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EDGE WAVES INDUCED .BY A RADIALLY SPREADING LONG WAVE 
AND ITS DAMPING DUE TO THE IRREGULARITY OF COAST 

i 

Kiheiji Ogawa 

Recei,;ed November 2, 1959. 

Abstract 

First, the generation of edge waves by a cylindrically spreading long wave and, 
next, Its damping due to the irregularity of coast are treated in two ~ases of the 
epicontinental bottom configuration such as is treated by Sezawa .. 

1. Introduction 

The study of edge waves in water seems to be initiated by Stokes (1846) 

in case of water deptµ of a constant ~lope, and the extension to include. the 
higher modes is made by Ursell (1952). ·oceanographical application and 

devel·opment of this theory have been made to storm surges by Munk et al 

(1956) and Greenspan (1956). The effect of th~ constant Coriolis factor 

on the edge wave behavoir and their generation has been investigated by Reid 
(1958) and Kajiura (1958). 

As stated above, however, their treatment of the problem is bas.ed on the 

water depth of_ linear slope. So their theory may not well be applied· when 

o.nshore wave length is of comparable order to t:µe width of the continental 
shelf, which will· correspond, in the usual case, to the wave period of several 

ten minutes. 

Now, the model of ocean bottom available to this latter case is found in 
a paper by Sezawa (1939), where the model i~ tak~n of the uniform ·water 

depth on and outside the shelf, an~ the name "epicontinental .wave" is first 
originated. 

Of the edge wave problems, the question may naturally arise whether 

edge waves exist or not in the tsunami case. The tsu~ami recorder near 
the coast shows multiply fluctuating wave trains altering the amplitude as 

well as the period. This .may be partly ascribed to the dispersion nature of 
gravity waves or to the scattering of the wave energy by the strong irregularity 

of the ocean bottom. The essential point, however, will be that the existence 

of the continental shelf and bays are most responsible factors to the above 
described characteristics. In this connection, from .the seismological Love 
wave analogy, the natural picture will be that the continental shelf might 

· produce the edge waves of Love type in the tsunami case .. Also; for .an 
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incoming solitary wave, the dispersive character of the edge waves will 
produce the waves, which propagate with the group velocity, changing periods 

and wave lengths as they propagate along the continent. 

On the other hand, the strong possibility that the decay of wave energy 

in its propagation will be. very large owi:µg to the bottom friction and the 

non-linear breaking effect near the coast, might lead to the unimportance 

of the edge waves. Also, the irregularity of the coast must be added to the 
factors of decay process when it is very: large, though it may necessarily 

4ssociated with the irregularity of the ·ocean bottom. 
The prese11t paper is only a crude initial step to this problem and deals· 

with the "epicontinental" case in both the generation and damping problem. 

The former half of the paper describes the generation of edge waves in the 
fundamental case when a periodic long wave spreads radially. outwards,+:­

and the latter half the damping of edge waves due to the irregularity of 

. coast** after the similar manner as that of Cox (1956).*** 

In the present paper, two cases are considered concerning the bottom 
configuration, and adoptation of the first case is exclusively due to the 

mathematical simplicity in spite of its rather unrealistic features. 

Lastly, it must be remarked that ~n the present paper the complete 
neglection of the breaking e~ect near the coast is made and instead, the 

condition of the total reflection at the coast is imposed of the onshore waves. 
Certainly, the results obtained here may be more or less altered when this 

effect is taken into account. 

2. Generation 
In this section, tpe problem will be treated when a primary incident 

long wave spreads radially outwards from the disturbance origin in cases 

where the bottom has a simplest configuration and then a more general form. 
2.-1 Formulation and solution of the problem 

In this article, the problem is dealt with in the simplest case when the 
shelf and the ocean offing of it are uniform as shown in Fig. 1. The co­

ordinate axes are also shown in Fig. 1. 
Equations for long waves are given by 

* Our first problem is quite similar to the. generaticin of Love wav~s (Sezawa, 1935) 
and, of course, the results will be easily obtainable by changing the boundary conditions 
and by making an appropriate correspondence of the physical quantities. However, 
the analysis derived by the writer independently of Sezawa's will be described to keep 
a consistency througout the paper. 
** 'This damping problem was kindly suggested by Dr. Cox. 
*** One of Dr. Cox's works is on the conversion of a surface wave into internal 
ones due to the irregularity of the ocean bottom with special application to oceanic 
tides, use being made of the modern concepts of the wave power and the variance 
spectrum of the ocean bottom. These concepts will be utilized also in the present 
paper. 
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au a' at=-ga;-, 

av a' -. o' =h( ou +· ov ). 
at . ax ay (2-1) 

--=-g-.-, oy · ay 
where u denotes the velocity in the x-direction, v in the y-direction, ' the 
surface elevation, a,nd h the undisturbed water depth, suffix 1 or 2· referring 

to the quantity in the region 1 or 2 respectively. 
' 

It l.s assumed that the cent~r of a disturbance is located at (o, d) in the 

Tegion 2, and the incident wave generated is expressed by . 

· · J+ro (2) · · · 
f'. , __ z_A F(l) +az (y-d)-il.,+iat dl .<d 
':.1nc1dent- e ' . ' y_ n -ro · · (2-2) 

Now the boundary conditions to be imposed are that the normal velocity at 
the boundary y=O is zero, the volume transport and the surface elevation 
.are both continuous at the edge of the shelf y=L, and the wave energy is 

finite at the infinity of y. Then, the solution for ' is given by 

Fig. 1 Model of a contine.ntal shelf . . 

J 
+co (1) (1) ( ) 

f' _ ( al y +b -al !I) i at-l"' dl 
1:.1- ale le e , 

-co } (2-3) 

-where a)k)=V(l2-q1,,2), qk=ofrk, (k=l,2), 

i (2) h2 . a(2)(L-d) . 
a1=bl=-.;rAa1 ·hi· F(l) · e 1 /G(l) 

-a(2) L' i a(2)(L-d) . (1) 
e l cl=--AF(l)e 1 +2alcoshaz L 

n 
} (2-4) 

and G(l)=a~l) sinh a~l) L+ ~~ a~2) cosh aP) L (2-5) 

:Let us denote the real roots of G(l) ==0 as ± li, ± !2 , ...... , ± lm which lie between 

I ' 
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I qi I and I q2 I in the absolute value.* Then edge wave solution of the n-th 

mode for the region x>O is given by integral around the pole ln as follows:-

/2>c£-a) 
f" _4A~ (2)F(l ) e 

1
"' h (l) • t(at-tn"') - } 

1:>1- hi a 1., .. G' (l.,) cos a 1n y e 

a(2)(L-d) (2) 

C:2=4Ah hzl. a~!)·F(ln. )· e ln • cosh af~) L·e-aln (y-L)+i(at-inrll) 
G'Cln) 

(2-6) 

for sufficiently large x, where the dash. on G(l) denotes the di~erentiation 

with respect to l. (For the detail of integratidn method, see section 3.1) 

Now, the power of the wave of the n-th mode averaged in time and space: 
for positive x-direction is rendered by 

<CPJV)"'> = P~d" I e: 12 •(2-7) 

Then, the total power P+ n. of the above edge wave of the n...:th mode given by 

co 

p ! = t <CP JV)"'> hdy 
(2) 

4 Pg2lnA2 • (~)2 
•. I atn 1

2
• I l!Cln) 1

2 
• 2a~;?(L-d) 

6 h1 I G'Cln) 12 e 

[ 
. h 2 (l)L h2 Cl)L J 

h ( L Slll atn ) +h , COS atn 
x 1 + ro . 2 00 . 2a~ . a~ . 

(2-8} 

The edge wave solution for C: and the total power Pn - in the negative x-region 

are also obtained by replacing ln with -ln in eqs (2-6) and (2-8) respectively .. 

'rhe form of F(l) and the power of the incident waves will be calculated 
rn section 2. 3. 

Next, the solution will be given when the disturbane center is located. 
inside the region 1. We assume that the incident wave is gi.:ven by 

p- • • _ _}_A J +co z;, (l). ap)(y-d)-ilrll+iat dl 
':,b. mc1d. - I'b e ' 

7( -co 
ysd, 

p- • • _ _i_A J +roF (/) -a~1)(y-d)-ilrll+iat dl 
':,f. mc1d. - j e ' 

. 7( -co . 

(2-9} 
y2d. 

Then from the same boundary conditions as mentioned above, we have the, 
solutions for the surface elevation C: in the following form: 

a(l)d -a(l)d 
p- = 2 A (1) • [FJ(ln)e in + Fb(ln)e ln J • [ h (l)(y-L) 

• 1:>1 . a,,. G'Cln) cos a,n 

. (2) 
h2atn , h (1)( L)·J i(a-lnrll) 

- (l) sin a tn y- e 
h1atn 

a(l)d .,-a(l)d 
e: =2 A (1) • [F1Cln)e In + Fb(l .. )e . ln J • e -a);((y-L) . e i(at-lnrll) (2-10) 

2 a,,. .G'Cln) 

Also the power formula for P.,+ is given as follows: 

* This means physically that the propagation velocity of edge waves is between. 
the wave velocity inside the shelf and that in the open sea. 
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p "j; 

·1 [ . h 2 ci)L -. · h2 Cl)L J 
h ( L Slll atn ) + h . COS atn. 

x ----(1-) - 1 + (I) 2 (2) • 
cosh2 atn L 2az.,. a.in 

(2-11) 

2.-2 Formulation and solution of the problem (general case) 

Here, the problem will be treated in case when the . bottom has a more 
general form. We divide the . oceari bed into two region_s - the continental 
shelf (region 1) and the region off the shelf. (regio:h 2) -:-- as illustrated in· 
Fig. 2. ·The water depth of the shelf has an arbitrary form without zero 
depth, and the sea off the shelf is of constant depth, and is conti:r~uous at 
the separation point y=L. The coordinate axes are also shown in Fig. 2. 

/ 

f 
h.2 

J 
0 ~1-=C.------+-1--==...,--L ~ '} 

I 

Reg·t'on 1 I Rf.9wn. 2 

I 

Fig. 2 Model of a continental shelf. 

Equations for long waves are same as in Sec. 2.-1. except the continuity 
condition which is given in this case by 

a a a 
-atC=~(uh) + Cly (vh) 

Here it is assumed that the center of the disturbance is located at (o, d) 

in region 2. 
Now, the solution in the region 1 is given by 

C1 = I +ro i(ut-l'JJ) ( aiYP) (y) + biY~2) (y )dl' 
J-8 (2-12) 

where two mutually independent solutions Y~k)(y) (k=l, 2) satisfy the equ­
ation: 

d
2
C +__.!_. dh . dt;, + (_!!!_-!2 )r:;,=O 

dy2 h dy dy gh 
. (2,13) 

In the region 2, except the incident wave it is sufficient for us only to 
consider the solution of the· form 



108 K. OGAWA 

(2-14) 

where az=V(l2-q22), q2=6/c2, c22=gh2 and Reaz';;;:::.O. 

Here, the incident wave is supposed, as in section 2.-1, to have the form 
(2-2). The boundary conditions is the same as in the preceeding section. 
Then, the coefficients of eqs (2-12) and (2-14) are given by 

2iA Yz(Z)'(c) 
az = ---·azF(l) • e«1(L-<l) , 

7t G(l) 

2iA Yz(l)'(c) 
bi=+--•azF(l) •eai(L-<l), 

7t G(l) 
.(2-15) 

2iA ea1(2L-<l) 
Cz = +-;;-· azF(l) G(l) · [Yz(1)'(c)Yz<2)(L)-Y1(1)(L)Yz<2Y(c)J 

where 

iA - -- • F(l)ea1(2L-<l) 
. 7t 

G(l)=YzCl)'(c)J!''zC2)'(L)-YzCl>'(L)Y/~)'(c) 

-az[YP)(L)YP>'(c)-YP)'(c)Y/Z)(L)J. (2-16) 

Suppose that the real roots of G(l)=O are ±l1, ±l2, ...... (I ln I 2qz).* Here it 
must be remarked that only the real root,s of eq (2-16) are considered, since 

otherwise evanescent or growing waves will be obtained and the latter cannot 

be accepted from the physical point of view. 
Then, we have the edge wave solution of the n-th mode by intergation 

around the pole ln in the following form 

f' = -4A• tXznF Cln) • eatn(L-<l) • [Y(2)'(c)Y(l)(y) 
'::.l G'(ln) ln ln 

-Y~;?' (c)Y~!)(y)] .(Ji(ut-lnx) , (2-17) 

f' = -4 A. ain F Cln) •ea (L -<l) • [ yCl)(L) y (2)'(. ) 
'::.2 G'(ln) ln tn ln C 

-Y~;?' (c)Y~~(L)J . (Ji(at-tnx)-azn(y-L) , 

for positive large x. The solution for the negative x region will be obtained 

by replacing ln with -ln· 

Now, the edge wave of the n-th mode is given by** 
' 

(2-18) 

where 

* To our present problem, the symmetry axis will be they- axis. Hence we conclude 
that the real roots of G(T)=O are ±l1 , ±l2,.... Moreover, from the above condition, 
we may say that G(l) is a function of l 2 and so G1(-l)=-G'(l). 
** This expression is derived easily by imposing the condition that the normal 
veloCity is zero at the coast, the volume transport as well as the surface elevation is 
continuous at y=L, and the evanescence of these quantities at the infinity of y. 
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{ 

ll:tn , (2)' (1) (1)' , (2) . · · 

( )
- C1n' H ·e-aln' • [-Ytn (c)Y1n(y)+Ytn (c)Ytn(y)], O<y;:;;;.L, 

<pn Y - ln · · 
C1n . e-a1n!I Ls;,_y. . ' 

(1)' (2) 1 (1) 1 
) (2)'( ) H1n=Y tn (L)Y tn (c)-Y tn (c Y tn L , (2-19) 

and ln is the real root of eq (2-16). 

Then the solution (2-17) is unified to a single expressi6n 

for positive x. 

If we set as 

then 

[Y~!)' (c)Y~;?CL)-Y.~!Y (c)Y?!)(L)] 
' <pn(L) 
, <pn(Y) , e£(at-lnx) , 

1 :roh I <pn l2dy=l, 

I ( ) . 12_~ , H1n/a1,,; 
<pn. L - h(L) G'Cln) 

Hence, we have Pn + as follows · 

I Y)~Y (c)Y~!) (L)-Y)!>' (c)Y~~)(L) 12 

G'Cln) ·Hin 

(2-20) 

(2-21) 

(2-22)· 

Also, we have the power Pn - in the negative x-di{ection, replacing ln by -ln in 

eq (2-22), which is equal each other in the absolute value. 

2.-3 The form of F(l) and the power of the primary incident wave 

In this section, the function F(l) will be determined for further cal­

culation based upon the.)ong wave theory in case when a 'periodic long wave 

spreads radially outwards with circular symmetry. Since the incident wave 

is of a' circular symmetry, then we have the equation for a long wave in the 

following form, eliminating the time factor eiat . 

(2-23) 

where r is the distance measured from (o, d). Hence the solution of the 

incident wave is rendered by the 0-th order Hankel function of the 2nd kind 

(2-24) 

For further calculation, we need to transform H 0C2)(q2r) into the follow­
ing form 

H 0C2)(q2r)=-z- -- · e-aiv'-~lx' dl for y'>O, . 1+cxi 1 
7t -CXl a'.t 

(2-25) 

where x'=x and y'=y-d (This relation is proved, for instance, by Nakano 

(1925)). Likewise, in the region y<d we have' 

•I 
j 

'\ 

. ' 
'1 

' I'. 

/ 

'\I I 
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HoC2)(q2r)=-t- -- . eaz(11-d)-,ilx dl' · i+co 1 
. 7t -co az 

.and F(l) iri the preceeding sections is given by 
. 1 

F(l)=-. 
az 

Asymptotic expansion of C inc. gives the result 

( 
2 )1/2 -i(q2r-+ir) 

Cine. =AH0C2)(q2r)=A -- e 
7tQ2r 

Hence the mean power of the wave in the r-direction is given by 

1 Pg2q pg2A2 
PVr =--

2 IC 12 

26 7t6 
for larger, 

r 
~ 

.and the total power Pinc .. of the wave is expressed by 

2.-4 N umeric~d examples and discussions 

(2-26) 

(2-27) 

(2--28) 

(2-29) 

So far, we have reduced the edge wave solution induced by the primary 

disturbance, and the: total powers for these waves are given. The power ratio 

of the edge waves generated to the primary wave will have the significant 

importance, since the power is interpre.ted as the energy flow. Also,· the 

detailed kinematics on edge waves will give simple relations among the ertergy 

flow, total energy, wave energy etc., although these are omitted here. On the 

other hand, the amplitude ratios at the coast among the edge waves, directly 

arriving waves, etc. will have important significance, considering that the 

observations have been exclusively made at the coast. 

Here, some numerical examples will be illustrated of sec. 2.-1 and 2.-2. 

(a) Example of sec. 2.-1 

·As numerical constants, we take T (wave period) =20min, h1 =1000m, 

h 2=4000 m and L=60 km. The disturbance. center is. assumed to locate in 

region 2. In this case, only one mode with li =4. 7x10-7 exists of the edge 

waves. Then we have the power ratio 

P:=1 /Pinc. =6.38x10-2 • exp[ -2 a~;)cd-L)] 

Since Pinc. · is obtained by integration on the complete circle around the 

disturbing center, the effective ratio of the power conversion will be four 

. times the above, that is, 

e. r. c.='25 ~exp[ -2 a~;\a-L)] .% 

The damping coefficient. is, in this case; given by 2 a~;) ='7. 6 x J0-7 

.and the distance to decay as e-1 is d-L=lO km. 

(b) Example of sec. 2.~2 

An example is given in case when h=by2 and r=O (see Sec. 3-2). · As 
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numerical constants, we take T 52min:, h 1"""'160m, h2=4km, c=lOkm, L= 
50 km and the disturbance center is assumed to locate in region 2. In this c~se 
the existing mode of edge waves is only one withli=l.lxl0-7within the :Jong 

wave range. This case gives the effective conversion ratio as follows 

+ P,.-1· . (2) 
. 4 x-p. - =9.7xexp[-2a,1 (d-L)] %, 

inc. 

and the dist~nce to decay as e-1 is about 100 km. 
In both examples, it is remarked that the conversion ratio has an expo:.· 

nential damping factor with respect to the distance d-L, and it is largest 

when the disturbance center is at the edge of the shelf. This may well cor­
respond to one of the results by Greenspan (1956). The conversion ratio . 

will, however, be largely dependent to the bottom. structure as well as the 

wav:e period. 

3. Damping due to the Irregular Coast 
Recently, Dr. Cox (1956) has made the investigation on the conversion 

damping of surface waves into the internal ones with the special application 
to the oceanic tides. This conversion is due to the irregular undulation of 

the ocean bottom. 
Quite the similar things will happen with the edge waves. That is,· the 

edge wave of a certain mode will be converted into the ones. of the various 
modes when the wave travels along the coast having irregular ·~ndulation. 
In the present section, this.problem will be treated based upon the perturbation 
procedure with respect to the amplitude of the irregular .coast after the 

method by him. 
This section is divided into two parts : first the special case, and next 

the general case as in sec. 2. 

3.-1 Damping in the simplest case 

3.-1.1 The formal solution of the problem 
In this article, the problem is treated in the simplest case when an ocean 

bed is uniformly deep with a continental shelf of uniform depth, a coastal 

line being irregular in a finite extent with a basic straight line (Fig. 3). W.e 

take the coordinate axes as shown in Fig. 3. 

Equations for a long wave are the same as eq (2-1). 

Now, we set the deviation of the coastal boundary from the base line 

as 

y=sA(x) (3.1) 

where s denotes the perturbation parameter equal to unity. Then we expand 

·'.all the relevant quantities in the power series of c as follows: 

/J/= /J/o+s /J/1 +s2 /J/2+ ...... , (3.2) 

C=Co+sC1 +s2C2+ ......... . 

I 
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~ hlhut•ftAe 
Cb 

j shet 0 ~· 

k "/:::L 
e~ .R,1~1t.l 

t R4"101t.2 ~ 
..'S 
~ I 

~ I ~1'"'"2 
,, 

f:..l 

I 

Fig. 3 Model of an epicontinent. 

The consition to be satisfied at the coast is given by 

D ) [ di. J 
Dt 

(cA(x)-y) =0 or su-d. -v =0. 
bdry X bdrY 

(3-3) 

Expanding the values in eq (3-3) at the coast in Taylor series, substituting 

them into eq (3-3) and then equating the same power of s, we have the follow­

ing conditions: 

s0 : v0(0)=0, 

dA ovo I c1 : uo(O)-d -vi(O)-A-".:\- =0, 
x uY o 

e2 : 

and so on. 

(3-4) 

(3-5) 

In the following, the quantities outside the shelf are denoted by subscript 

2 or nothing and those inside by the subscript 1 or dash. 

Now, we assume that the 0-th order edge wave is given by 

where 

and 

(, =B COS·S1Lei(at-to.,)-s2(y-L)' 

(,'=Bei(ut-lu"') COSS1Y1 

o2 
s12=---lo2 , 

C12 

h2s2. 
tans1L=--. 

his1 

o2 
si=lo2---, 

Cz
2 

(3-6) 

Terms of s no lower than the 1st power in eq (3-2) represent the gene­

rated waves by the finite patch of the rough boundary in passing of the in­

cident wave. The 1st order generated long waves can be calculated by the 

boundary condition (3-5), the conditions of continuity .of surface elevation r:;, 

and the volume transport vh at the edge of the continental shelf y=L, and 

the condition that the wave energy must be finite at y=oo, resulting in the 



''\"' :. 

EDGE WAVES 113 

following formal expressions for the surface elevations t; and .t;': 

,..
1 

=i·/3 J+oi . Clok+q12 )S(lo+k) · .,, -------'---=-------"'-=--"--~-~--, etkx-ia2(11-L) dk, 
-oi ( h2 ) L-1'. . L h; a 2 cos a1 .-ia1 sin a1 

(3-7) 

,.. I ·B)+oi Clok+q12)S(lo+k) "kx-iaQL 
':ol =t . ei ~ -oi ( h2 ) L . . L h; a 2 cos a1 +ta1 sin a1 . 

· [ cosa1(L-y)-i ~::: sina1(L-y)J dk (3.8). 

where 

a..:. V(qi2-k2), qi=6/Ci (i=l, 2) and tl(x)= i:: S(µ)et"'µdµ. 

Throughout all the calculation in this paper,. we assume .that the spectrum . 

S (µ) of the boundary is continuous and also has no branch point~ 
3.-12 Inte.gration of the expressions (3-7) and (3-8) 

We need here to introduce a virtual friction in order to avoid the in­
determination of the integrals (3-7) and (3-8). Also, to let the energy of 

Fig .. 4 Branch points and cuts. 

locations being denoted by !1 <l2< ...... <l11 .. 

waves be finite everywhere from 
the physical consideration and 
the integrands in (3~7) and (3-

8) be one-valued. functions of 
k, we choose as the plane of 
integration the top leaf of the 

Riemenn surfaces such that Re 

V(k2-q12)2Q and ReV(k2 -q22)"2:.() 

after the method by Lapwood 
(1949). Taking. this friction . 

I 

into consideration, we must lay 

the cuts as shown in. Fig .. 4 .. 
Poles of the integrands on the 

real axis in (3-7) .lie in the 

interval I Qi I;:::;;: J k I< I Q2 I, these 

Calculation of the eq (3-7)at a large distance from the origin is m~de 
by use of the steepest descent method. The virtual friction tending to zero, 
the path of integration is shown in Fig. 5. 

Under the above condition, the solution of· the integral (3-7) is given by 

mB(2tl) 
C1=2 7ti .L; ~1 - 0 n • S(/o-ln) . e-~lnx-y'(tn2-q22). (11-:--L)+iut 

n=k g (-ln) 

· i-l (q12-l0q2 sin 8)S(/o-Q2 sin 8) 
+ V2-B (h2/h1)q2 cos 8 cos (a1L)_.i ~i(a1)A sin (a1L)A 
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Fi· ·.::. g • ..I The path of integration for eq. (3-7). 

' • / ( 2 7tQ2 ) . . . ( i/2 ) • v -r-, _·. . cos 8 . e-<rq2+iat ' for x>O and 8;?:sm-1 T . 

m B(q 2+ll) · 
f;1=2 n:i .L: ,1 ° n . S(lo+ln). e£ln"1-v(tn2-q22). (y-L)+tat 

n=k .g(-ln) 

+ i--::__~ . B(q12- l0q2 sin 8) · S(lo-Q2 sin 8) 
V 2 (h2/h1)Q2 COS 8 COS (a1L)B +i(a1)B sin (a1L)B 

(3-9) 

. v( 2 ;q2). cos 8. e-irq2-Hat, for x<O and I 8 I >sin-1( ~: ) . (3-10) 

where x=r sin 8, y=L+r cos 8; A, B= -qi sin 8 '· 

g'(-.ln)=[ ( ~: ) · V l,.2~q22 +L JtncosLV Q12-ln2 

+ [ ( 1: ) LV ln2-q22 +1 ]v q/:,_ 1n2 sinLV Q12-ln2 

and ( )A or B denotes the value when k is replaced by A or B. 
The path of integration to calculate .eq (3-8) at a large distance from 

the origin is .shown in }fig. 6. 

Thus, in this case the solution of eq (3-8) is given by 

f"' 1 2 . .;, B • (q12-loln)S(lo-ln) -it +' t 
'=>1 = 7tt .L.i • e ,.., ··a 

n=O g1
( -ln) . 

· [cos (a1) .. (y-L)-i( ~:::) n sin (a1)n(y-L) J 
+iB i:•ro ~~q12:lok)S(lo+k)(h2/~1)a2 . e£k"': cos aiydk, for x>O. (3-11) 

n(-· -) ai cos2 aiL+a12 s1n2 a1L 
~ ' 

t;,i'=2n:i i: B(q12+lolr.,)S(lo+l,.) • e£lnai+iat 
n=O g1

( -lr.) 
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· [cos (a1\.(y-L)-i( ~~=: t sin (a1)n(y,L) J, 
' ' 

+contribution by the integral along I'+q2, for. x<O, . 

where ( )n denotes the value when k is replaced by ln· . . 

(3-12} 

Fig. 6 

T.he last terms in the right­
hand side of the -eqs(3-ll).·and (3-

12) arise from the integration along 

the path I'-q2 and I'q2 respectively, 

which may tend to zero as x tends 

·to infinity.* 
3.-1.3 · Powers emitted by genetae­

ed waves** 

Power of waves is given by the 

product p)V of the pressure p and 

the orbital velocity lV. 
Hence, the total powers Pn +and 

The path of integration P,.- transmitted by the generated 
far eq. (3-8). · wave of the: n-th mode in the posi-

tive and negative x-direction are 

given respectively by 

. [~. 1 + {l-( h2a2 )
2 

} L + {l+ ( h2a2 )
2

} sin 2(a1)nL 
hi V ln2-q22 · hia1 n . hia1 n 2(a1)n 

+ ; ( h2a2 ) . 1- cos 2( a1)nL J (3-13) 
~ hia1 n '(a1)~ ' 

Pn-=Pn+Cln-+-ln) 

Also, the total power P 1. w. of the free radiating wave from the disturbing 

center is given by 

f 
tr/2 

P1. w. = . Pr(())d() 
-tr/2 

(3-14) 

where Pr(()) is given by 

· 7t pg2 hzB2( qi2 - loqz ~in ())2 cos2 () • qz2 · I S (lo- q2 sin ()) I 2 

Pr(())=-
6
- • · ( h )2 . · h: q2

2 cos2 () cos2 (a1L)A + (a1)A2 sin2 (a1L)A 
(3-15) 

The total power transmitted from the negative x-direction by the primary edge 

wave P 0 - (wave number 10 ) is given by 

* Evaluation of these integrals will be that these to infinity as x·2 and in special 
circumstances as x~1 (See Ewing et al., 1957) ... · . _ 
** Space average is made to let powers of edge waves and a free one be independent. 
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Po-= Pg2B 2loh1 . [~ . cos2 s' L L sin 2 s' L J 
4a h1 s + + 2s' (3-16) 

.The function I S(µ) I 2 in the above expressions is related to the variance ' r+m 
spectrum W(µ) (W(µ) is defined here as. (1l2(x)} = J-m W(k)dk ) of the 

boundary in the following form · 

W(k)= 2 7t I S(k) 1
2

. 

Lb 
. (3--17) 

where Lb is the dimensio_n of the finite patch of the irregular boundary., 

3.-2 General extension of the results of sec. 3.-1 

In sec. 3.-1, we have treated the simplest case that the ocean bed is of 
uniform depth having a continental shelf of constant depth. In general, 

however, the edge wave behavior will be considerably modified when we take 
into a,ccount ~f the bottom slope inside the shelf. 

3.-2.1 · Formulation of the problem and its solutions 
For. this purpose, we employ the ocean model of sec. 2.-2 (see Fig. 2). 

The equations for long waves are given as in sec. 2-2. 
We assume here that all the relevant quantities are proportional to e'(qt-tz), 

then we readily have 

gl 
u=-t; 

6 ' 

v=-_JJ_ · d!;, ·i;;; (3--18) 
i6 dy ' 

• f' "lh dh h dv -ia..,=-i u+-- · v+ · --. 
dy dy 

From these equations, we have the equation for t;: 

a2t;;; +__!_. dh . dt;;; + (_!!__-12 )t;=O 
dy2 h . dy dy gh (3--19) 

Now, we determine the 1st order waves converted from the Oth order 
edge wave of incid~nce, when thiS wave travels along the coast of the irregular 

· boundary. The boundary condition at the coast has the following expression 

dA. ova I v1(c)=uo(c)-d - ).-".\- ·. 
· X uy a 

Now we assume that the 0th order edge wave is given by 

d~) =<pm(Y )e'(qt-tmz) 

where <p.,,,, is expressed by eq. (2-19). 

(3--20) 

(3--21) 

Then, from the same boundary conditions as .in sec. 3.-1, we have the 

1-st order solution in the following form: 

(3--22) 
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where ai= / /2-
6

: , c2
2=gh2 and Reai2.0, y C2 · 

and ap), b'P), c/1) are rendered by 

1 
ap) = G(l) · UmClm-l)rpmCc)-<p1,.

11Cc)] S(l,,.-l)[YPYCL)+aiYP)CL)] 

1 ' 
b/1) =- G(l) [l,,.(lm-l)rp,,.Cc)-rpm"Cc)]S(l,,.-l)[Y/1YCL)+aiYP)CL)] C3-23) 

eat L 
cP) = G(l) · Um(lm-l)rp711(c)-rp,,.''(c)] S(l,,.-l)[Y/1)(L)YzCZ)'(L)-Y/2)CL)YzC1Y(L)] 

where SCµ) is the boundary spectrum as before. 
Now, let the real roots of G(l)=O be denoted as before by ±ii, ±12 ,·· ..... 

For large positive x, we have the required solution by the integral around 

the pole ln: 

f'" (l)=2 .. [l,,.(l,,.-l .. )rpmCc)-rpm"Cc)]S(l,,,-i .. ). [(Yczy(L)+ yCz)(L))Y. Ci)( ) 
~1 7tt G' (! .. ) . tn . . . fX.tn tn , tn Y 

-CY~;/' CL)+ai .. Y?!) CL))Y~!)Cy)]e>(at-ln"') C3-24) 

f'" (l)=2 . , Um(l,,.-l .. )<p,,.(c)-<pm11(c)] S(lm-ln) , [Y(l)(L)Y(2)'(L)-Y(2)(·L. )Y(I)''(L)]. 
~2 nt G'(l .. ) . "" '" '" '" 

X e-azn(11-L)+i(at-ln>:), 

We readily obtain the. solution for the region. x<O if we replace l .. by -l ... 

The eq (3-24) represents just the edge wave of the n-th mode. Unifying the 
expressions (3-24) by using the function <p,., we get 

f'"(1)=
2 

. . [lmClm-l,.)<p.,,.Cc)-rpn.''Cc)] S(l,,.-l,.) 
~ 7tt -· G' (l,.) 

[Y);/CL)Y);?' CL)-,- y~;(.' CL)Y);?CL)] 
'PnCL) • rp .. Cy)ei(at-ln>:) · · . C3-25) 

Now the power of the wave averaged in ti!l1e and space in the x direction 

is given by 

<Pu'> = pg
21

" IC 12. 
26· 

Hence, for the total. power of the wave in the positive x- direction we have 

r +co 2 7t2pg2[,. 
Pn + = J-o { hpu) dy 

6 

I C l) C ) "C ) 12 ISCl l) 12 1 y(l)CL)Y(Z)'CL) yCl)'c )Y(Z)c ) 12 lm [,,,- n 'Pm C -<p,,. . C m- n ln ln - tn L tn. L 
I G'(l,.) 12 • I rp,.CL) 12 

.,_·,,"-···· 
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But now 

{ 

h(L) 
2 co -- • Ctm' j 

0 
hrp11,* (/Jndy= 

2 ~~ 
G'Clm) 

Him/aiii• 
(n=l=m) (3-24) 

where 

Him=Y~;;?' (L)Y~;?' (c)-YP)' (c)Y~2)' (L). 

Hence, the edge waves are mutually orthogonal under the above defined 

orthogonal condition. If we apply the orthonormal function, the 

2_~. Him/aim • +Za mL 
Ci - h(L) G'Clm) e t 

and J 2 lm Him/ a'.im 
rpii,(L)= h(L) • G'Clm) (3-25) 

Then, we have the following expression for Pn + 

pn+=h(L) n;Zpgz • I l11,Clm-ln)rpm(~)-rpm"(c) 1
2 ·IS(lm-ln)12 

6 G Cln) • Hin/ a'.in 

• I Y~!)(L)Y)~' (L)-Y~;)(L)Y~!)' (L) 12 , (3-26) 

for the region x>O. The solution Pn - for th.e negative x is obtained by 

replacing ln · by -ln. 

Also, the incident power P 11,<0) is given by 

(3-27) 

since. 'Pm ·is. normalized to unity. 
A free scattered wave at a large distance from the disturbing center is 

obtained by the steepest descent path method in the quite similar way as in 

sec. 3.-1. The result is given by 

where 

and 

ClmCl11,-q2 sin 8)rpm(c)- (/Jm1(c).] S(l11~-q2 sin 8) 
G(qz sin 8) 

. . 1 +i J 2 n:q2 . . . • K(q2 Slll 8) • = • ~-~ cos 8e>(ut-qir) 
· · V2 r 

x=r sin 8, y-L=r cos 8 

K(l)=Y~1)(L)Y~2)' (L)-Y?2)(L)Y~1)' (L). 

Hence, the· total power of the free scattered wave is given by 

J
rr/2 · 

Pt. w. =. P,.(8)d8 
-rr/2 

where 

(3-28) 

* This equation is derived easily first by subtracting the differential equation for , <pm* 

multiplied by ({Jn from that for ({Jn multiplied by <pm* and then by the iimit process 
n~m. 
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h2 I lmClm -q2 sin 8)rpm(c)-rp" rnCt) 12 
• I S(l11.-q2 sin 8)1 2 

· [ G(q2 sin 8) 12 
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• I K(q2 sin 8) 12 
• cos2 8 (3-29) 

In the following article, the numerical examples will be given for the power 

ratio Pn -/ Pm(O) as applications of sec. 3.-1 and 3.-2. 
For the physical interperetation of the ~dge wave, we may conclude, , 

because of no damping in the direction of wave progress, that it is the wave 

of total reflection both at· the coast and at the edg~ of the shelf; proceeding . . . 

along the coast inside the ·shelf in the sense of ray theory. 
In the solutions, we have neglected the terms' arising from the l.nt~gral 

along the cut paths, which may be interpreted as composed of waves which 
reflect totally at the coast and partially at the edge of the shelf (See, Ewing 

et al., 1957). This will, however, be justified from the following reason: The 
edge waves, the free radiating wave, or the jntegral along the cut paths satisfies. 

the wave equation independently of others. The former two solutions also 

satisfy the boundary conditions independently, but the last does not. Since 
there may be no other term as x-+ ± oo, the last term must terid to. zero. That 

is, the waves, which are very complicated around the disturbing area, tend to 
be arranged gradually as they propagate farther, and finally the solution will 

be composed only of the edge waves ·and the free radl.ating wave. 
In the following, application will be made in case 'when the water depth 

is given by h=by2 in the region 1. From eq (3-19) and the depth give:rt 

here, we have the equation for -Ylk)(y) in the following form: 

a2r;, 2 ac. ( 6
2 

) ayz +y- .. a; + f!by2 -12 r;,=o. 

On making a transformation 
1 

f;,=y-Tw 

then we have eq. for w such that 

2/ b. 1 ' 6 g --
d2w +_!__. dw +( , . 2 4 -12)w==O. 
dy2 y dy. y . 

6 2 . 1 
Setting z=ily and r 2=gb-T, then we have the equation in the following 

from 

d 2w 1 dw ( r
2 

) --+- · -+ 1+- w=O 
dz2 z dz z2 .. ' 

(3:30) 

and the solutions are 

w=J,v(ly) or I--ivClY) when r 2>0, (3-31) 
=I1v1(ly) or I-!vlClY) when r2<0 and lrl is not an integer, 

=I1 v I (ly) or K1" I (ly) when r 2<0 and 1 r I is an integer. 
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In general, the actual ocean bed seems to vary from the shore towards 

the sea in such a form t}lat y2 should be positive so long as we assume the 

wave period of several ten minutes, for instance, as an example shows of the 

sea bed off the Sanriku Districts, where b is of the order 10-9 ( c. g, s. unit) 
This case will impose a :rather tedious computation owing to the lack of tables 
of the functions. 

3.-3 Numerical examples 

Here, will be given the examples of the sec. 3.-1 and 3.-2 

For the variance spectrum of the coastal boundary, we assume temporarily 
the following form 

W(k)=A/k2 , (3-32) 

which is the same form as Cox has obtained in the analysis of the ocean bed 
·in the Atlantic. 

(a) Example of sec. 3.-1 

As constants, we adopt the following: h1=1000m, h2=4000m, L =60km 
and the wave period T =30 min. This case gives only one edge wave mode 
with wave number l1=2.74xl0-7. Then we ·have the power ratio of the 
generated edge wave to the incident one in the following form 

. ' 

Pc/P0-=-l.56x 10-12 ALb. (3-33) 

The power ratio of the free scattered wave to the incident one is likewise 
given by 

jtr/2-
Pt. w./Po-= R(8)d8=-'-5.06xl0-13 ALb, 

-n/2 
(3-34) 

where R(B)=Pr(B)/ P0 - indicates the relative power of the scattered wave 
in the direction 8, and has the scattering characteristics shown in Fig. 7. 

Here A and Lb are taken in c. g. s. unit. In this case the power of the scattered 

1.s 

1.0 

o.s 

'70 50 30 10 -10 -.30 -50 
9 ( d81re_e) 

Fig. 7 The scattering characteristics. 
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wave is about one-third of that of converted edge wave. and the damping is 

mainly determined by the latter effect (in this case the conversion is also 
regarded as the reflection). To determine the power transmitted to the 

-positive x direction by the edge wave generated, the adopted spectral form 

is inadequate since it is singular at k=O .. 
To estimate the constant A, let us assume that the amplitude of the 

undul.ation of the coast is 20 km. for the wave length 200km. Then we may 
have A= 6X105. In this case, the damping is surprisingly large, and only 

Lb=lO km gives the fully scattered state, so that the perturbation prcicedure 

may fail. 

(b) Example of sec. 3. 3 
For simplicity, we consider the case v=O. Numerical constants 

.are given as follows: c=lOkin, · L=50km, h1· .160m, h2. 4km, T". · 

.52min.. This case gives only one edge wave mode in the long wave range / · 

with /1=1.1X10 -7, and the power ratio of edge wave generated to the inci­

dent one is given by 

(3-35) 

'Then, for instance, when we apply the value A=6X105, then the edge wave 

suffers the damping at the rate of 6% decre·ase by 100 km advance in the 
energy flow. 

In the examples given. above, the larger damping in the former by' the 

order 102 may be due to the deeper depth at the coast, since the coastal 

wall is fully responsible for the reflection of the onshore wave and hence 

the scattering when the coast is irregular . 

. 4, Concluding Remarks. 
So far, we have presented the general expressions and the special examples 

on generation and damping of edge waves. Power concept after Dr. Cox 
:has adopted throughout the present paper to grasp the edge wave characte­

ristics on the whole and to make the treatment easy especially in sec. 3 of 
the damping problem. Simple kinematics may connect it with the wave energy 

with relative case.though it was not discussed here. 
It is noted that the generation of edge waves strongly depends on the· 

distance of the disturbance center from the shelf in the exponential form 

when the center is in the open sea, and the conversion damping is propor­

tional to the variance spectrum, although, of course, the geometrical structure 
of the ocean bed may considerably mod.ify the results. Certainly o:ur adap­

tation of the numerical constants in the above examples will be inad~qu~te 
in .featuring the actual ocean bed, but this may be corrected easily at the 

expense of more tedious computation. The essential drawback of the present 
theory will be that we have completely neglected the effect of the 'non- linear 
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processes such as breaking and overflowing taking place near the coast. Our 
hesitation in specifying depth model near the coast as well as the irregularity 

of coast is exclusively ascribed to this point. One may attempt to avoid 

this difficulty by defining that edge wave is the one· which never suffers 

breaking near the coast, and hence has finite amplitude from Stoker's con­
jecture. In this case, however, still the questibn may remain what is the 

condition for the wave not to break. Investigations made by Greenspan 

(1958) and Carrier & Greenspan (1958) might be trials to clear out the obscure 
character near coast of edge waves. 

Here, it must be noted that the edge waves may be interpreted as the 

waves constructed by interference between plane waves undergoing total 
reflection in the shelf (for instance, Ewing et al., 1957). Hence, their gene­

ration is essentially due to the diffraction effect of the. incident wave, and in 
general the percentage of the generation will be strongly dependent upon 

the ·relation of curvature between the shelf edge and the incident wave front. 
In addition, although it may be. less important, coastal irregularity ·will 

participate in the generation problem, since scattering due to the irregularity 

produces the wave components of the total reflection in the shelf. 
At the end of this paper, we infer the edge wave phase in the record 

of tsunami at the coast. From the consideration of the minimum group velocity 

given from the dispersion curves, for instance, by Kanai (Ewing et al., 1957), 
it seems that the edge wave phase, at least in its first few modes, is confined . ' 

in the so called Main-phase in the tsunami record. 'Unfortunately, the fact 
that the p·eriod of the edge wave· is of the same order as those of shelf 

and bay oscillations, makes it difficult to discern the edge wave phase in the 
actual mareogram, and the detailed analysis is left to the future. 
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