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Abstract

This is a preliminary paper for stability of a divergent flow. A very simple -
_model is considered which shows the most crude approximation 'of the currents .

structure in the ocean. The effect of horizontal divergence for instability of laminar
flow is studied and the results are compared with the results of non-divergent flow. -

1. Introduction
In the previous paper (S. Hlkosaka, 1960), the extensmn of Stommel’

| theory (1953) for Gulf Stream Meanders has been made by the present author,
and according to his results the unstable waves may occur under the criterion

looser than that of Stommel if the lower layer current flows in the opposite

direction to the upper layer current or if the depth of ocean is limitted.
However, neither Stommel nor the present author have treated the lateral

boundaries to the stream. Haurwitz and Pano‘fsky‘ (1950) showed the ex-

istence of unstable waves as a result of shearing instability in a non-divergent
flow. But Neumann’s analysis (1948) suggests that|the vertical structure.
of the current is of considerable importance for the dynamics of the stream.

So, if the horizontal divergence of the current in a two- layer ocean is taken |

account of, their results will be modlﬁed » ‘
In this paper, for the first approximation the ocean is supposed to be
homogeneous two layers, and the shearing instability of divergent flow has

been studied.

2. Foundamental Perturbation Equations

In the undisturbed state, a steady current U flows in the x- dlrectlon
within a region with the width of 2d in the upper layer of thickness D. And
the lower layer is very deep, and hence the ‘horizontal pressure gradients
‘vanish in it at all times. The density difference of two layers is dp=p/ —p.
Under these conditions, the undisturbed current is governed by

D 4
fU=—g’—g;, where g¢/=g pf)' - ) .(-1‘.)

We now suppose that there are small perturbations #, v in the velocity
components, and % in the elevation of the free surface. The perturbation
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equations become

[ (“a%‘* v aam )““‘f”*—g‘gg’ | (2)
’ (~%~~-+U§;)v+fu=—942%, : (3)
| (a7 tU3s) Lo 2§+D(§§%+§%> 0. (4)

If the perturbations are all in the form e“yeikcx—vﬂ_ we obtain the follow-
ing relation between a and ¢ from the above equations (2), (3) and (4)

9D(U—c)a?— fzp— U( U——c)a-l—/fz—p—(U—c)3
+f2 SU- f2~ (U—=6) — gDk U—c)=0 : (5

In this equatlon we assume D-—oco then a?=#2, which Haurwitz and Panofsky
.obtained 1n a non-divergent flow. And if we put a=0 (that is, the pertur-
bations are all independent of y) we obtain the following frequency equation
that is the same as Stommel’s,

PUL—p-] frger 2 ]cl—p>+f2—

‘where  p=¢/U.

3. Numerical Calculations
1) CaseI. .

First, we consider the ocean which the current flows in the g-direction’
with the constant velocity U within the region d=y=—d in the upper layer
(region II) and in the regions o’f (I) and (III), which is extended to semi-
infinity, U=0. (See Fig. 1).
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Fig. 1. Model of the Ocean, (Case I.)
"a: Horizontal Cross Stream.
b: Vertical Structure.
In this case, we can obtain the frequency equation (6) by taking into ac-
count of the internal boundary .conditions, that is pressure is continuous,
at y=-+d,
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{e(ao—az’)d — e—(ag—az’)d}

x [=0X{p*+ A —p)H+ azbzﬁz(l —p)Hp*+(1 —P)2}+ 61215(1 =2pX{p+( —P)Z}]

= glar—aada 4 g—(az—ar’)} x f‘PZ(l ?)%ﬁ(az —ay'), ' (6)
where ="y a\/l 4.9 .ﬁbz‘bz’
_f b2 1
oy — s = -ﬁaJa2+4+4~52_ o
. . Uzp KZUZ
= T L
and p=c/U, a Ddp 72

For non-divergent flow, we can put a2=0, then the equation (6) becpme_é
to o

(52 == — 4 (L~ p) = (00 4 =248 x 2L~ P

'The above equation is reduced to

14V 8 £V -1 | .
L W | o B

where {==coth2«d.

From the equation (7) we can see that for non-divergent flow the 'constant
& (this means that the ratio of the width of the current to the wave length
is constant) gives the constant velocity of propagation and constant insta-
bility for constant current. Therefore we made numerical calculations as-
. suming the several velocities of propagation from the frequency equation.(6).
Fig. 2 shows the phase velocity and instablility for #d in the case:of non-
divergent flow.. Fig. 3 is the results of numerical calculations for «2=0.4
and shows the relation between the width of current and the lehgth of the
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Fig, 2. Phase velocity and instability as ‘a function
of xd (Non-divergent flow)
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wave which propagates with constant phase velocity. It is seen from Fig. 3
that the horizontal divergence is effective for the waves with long wave-
length and the shorter the wave is, the lesser the effect is. Also wa can
see that if we assume the velocity of propagation is constant, the instability
becomes smaller and the width of current becomes larger as the wave length
* becomes larger and in the extreme case the width of current is infinity the
instability is zero and &% (related to the wave number) is 0.09, 0.043 and
0.021 for a?=0.4 (In ‘this case, we can not expect any unstable waves in -
Stommel’s model because of #2<(1.) and for p,=0.2, 0.1 and 0.05 respectively.
Whereas we get 52 of 0.135, 0.065 and 0.033 from Stommel’s equation and
these are about 3/2 times of our results. These discrepancies might be from
the boundary conditions at the horizontal interféces. And for the smaller
values than these critical values of & there is no unstable wave with the
cdnstant phase velocity. TFig. 4 shows the relation curves of p: (related to
instability) and -& (related to wave length). As shown in Fig. 3, for a non-
divergent flow we can expect the unstable waves with constant p, for any
wave length, but for a divergent flow we can not expect them unless the wave
length is shorter than the value of & for which 4 is infinity. ‘To the author,
this fact is uncertain and he conceives it is due to the assumption that the
depth of upper layer D is constant as Stommel did. But as a matter of
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Fig. 3. b< = ";] >~2—[J{:~d relation curves for ratios of yelocity of propagation

to steady current velocity (#,.=C,U).
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fact, we should consider D varies linearly across the stream since the steady
current U is supposed to be constant. So, as the width of current becomes
larger; the upper layer becomes thicker. ‘
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Fig. 4. Relation between p; and b. (aZ—O 4)
2) Case II

We next consider of the ocean which has a rigid boundary (coast) As
shown in Fig. 5, the steady.curlent U with the width of 2d; flows apart
from the coast at a distance of dz (to the center of the cui'rent) and on
either side of the current rigion there exists no current. ‘In this case we
finally get the following frequency equation (8) instead of the equation (6).
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Flg 5. Model of the Ocean. (Case IL)
a: Horizotnal cross Stream.
, b: Vertical Structure.
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+2(1-pX2-ax(1 —pD}ﬂ]{‘ﬂ]e—aM—dO}
= [eler—aadar g=Carmardar] x g;pz(l —pYa(az—as), ‘ ( 8 )

' where a; and a;—ay’ ‘are the same as those of case I.
If non-divergent flow is considered, putting . a2=0,

144 OV o2+72—1

NIy -

R T e (99
+ 1-7

where Jd=coth 2 kd, and 71=e—2#a2—a0),

If we take dy>co in the above equations (8) and (9), they become to the
same equations as those in case I, Especially,‘ when the current flows close
to the coast dy=d;, 7=1-and then we get

_ 1+4v1]8

p= 1+1/6 (10

‘Even if d or d; tends to infinity in the equation (7) or (10), p: does not
become 0. This means the internal boundary exists at infinity. So, if we
want to or should obtain the stable waves when the width of the current
is infinity, we must assume the existance of the rigid boundaries in the
regions of either side of the stream. We have not made numerical calcu-
lations in case II yet, and the results of this case will be shown on the fol-
‘lowing volume.
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