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Abstract _

Approximate theory of the boundary layer is extended to the B-plané for
homogeneous barotropic flow with examples of special flow pattern.

1. Introduction :

After the theoretical finding of the westward intensification of an ocean
currents by Stommel (1948), the viscous theory of the wind-driven ocean
circulation was completed by Munk (1950), Hidaka (1949) and others. Also, ‘
it must be noted that Munk and Carrier (1950) already used the . boundary_
layer technique in their viscous. theory of ocean circulation. TLater on,
however, Stommel suggested that the dynamics of the Gulf Stream will be
rather of a non-linear inertial character because of the observed smaller
value of the coefficient of lateral eddy viscosity which is by one order smaller
than 107~108 adopted by Munk and Hidaka. This inertial model was followed
in a mathematically complete form in homogeneous and two-layer models by .
Charney (1955) and Morgan (1956), use belng made of the boundary layer'
technique. :

The aim of the present paper is to investigate the structure of the western
boundary current by modelling a visco-inertial homogeneous flow with a
technique of the approximate theory of the boundary layer introduced by
Pohlhausen (1921). As is pointed out in the papers by Charﬁey and Morgan,
separation of the Gulf Stream seems to be due to the baroclinicity of the
ocean. On the other hand, as the usual boundary layer theory suggests, non-
linearity of dynamical equations will induce the variation of ‘the boundary -
layer thickness, and it might even lead to the separation of the stream.
This paper outlines the approximate boundary layer theory on the ﬂ-plane,
Numerical examples for the variation of the boundary layer .are left to the
future.

2. General Scheme of the Approximate Solution of the Boundary Layer .
Dynamical equations for a homogeneous barotropic flow on the S-plane
are given by
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where g-axis is taken eastward positive, y-axis northward positive, » the
flow velocity in the x-direction, » that in the y-direction, » the coefficient
of lateral eddy viscosity, and the Coriolis parameter f is approximated by
a linear function of y:f=f,+Fy. Coordinate axes are shown in Fig. 1.
Regarding the western boundary currents as a boundary layer, we sub-
divide the ocean circulation into the following two regimes: an interior
: x region, where non-linear inertia
H terms as well as the viscous terms
can be ignored, and a bpundary

region (Fig. 1).
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‘L‘l‘ ercor j approximation, we follow a usual
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teristic velocity maximum V,, a
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\\\\\\M\\\\\\\ Here, V,, and L are selected such

that 92/2y<1 (For instance, see
PFig. 1. Interior and boundary regions. - Schlichting (1955)).

Then, dropping the bar, equation (1) reduces to the followmg non-
dimensional form
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Using the estimates
' dufdx~1, wu~0,  0%[da*~1/8,  dv/dx~1/3 etc,
where ¢ is the non-dimensional boundary layer thickness defined by d=I/L <1,
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we have the order estimates as listed above in eq. (2).
Hence, in the boundary region, we have the boundary layer equatlons as
follows

O
0— p a +<f0+ﬂy)v)
31) ov 1 9p _
Uog Y By p—ay+._ (fot By)u, |
ou  ov _ ~ ' T s
- =0. . .
2% +—— oy : . .<3>

Atlthe outer edge 6f the boundar.y layer, we assume that the follbwiﬁ;g

approximation is valid:
x=0(y); w=U, o=V, .
oV 1 2p '
VV—=——7"=—=fo+ U,
3y p 2y (fo+By)
1 2p -
O= — o V,
Y +(fo+fy) |
aU oV
ECRET)
The current velocities U, V are agsumed to have a Sverdrup’s solutlon (1947).
The problem under investigation is to solve eq. (3) which satisfies certain
appropriate’ boundary conditions. _
To this end, we adopt a well-known technique of the approximate laminar
boundary layer theory extended by Pohlhausen (1921), Holstein and Bohlen

(1940) and others, where one deals with the integrated momentum equation

0. | N (4

with an appropriate velocity profile instead of treating the original dynamlcal
equations (See also Schlitchting (1955), pp. 206—213).
Now, we assume the 4-th power approximation of veloc1ty proﬁle after

Pohlhausen as follows:

v/ V=Ff(n)= m7+b772+c773+d774 0<n<1, , :

v/ V=1, - =1, (5)
where 7=x/8(y) and &8(y) is the.thickness of the boundary layer.
"From the first of eq (3), we have by integrating with respect to x

7=<fo+ﬂy>j v
Then
1 2p
P oy vdx+(fo+ﬁy) ——d:v+F(a;, ».
Hence, from the continuity of 9p/0y at =0 and eq. (4) we have .
1 or_ § (Fod Ly V. |
0 By =p\ vdu (fo+ fy)(uz) =V 3y "

Now, the appropriate boundary conditions to determine the velocity

t
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will be
-0 o%_ _ j ’
z=0; p=0, v1/ Py 0vdac,
ov 2%
a}-—a, 'I)—V, ‘—é-;—O, —a;;—S(y, U). (7)

Here, the last condition of the 1st row in eq. (7) is obtained by setting

u=v=0 in the second of eq. (3), %g—i being replaced by eq. (6). The
function S(y, U) is to be determined to satisfy the condition of continuity

of # at x=¢ and will be discussed later.
From the above conditions we have the coefficients of eq. (5) as follows

3 vl
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where

_pe. 4V _9
L= T A—V 2 and ?F—VS.

Hence we have the velocity profile in the following from

L = P+ AT+ LECD Y PIODAELICDY, (9
=120 |
where
F(m=2n-2n+7n*

1 .
G(My=-g (1 =372 +37°—7*)

w4 <v>=3%5<12 n—A42n2+44 73 —1574)
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Now, using the relation (6), we have the integrated momentum equation in
the following form: '

[0V2]+ —‘?Y—a*v_ % +ﬂ§j(j:vdx)dm, o a0
where |
6*V=S6(V—v>dw,
VZ—S (V-vdz, - adn
-~ and ‘ . X -
TO_M% z=0.

0* and @ defined above are respectivvely dieplacement thickness and mo--
mentum thickness in the usual boundary layer theory. Equation (10) is a
well-known momentum equation except for the last term of the right-hand
side which stemms from the effect of the planetary vorticity Gv (For the
details to derive the momentum equation, see Schlichting, p. 124).

Ind1v1dual term in eq (10) is readily. expressed by the unknown para-
meters L and S -using the relations (9) and (11) hence eq (10) determlnes
a differential relation between L and S:. Di(L, $)=0. ,

Now, as stated above; S is also restricted from the condition of continuity
of ﬂow velocity # at the outer edge of the boundary layer Integration of
the equation of contlnulty from 0 to 0(y) with respect to = and eq (5) g1ve

the following relation

Uy)+ ———[a v| raman |-vE—o. a2

"‘This relation gives together with the relation (9) another dlfferential relatlon’

between L and S: Dy(L, S) 0.

Thus the problem is now reduced to the followmg general scheme deter-
mine L and S from the relation Dy(L, S$)=0and D,(L, S)=0 end from appro-
priate physical conditions, then the approximate structure of the western
boundary current is completely determined. To solve these two systems of
non-linear differential equations in general would be troublesome, and in the
next section examples will be given for the epecial flows such that S=0.

3. Boundary Layer Flow for the Special Case S=gx—vz =0,
. =g .

To avoid mathematical complexities of the problem we deal with a bounde.—
ry layer flow for the special case S=0.

Also, to make order eestlmates of L and 4, we assume the constants as follows :

B~2x1073/cm gec, 0~107, s~2x108 and V~1.  Then .»‘%~TV~5><10-
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5x10 and L~ 2% 108

A is negligible compared to L.

In this case, a velocity ploﬁle is given by settlng ¥=A=0 in eq (9) as
follows:

A~ Hence, LY A and we set A=0 hereafter since

o V=t (FOD+LHDY. a3)
1 BETh) :

Curves of functions F(#) and H(7) are shown in Fig. 2 together with the
functions G(%), I(#) and Jan.

Now, from egs. (11) and (13) we

have the following relations:
Lo VAR :
/AN ol 3 _L
08 | TF o* 10 120
Sl VAR 0 LY
. / / X 120
o A 0 1 gm 10, It
1/ 506G b _<1_L)2 315 6300~ 25200/’
04 / f \ (1 ‘ 120
2/ AT e e
0. > <Y 13’4 L 10
A : N 1-T50
. NN
0 / — '([ote)dam V(4 Ly g
So Sa”‘” Y=L \T30 600/
02 7,'0.7&) \ I—TZ‘U
- \ZdHaD
- Then substituting eq (14) into eq (10)
~0.4 1
\ and using the relation 0= (%)  we
~0.6 : \ have the equation for L such that
dL  viUs@®ls C(L) dav/dy
08}~ - dy v 'g(L>{‘ g (LT
\ S— Sy ——
non-linear non-linear
-l-O
| +A(L)+B(L)} (15)
—_—
0 0.2 04 0.6 08 o . ‘vxscoue planetary.
n- where
- 337 409 1
ig. 2. C fF, G H, I and J — — — 2
Tg. 2. Gurves o - F(L)="535 25000 - ~ 100800~

37 9223 6 . I
9 (L)="94= 113400 L~ 567000 T 9072000

acty=zon(1- kg (2445, W
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B<L>=(1"1§0‘>(‘“ é(g) 6{;0)”@. N |
C(L)=L<1—%>. : ' , o '

Physical processes corresponding to individual terms eq. (15) are also de- i
scribed below them in the same equation. -
Equation (15) has a singularity at y=y, where veloc1ty V(y) vanlshes
From physical consideration, dL/dy must be finitely determined and hence
the bracket in eq (15) must vanish at y=3yo if the boundary layer approxi-
mation holds there. This case gives the initial values of L and dL/dy ‘and the
integration of L is then performed numerically without difficulty.
From eq (14), we see that L,=120 is a singluar point.. Also, from
Fig. 2 an‘d‘ eq (138), we see that the familiar westward intensification occurs
only when 120<<L<C500. L,~1000 is also a singular point of Z-equation
since the function g(L) which appears in the denominator of eq. (15) vanishes
there. ' 4
Considering the above, we seek from now on the solution within the range .

Also, from 7y-equation in eq (14) we see that there is not a separation
point (9v/22)z=,=0, or a counter current near the coastal boundary in this
case. v ' o

In the following, examples will be given for two cases of wind stress
distributions: (a) parabolic wind distribution and (b) sine wind distribution.
(a) Parabolic wind distribution. ‘

Assume that the wind stress is given by
1x=—’[0(1_i> 7,=0 for 0<y£'\‘s
s/’ T :
Then, the mass transport My in the y-direction in the interior region is given .
by ‘

curlz _. 291 ' E \ -

ﬂ - pﬂsz ’ * ' : (1.'7) ‘- A e
and the flow velocity V on the outer edge of the boundary layer is reduced A o
to the following:

My=+

v="e s, =L,
where Vo= pzﬂ?h and % is the depth of no motion assumed constant.
Hence, equation for L is reduced to
| dL K CL)

L_ KDy ace B
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where
_ ,6215;1/1/33 :
[ VO ’ .

Here, we remark that the boundary layer and hence, the boundary layer flow
is completely determined by a parameter K.

As stated before, initial value L should be chosen so that dL/dZ may be
finitely determined at the initial singular point £=0 where velocity V(&)
vanishes. Then, equation for L, is '

ALY+ AL +BL)=0. ; - (18)

Also, it is easy to see that the initial value of dL/d& at the initial singularity
is zero and L is everywhere constant equal to L,.

Flow velocity in the w-direction at the outer edge of the boundary layer
is obtalned from eqs (12) and (13) as follows:

U(y) 7 dV  Lis )
1/,,»/3—1/3 —"1—0‘:13,~ 1 L (20)

120

On the other hand, Sverdrup solution for the velomty U at the outer edge of
the boundary layer is given by

U_’—‘—_’—Tf, . (21)

“where 7 is the distance between east- and west- boundanes in the ocean.
From eq (20) and (21), 7 is expressed by

/
re— i Vllaﬂ—1/s~L—”L— , (22)
1= 120

To give numerical exaiﬁples, we assume 7o=1, [~ 2><10-13 s~=2 %108,
h=~105, »~108, then we have Vy=~0.5 and K~140. In the following L,
and r are determined from egs (19) and (22) for parameters K=100, 120
and 140.%

K Lo 7

100 123.50 2000 km.
120 122.90 2500 km
140 122.45 2900 km

These flows given above are special examples of the visco-inertial boundary

2
layer flow for the special case SE%‘—E% 6=0_. Here we notice that the

ocean width » in the g-direction is one half or one third of the actual ocean
flow and is very small. This suggests that in the actual ocean flow we

* Lo is determined in the visco-inertial-planetary range in-eq. (19) in the sense ‘
that the individual term of that equation is of . comparable order. :
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must take into account the effect of the functlon S"‘axz
. z——&

(b) Sine wind dlstmbutlon.
Now we assume that the wind stress components are given by
T,= —Ty COS 1Y, Ty=‘0, ‘n=mw/s.
Then the flow velocity V is given by ) ' , ‘ -
| V=—Vosinny, o T 3)

T
where Vo= ﬂ_k .
Then, L-equation (15) reduces to the following: ‘ ,
daL - K, CW) [_ B ] N
iz = sinnE oD cos mff(L)+A(L)+B(L) N 24

,62/31/1/33
where K3=——I70—.
. As numerical constants we assume that B=~2x10-B ] 7y=1, s~4x108, hA~Hx
104, »=~105. Then we have Vy=~0.8 and K=173. ‘
From the same reasoning as stated before, the initial value Lo '\at the’
singularity point £=0 of L-equation is obtained from the equation

(25)
This equation has two robts in the range 120<CL <1000 such thét '
Lo~184 and 126.90. '
Now, from =0 and from eq (25), we have the initial value—d-l—’~ =0

dy2 2=0 dg =g
and the integration of L -equatlon is easily performed numerically.

The solution L is shown in Fig. 3.

190 —UG A5 Vog) ~
0 20 .20 DAPH(V04 s
097
081 . 40 [.=124.32
01 , _ '\7
06] N - : Vo | =12690
\( N .
% oS ’

L . 20

04.
03 1 ) '
~UaY, :
021 Y587 Vo/s ) 10
0-11 .
} v yr—t + 0 , + ‘
%02 121 2 123 124 125 126 21 (28 o0 0.2 Y] S06.... 08 0
= "V i

Fig. 8. Curves of L and U Fig. 4. Curves of —v/V
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Flow velocity U in the m-directioﬁ is computed from eqs (12), (13), (15)
and Fig. 3 and is shown also in Fig. 8 for L,=126.90. Also, velocity » in
the boundary layer is shown in Fig. 4. '

Since wilsf-tlo1.7x108 and - /ffgg, Toy =200,

is about 3400 km, and we see that in this case too the ‘ocean width is about
one half smaller compared to the actual ocean.

the ocean width »

4. Boundary Layer Flow in the General Case ‘
So far, we have treated the problem with a s1mp1est assumption that

S_ngz _O. As one sees there, it gives too small value of an ocean width

7 of about 3;000 km in the east-west direction, and we need to extend the pre-
ceding theory to the general case where the ocean width » is arbitrarily
chosen. 4
. In this case the velocity profile is given by eq (9). Also curves of F, G,
H, I and J are shown in Fig. 3. - o

Now, from egs. (9) and (11) we have the following relations:

s_L ¥
O%_10 120 40
5 L
1=120
6 ML Y ' ' R
5 ( L)z’ | <26)
120
w1 g, L ¥ LV
WL {2+5+ 5+ 50}
120
8, (e N 70 ¥ 13 L v Lr
L(Lvdm)dw—l,_%g[‘g—o 600 ~ 90 +@§W]’
120
where
37 . 37 17 Ny L2 19 ., LA
ML ¥)= 375 37807 G300~ ~ 453600 -7 ~ 25200 ~ 52680 "~ B1648000
2 i 2 '
v @ -

907200 * 5443200 *

Substituting eqs (26) into the integrated momentum equation (10), we
have the following equation for L and ¥:

V[~~M—+ (1~4=) (M +£)] L +(1 ~i55 ) VML

§O 120 3L dy
' non-linear non-linear .
av L .
=2 dy (1 ~120 )M ------ non-linear ,
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[ECTE A A N A R ———

120 dy \10 120 40
L vy LY s
1342/ T -2/ iU BN
+vls @] a(2+ TR - 360) viscosity

o 13 v v

)} ..planetary vorticity, (28)

where Mz or My denotes a partial differentiation of M with respect to L .
or ¥. Also, substitution of eqs (26) into the integrated contmulty equatlon
(12) gives the following relation: :

L L\_B8 ¥ Ly 17T }{’_]ﬂl L ¥
[ sz (1=125) (70 20+ 120) * 10 (16 +,4°,) o+ (1~ 120) .
(1L ALY o LN(T TNT AV
(1 120) Z0) (x 120)(103r 40) vy - D

Eqgs (28) and (29) are the fundamental simultaneous differential eq'uatibns of
L and ¥ for the present problem, the solution of 'which gives _the (;omplete
understandlng of the approximate boundary layer. '

Next, as an example solution will be sought for the parabollc w1nd dlstrl-
bution. , . '

As shown in Sec. 3 (a), the flow velocities at the outer edge of the boun-
dary l‘ayer are given by .

U=—'ZO—7’, V——Vog, 5=L)
s s
where
2 To
Vo pBsh

As we readily see, the 1nﬁ0W1ng edge y=0 of the current into the bounda- .
ry layer forms a singular point of L, ?F-equatlons since the velocity V
vanishes there. If the flow forms the boundary Iayer even at this singularity,

then we seek the sloution which gives the finitely determlned values of %ﬁ}—'«
and Zf from the physical point of v1eW as was dlscussed in the precedlng
section. o . _
Then eqs. to determine the initial values of L and ¥ are gi}?en by
2 M= (555 —1 el + KIL (L) + (LY,
) L o7 | s
= g
40 A<120 I)L *~10 ‘ A @
where
A=V-lj3ﬂli3r, K:M’

and
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3 L v
AL)=15 16 " 40"
L vy Ly
ALI=2+15+ 5 + 360
13 L ¥ ¥
"(L)=="35"500 ~'90 " 43200 -

If one finds unique solutions for L and ¥ from eq (30), then L and ¥
are constant throughout all y even at the inflowing edge y=0.

For the parameters »=106, =2x1018, »=10000km, we cannot find
the unique solution of eq (30) even at relatively larger value of K*. This
probably means that the boundary layer approximation no longer holds in
the vicinity of the inflowing edge y=0 of the current. This may suggest
that in the actual ocean circulation we must adopt another model rather than -
the boundary layer one in the vicinity. '

5. Concluding Remarks _

Ag is well known, the structure of the Western Boundary Currents such
as the Kuroshio and the Gulf Stream is not so simple as shown by the theory
of Munk and Hidaka. ‘ Charney (1955) and Morgan (1956) suggest the im-
portant role of the baroclinicity of the ocean on the separatlon of the Gulf
Stream from the boundary.

Now apart from the baroclinicity of the ocean, non-linearity of the dy-
namical equations may alte; the boundary layer thickness as the usual bounda-

. ry layer theory suggests, and there exists a possibility that it might lead

to the separation of the stream from the coast. '

As was suggested in the preceding section, inflowing edge =0 of the
boundary layer in the case of the sine wind distribution is not in the boundary
layer in the usual circumstances. So, to compute the variation of the boundary
layer, we integrate eqs (28) and (29) with adequately prescribed initial values
of L and ¥ at the initial boundary layer which may be determined from the
observed data.

Next, it must be remarked that the leaving point of the flow from the
boundary layer is another singular point of the L, ¥-equations since there
velocity V vanishes and the boundary layer approximation no longer holds.

Numerical examples on the boundary layer variation are left to the future.

Appendix
Table for velocity profile for various values of L is obtained through the
Runge’s method of integration.

'* We cannot find the roots of eq (80) for the parameter K=140.

For much larger values of K, there seems to be a possibility that a unique solution
could be found.
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TABLE OF »/V FOR VARIOUS VALUES OF L

L .
7 210 180 160 140 130
0.0 0.00 0.00 0.00 0.00 0.0
0.1 —2.71  —2.84 —3.27 —6.90 —13.0
0.2 —-2.96  —3.90 —5.31 —9.60 —18.1 . j.eeeeeen
0.3 —2.79 =374 5,16 —9.42 —17.9
0.4 —2.11 —2.92  —4.11 —7.74 ~14.9
0.5 ~1.26 —1.86 —2.76 —5.40 ~—10.8
0.6 —~0.33  —0.68 —1.20 —2.76 —5.9
0.7 | 4037 T +0.20] —0.06 —0.78 —2.3
0.8 0.77 0.72  10.63  +0.36 | —0.24
0.9 0.97 0.96 0.96 0.90  +0.84 |
1.0 +1.00  +1.00 = +1.00  +1.00  +1.00
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