considerably mod‘ify the results. Certainly our adop-
tation of the numerical constants in the above examples will be inad\equate
in featuring the actual ocean bed, but this may be corrected easily at the
expense of more tedious computation. The essential drawback of the present
theory will be that we have completely negleeted the effect of the non- linear
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processes such as breaking and overflowing taking place near the coast. Our
hesitation in specifying depth model near the coast as well as the irregularity
of coast is exclusively ascribed to this point. One may attémp,t to avoid
this difficulty by defining that edge wave is the one which never suffers
breaking near the coast, and hence has finite amplitude from Stoker’s con-
jecture. Tn this case, however, still the question may remain what is the
condition for the wave not to break. Investigations made by Greenspan
(1958) and Carrier & Greenspan (1958) might be trials to clear out the obscure’
character near coast of edge waves.

Here, it must be noted that the edge waves may be interpreted as the
waves constructed by interference between plane waves undergoing total
reflection in the shelf (for instance, Ewing et al, 1957). Hence, their gene-
ration is essentially due to the diffraction effect of the incident wave, and in
general the percentage of the generation will be strongly dependent upon
the relation of curvature between the shelf edge and the incident wave front.
In addition, although it may be less important, coastal irregularity “will
participate in the generation problem, since scattering due to the irregularity
produces the wave coniponents of the total reflection in the shelf.

At the end of this paper, we infer the edge wave phase in the record
of tsunami at the coast. From the consideration of the minimum group velocity
given from the dispersion curves, for instance, by Kanai (Ewing et al., 1957),
it seems that the edge wave phase, at least in its first few modes, is confined
in the so called Main- phase 1n the tsunaml record "Unfortunately, the fact
that the period of the edge wave is of the same order as those of shelf
and bay oscillations, makes it difficult to discern the edge wave phase in the
actual mareogram, and the detailed analysis is left to the future.
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