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APPROXIMATE BOUNDARY LAYER ON THE ft-PLANE WITH 

SPECIAL APPLICATION TO WESTERN BOUNDARY CURRENT 

Kiheiji Ogawa 

Received August 27, 1690 

Abstract 

Approximate theory of the boundary layer is extended to the .$-plane for 
homogeneous barotropic flow with examples of special flow pattern. 

1. Introduction 

After the theo1·etical finding of the westward intensification of an ocean 

currents by Stommel (1948), the viscous theory of the wind-driven ocean 
circulation was completed by Munk (1950), Hidaka (1949) and others. Also,. 

it must be noted that Munk and Carrier (1950) already used the boun.dary . 

layer technique in their viscous. theory of . ocean circulation. Later on,. 
however, Stommel suggested that the dynamics of the· Gulf Stream will be 

rather of a non-linear inertial character because of the observed smaller 
value of the coefficient of lateral eddy viscosity which is by one order smaller 

than 107~108 adopted by Munk and Hidaka. This inertial model was follo~ed 
in a mathematically complete form in homogeneous and two-layer models by 
Charney (1955) and Morgan (1950), use being made of the boundary layer 
techniqu.e. 

The aim of th_e present paper is to investigate the structure of the western. 
boundary current by modelling a -Visco-inertial homogeneous flow with a 

technique of the approximate theory of the boundi:try laye~ introduced by 

Pohlhausen (1921). As is pointed out in the papers by Charney and Morgan,. 

separation of the Gulf Stream seems to be due to the baroclinicity of the 
ocean. On the other hand, as the usual boundary layer theory suggests, non­
linearity of dynamical equations will induce the variation of ·the boundary 

layer thickness, and it might even lead to the separation , of the stream. 
This paper outlines the approximate boundary layer theory on the ft-plane~ 

Numerical examples for the variation of the boundary layer ·are left to the 
future. 

2. General Scheme of the Approximate Solution of the Boundary ~ayer 
Dynamical equations for a homogeneous barotropic flow on the ft-plane 

are given by 
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au OU 1 3P (o 2u o2u) 
ua;-+v oy =-pox +r ax2 + (Jy2 +(fo+f3y)v, 

av av 1 oP · (o 2v o2v) . u-+v-=----+r -+- -(fo+f3y)u, 
ox oy p oy ox2 3y2 ( 1) . 

au +~=0, 
ax ay 

where x-axis is taken eastward positive, y-axis northward positive, u the 

ilow velocity in the x-direction, v that in the y-direction, r the coefficient 

of lateral eddy viscosity, and the Coriolis parameter f is approximated by 

.a linear function of y :f=fo+f3y. Coordinate axes are shown in Fig. 1. 

Regarding the western boundary currents as a boundary layer, we sub­

·divide the ocean circulation into the following two regimes: an interior 

\ 

' ' ' ' 

Fig. 1. Interior and boundary regions. 

region, where non-linear inertia 

terms as well as the viscous terms 

can be ignored, and a boundary 
region (Fig. 1). 

To make a boundary layer 

approximation, we follow a usual 

.procedure of introducting a charac­

teristic velocity maximum v.,~, a 

characteristic scale length L and 

non-dimensional variable as fol­

lows: 

u=u/V,,,,, v=v/V.,., x=x/ L, y=y/ L, 
p 

p 
pV.,,2. 

Here, V m and L are 

that av/ 3y<l (For 
Schlichting ( 1955)). 

selected such 

instance, see 

Then, dropping the bar, equation (1) reduces to the following non­
·dimensional form 

where 

OU . au oP 1 (o 2u o2u) . 
ua;-+v oy = - ox + R- 'ox2 + 3y2 +.av+Byv, 
8·1 · 1·8 1/8 1/8 8 · 1 1 

av . av oP 1 ( 32v 32v ) 
ua;-+v oy = - oy +R ox2 + 3y3 +.au-Byu, 
8·1/8 1.1 1 1/82 1 8 8 

R- VmLP = VmL' 
µ . r 

/3L2 
B=-­

- PVm 

Using the estimates 

ou/ox......,1, u~8, o2u/ox2"'1/8, ov/ox-.,1/8 etc, 

(2) 

where 8 is the non-dimensional boundary layer thickness defined by 8-t/ L (1, 
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we have the order estimates as listed above in eq. (2). 
Hern:e, in the boundary region, we ,have the boundary layer equations a~ 

follows: 

0=-_!_ ~P +(Jo+f3y)v, 
p uX 

u av +v av= _ __!_ oP +ra
2
v -(Jo+ j3y)u, 

ax a y p a y . a x2 . 

au+ av =O. 
ax ay 

(3) 

At the outer edge of the boundary layer, we assume tha:t the following 
approximation is valid: 

x=a(y); u=U, v=·v, 

v av= __ .!_ aP -(Jo+ f3y)U, 
ay P ay 

0=-_!_ ~P +CJo:+f3y)V, 
. p uX 

au+ av =O. 
ax ay 

{ 4 )' 

The current velocities U, V are a.ssumed to have a Sverdrup's solution (1947). 
The problem under investigation is· to solve eq. (3) which satisfies ce·rtain 

appropriate· boundary conditions. 
To this end, we adopt a well-known technique of the approximate· laminar 

boundary layer theory extended by Pohlhausen (1921), Holstein and ·Bohlen 
(1940) and others, where one deals with the integrated momentum equation 
with an appropriate velocity profile instead of treating the original dynamical 
equations (See also Schlitchting (1955), pp. 206-213). 

Now, we assmne the 4-th power approximation of. velocity profile after 
Pohlhausen as follows·: 

v/V J(17)=ar/+br;2 +c1J3 +d174
, 

v/V=l, 

O<r;<l, 
11=1, 

where 11=x/a(y) and a(y) is the thickness of the boundary- layer. 
· Fl'.om the first of eq (3), we have by integrating with respect to x 

p f"' p= (Jo+ f3y) J vdx. 

Then 

__!_ ~p =/3f"'vdx+(Jo+f3y)\"' ~v dx+F(x,y). 
P uY J a J a uY 

Hence, from the continuity of oP/oy at x=a and eq. (4) we have. 

_!_ oP=13f"'vdx-(Jo+f3y)(ux)_;;_V aV. 
p oy J a· oy 

(5) 

(6) 

Now, the appropriate boundary conditions to determine the velocity profile 
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will be 

x=O; v=O, 

x=a; v=V, (7) 

Here, the last condition of the 

u=v=O in the s~cond of eq.' (3), 

ls.t row in eq. (7) is obtained by setting 

_l__ ~p being replaced by eq. (6). The 
P uY 

function S(y, U) is to be determined to satisfy the condition of continuity 
of u at x=a and will be discussed later. 

From the above conditions we have the coefficients of eq. (5) as follows 

where 

3 1Jl'L 
12+A+5L+1Jl'+00 

a= 

c= 
5_._f__ 

20 
3 1Jl'L 

6-A--L+21JI'-- · 
4 24 

d 

(J<J3 
L=--

r ' 

L 6- . 
20 

a2 dV a2 

A=-- and 1Jl'=-S. 
r dy V 

Hence we have the velocity profile iri the following from 

v 1 . 
-·-·=/(17) L {F(17)+AG(17)+LH(r;)-HP'J(11)+1Jl'LJ(17)}, 
. v 1-120 . 

where · 

F(17)=217-2173 +174 

G( 17 )=_l( r; -3172+3173 -174 ) 
6 

1 
H(17)=--(1217-42172 +44173 -15174) 

120 

1 
I (17)=--(17-3 r;3 +2174) 

6 
1 J (17)= ~(217-9112+ 12 r;3 -5174) 

720 

(8) 

(9) 
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Now, using the relation (6), we have the integrated momentum equation in 

the following form: 

where 

and 

d dV r f0
( f"' ). 

dy [8V2J+ dy B*V=r}-+f3J
0 

J
0
vdx dx, 

B*V=J:cv-v)dx, 

ev2 = J:cv-v)vdx' 

av I To=µ--:.- • 
u X z=O 

(10) 

(11) 

B* and e defined above are respectively displacement thickness and mo-­

mentum thickness in the usual boundary layer theory. Equation. (10) is a 
well-known . mom~ntum equation except for the last term of the right-hand 

side which stemms from the effect of the planetary vorticity j3v (For the 

details to derive the momentum equation, see Schlichting, p. 124). 

Individual term in eq (10) is readily. expressed by the unknown para­

meters L and S using the relations (9) and (11), hence eq (10) determines 

a differential relation between L and S:. D1(L, S)=O. 
Now, as stated above; S is also restricted from the condition of continuity 

of flow velocity u at the outer edge of the boundary layer. · Integration of 

the equation of continuity from 0 to B(y) with respect to x and eq (5) give 

.the following relation 

d [ J1 J dB U(y)+ dy a.v /Crt)drt -v-dy =O. (12) 

This relation gives together with the relation (9) another ~ifferential relation 
.I 

between L and S: D2(L, S)=O. 
Thus the problem is now reduced to the following general scheme: deter­

mine Land S from the relation D1~L, S)=O and .D2(L, S)=O 3:nd from appro­

priate physical conditions, then the approximate structure of the western 

boundary current is completely determined. To solve these two systems of 

non-linear differential equations in general woqld be troublesome, and in the 

next section examples will be given for the special flows such that S=O. 

3. Boundary Layer Flow for the Special .Case S= ~
2

~ I =0. 
uX <t=ii 

To avoid mathematical complexities of the problem we cieal with a bounda-

ry layer fl~w for the special case S=O. 

Ai°so, to make order eestimates of L and A, we assume the constants as follows: 

13,....,2x10-13/cm sec, a,....,107 , s,....,2x108 and V :-1. Then dV , ..... ,,_-~.,....,,5x 10-9 
dy s 

\. 
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A"' 5 
x l0

5 
and L,...,, 2

x
108 

Hence, L) A and we set A=<O hereafter since 
r r 

A is negligible compared to L. 
In this case, a velocity profile is given by setting ?Jf =A=O. in eq (9) as 

follows: 

v/V 
1 

L {F(17)+ LH(17)}. 
1----

120 

(13) 

Curves of functions F(17). and H(17) are shown in Fig. 2 together with the 

functions G(17), f (17) and ](17). 

(.0 I r\ 
I \ 

I v--.. 
o.e ) 

I " v 
\\ l/ 

/ 

'r 
v 

Now, from eqs. (11) and (13) we 

have the following rel.ations: 

o.6 I I x I\ 
I 

o.4 'I 
i) 

o.2. 
/ 

0 Vf 

~0.2 

-o.4 

-o.6 

-o.~ 

-1.0 

0 

v \ 

I I\ \roq-
) \ \ / ·L! 

I/ ~I k l\ / ' ~l'o. I ~ 
~ 

-.... 
"' ~ 

{ I"-k ~ 

'J. of~ ) \ 
/ZC HC' 

\ 
\ 
' 
\ 
\ 

'7!.) 

~!---
v 

'-) 

" 

Then substituting eq (14) into eq (10) 

and using the relation (J . ( ~ ) 
113 

we 

have the equation for ~ such that 

dL _ r 1/3{32/3 C(L) { 
dy - V . g(L) 
'--y--' 

non-linear 

+A(L)+B(L)}, 

dV/dy f(L)+ 
rlf3j32f3 
~ 

non-linear 

(15) 

o.2 0.4 0,6 o.8 1.0 

,_____... ~ 
viscous planetary 

1l where 

Fig. 2. Curves- of F, G, H, I and J 

37 223 61 L 2 . L3 

g CL)= 945 113400 L - 567000 + 9072000 ' 

A(L)=L-2'3 ( 1- ~O) (2+-{o ) , (16) 

\, 
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B(L)-(1-_£) (-_g_ _f__)Lita 
- 120 . 30 + 600 ' ' 

C(L)=L( 1- l;O). 
Physical processes corresponding to individual terms eq .. (15) are also de­

scribed below them in the same equation. 

Equation (15) has a singularity at y=yo where velocity V(y) vanishes. 

From physical consideration, dL/dy' must be finitely determined and hence 

the bracket in eq (15) must vanish at · y=yo ~f the boundary layer approxi­

matio~ holds there. This case gives the initial values of L and· .dL/dy and the 

integration of L is then performed numerically without difficulty. 

From eq (14), we see that L 0 =120. is a singluar point. Also, from 

Fig. 2 and eq (13), we see that the familiar westward intensification occurs 

only w;hen 120<L;::;500. Ls~lOOO is also a singular point of t~equation 

since the function g(L) which appears in the denominator of eq. (15) vanishes 
there. 

Considering the above, we seek from now on the solution within the range . 

Lc<L<Ls• 
Also, from -r0 -equation in eq (14) we see that there is not a separation 

point ( ov / 3 x ),,,=0 =0, or a counter current near the coastal boundary in this 
case. 

In the following, examples will be given for two ~ases of wind. stress 

distributions: (a) parabolic wind distribution and (b) sine wind distribution. 

(a) Parabolic wind .distribution. 

Assume that the wind stress is given by 

-r,,,= --r0(1-::), Tv=O for O<y:Ss 

Then, the mass transport Mv in the y-direction in the interior region is given 
by 

M curl -r 
y= + /3 

2y-ro 
P/3s2 ' 07)' 

and the fl.ow velocity V on the outer edge of the boundary layer is reduced 

to the following: 

Mv · y 
V=-=-~oE E=-h _, . s ' 

where Vo=:;~ and h is the depth of no motion assumed constant. 

Hence, equation for L is re_duced to 

·dL =- K C(L){_!_!(L)+A(L)+B(L)} 
dE E g(L) K · 

(18) 

' \I 

I ,,l 

' \I~ 
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where 
fJ2Jar1Jss 

K= . 
• · Vo 

l!ere, we remark that the boundary layer and hence, the boundary layer flow 
is completely determined by a parameter K_. 
As stated before, initial value L should· be chosen so that dL/de may be 
finitely determined at the initial singular point e=O where velocity. V(e) 
vanishes. Then, equation for Lo is 

~ f(L)+A(L)+B(L)-·~. (18) 

Also, it is easy to see that the initial value of dL/dg at the initial singularity 
is zero and L is everywhere constant equal to L 0 • 

Flow velocity in the x-direction at the outer edge of the boundary layer 
is. obtained from eqs (12) and (13) as follows: 

U(y) 7 dV L 1!a 
yl/ajJ-lfa -W dy 

1 
_ _:f __ ' 

120 

(20) 

On the other hand, Sverdrup solution for the velocity U at the outer edge of 
the boundary layer is given by 

Vo U --r, 
s (21) 

· where r is the distance between east- and west-boundaries in the ocean. 
From eq (20) and (.21), r is expressed by 

7 
r= - ----rllajJ-1/a 
- 10 

L1/3 

L ' 1----·· 
120 

(22) 

To give numerical examples, we assume To=l, /l=2x10-13' . s=2x10s, 
h=l05

, r=l06
, then we have V0=0.5 and K 140. In the following Lo 

and r are determined from eqs ( 19) and (22) for parameters K 100, 120 
and 140.* 

K Lo r 
100 123.50 2000km. 
120 122.90 2500km 
140 122.45 2900km 

These flows given above are special examples of the visco-inertial boundary 

layer flow for the special case. S= ~~ /.,=o =0.. Here we notice that the 

ocean width r in the x-direction is one half or one third of the .actual ocean 
flow and is very small. This suggests that in the actual ocean flow we 

* Lo is determined in the visco-inertial-planetary range in. eq. (19) in the sense 
that the individual term of that equation is of . comparable order. 
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must take into account the effect of the function S=9
2

v j -ox2 "'=" • 
(b) Sine wind distribution. 

Now we assume that the wind stress components are given by· 

T"'= -T0 cos ny, Ty=O, · n=n:/s. 

Then the flow velocity V is given by . 

where 

Then, L-equation 

dL 
-ae-= 

where 

V=-Vo sinny, 

Ton 
Vo= {Jh . 

(15) reduces to the following: 

sinK;& ~ff~ [-;~-cos n:&f(L)+A(L)+B(L) J, 
(J21ar11as 

Vo 

81 

(23) 

.' 

(24) 

As numerical constants. we assume that /3=2x10-13 , To=l, · s=4x108 , h=5 x 
104, r=l06, Then we have V 0=0.8 and K .173. 

From the same reasoning as stated before, the initial value Lo .at the· 
singularity point &=0 of L-equation is obtained from the equation 

-;s f(L)+A(L)+B(L)=O. 

This equation has two roots in the range 120<L<lOOO such that 

L0=184 and 126.90. 

(25) 

Now, from dd
2

~i . =0 and from eq (25), we have the initial value dd~ I =0 
Y "1=0 ~ ~=o 

and the integration of L -equation is easily _performed numerically. 
The solution L is shown in Fig. 3 . 

190 
1.0 

0.9 

o.e 
on 
Q.(, 

~ o.s 

04 

o..;i 

0.2 

O·I 

o.o 
120 121 

. 210 -um l'i(Vo~) 

' / \ / 

' r \ r 

>< 
L 

122 123 IZ4 1'25 126 12~ IZ8 

L=g 
'V ' 

Fig. 3. Curves of L and U 

-40 

-Iv 
30 

20 

10 

0.2 

Fig. 4. Curves of ~v/V 
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Flow velocity U in the x-direction is computed from eqs (12), (13), (15) 
and Fig. 3 and is shown also in Fig. 3 for Lo=126:.90. Also, velocity v in 
the boundary layer is shown in Fig. 4. 

. . U(y) 
Smee -v1/a(:J-11s=l.7x106 and -·-···---=-200 the ocean width r 

-v1ls ,f:J-1/a( V0/ s) . ' 
is about 3400 km, and we see that in this case too th'e ocean width is about 
one half smaller compared to the actual ocean. 

4 .. Boundary Layer Flow in the General Case 

So far, we have treated the problem with a simplest assumption that 

8==~
2

~-1 _ 0. As one sees there, it gives too small value of an ocean width 
uX 1z=o 

r of about 3;000 km in the east.-west direction, and we need to ex~end the pre­
ceding theory to the general case where the ocean width r is arbitrarily 
chosen. 

In this case the velocity profile is given by eq (9). Also curves of F, G, 
H, I and ] are shown in F'ig. 3. 

Now, from eqs. (9) and (11) we have the ·following relations: 

(26) ' 

'·' 

where 

37 . 37 17 71 L 2 19 L21Jf2 
M(L, 1Jf) = 315 - 37801Jf - 6300 L 453600 LIJf - 25200 - 226801Jf

2 
- -81648000 

L21Jf . . L1Jf2 
- 907200 + 5443200 .. (27) 

Substituting eqs (26) into the integrated momentum equation (10), we 
have the following equation for L and 1Jf: 

non-linear non-linear .. 

=-2~_i-(1-~0 )M ...... non-linear 
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( 
L 1fJ' L'/fJ') +r113f:J2fsL-2fa 2+-+--+--· 

. 10 6 360 
······viscosity 

+r1/af:J2'3£1fs(-~+_f__-·~+ L'/fJ' ) } ···planetary vorticity (28) 
30 600 90 43200 . . , 

where ML or M1Jf denotes a partial differentiation of M. with respect to L 
or 1fJ'. Also, substitution of eqs (26) into the integrated continuity equation 

(12) gives the following relation: 

=-(i-~ory-1/~fl~f-;'aucy)_(1-~o)({a+ :0) ~ ~v. 
y . y 

(29) . 

Eqs (28) and (29) are the fundamental simultaneous differential equations of 

L and ?JI' for the present problem, the solution of which gives the ~omplete . . . 

understanding of the approximate boundary layer. 
. . I 

Next, as an example solution will be sought for the parabolic wind distri-

bution. 

As showrr in Sec. 3 (a), the flow velocities at the outer edge of the boun­

dary layer are given by 

where 

Vo U --r 
s .' 

2 'l'o 

Vo= P/Jsh ' 

V=-Vol{, 

As we readily see, the inflowing edge y=O of the current into the bounda­

ry layer forms a singular point of L; 'IJf ~equations since the velocity V 
vanishes there. If the flow fo1·ms the boundary layer even at this sillgularity, 

then we seek the sloution which gives the finitely d~termined values of ~1; · 
and dd?Jl' from the physical point of view as was discussed in the preceding y . 
section. 

Then eqs. to determine the initial values of L. and 1fJ' are gi.ven by 

where 

and 

. 2 M= (_b_-1){a(L)+K[L-2la(3(L)+L1lar(L)}, 
120 

1fJ' ( L ) 7 . 40 =A 120 -l L-l/a-lo' 

yl/a(Jl/as 
K=-~-­

.Vo 

(30) 

.. it 

'· 

. " 

" 
: .. : 

. I 

. I 

I 
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. I 

3 L '/fJ' 
a(L)=W-120-- 40' 

L '/fJ' L'/fJ' 
,.B(L)=2+w+6-+-360 ' 

13 L '/fJ' L'/fJ' 
r(L)= -30- + 600 - 90 + 43200 . 

If one finds unique solutions for L and '/fJ' from eq (30), then L and '/fJ' 

:are constant throughout all y even at the inflowing edge y=O. 

For the parameters r=106, ,.8=2x10-13 , r=10000 km, we cannot find 
the unique solution of eq (30) even at relatiVely larger value of K*. Thi~ 

probably means that the boundary layer approximation no longer holds in 
the vicinity of the inflowing edge y=O of the current. This may suggest 

that in the actual ocean circulation we must adopt another model rather than · 
th~ boundary la~er one in the vicinity. 

5. Concluding Remarks 
As is well known, the structure of the Western Boundary Currents such 

.as the Kuroshio and the Gulf Stream is not so simple as shown by the theory 
·of Mullk and Hidaka. Charney (1955) and Morgan (1956) suggest the im­
:portant role of the baroclinicity of the ocean on the separation of the Gulf 
Stream from the boundary. 

Now apart from the baroclinic!ty of the ocean, non-linearity of the dy­
namical equations may alter the boundary layer'thickness as the usual bounda­
ry layer theory suggests, and there exists a possibility that it might lead 

to the. separation of the stream from the coast. 
As was suggested in the. preceding sectiqn, inflowing edge y=O of the 

boundary layer in the case of the sine wind distribution is not in the boundary 
' ' . 

]ayer in the usual circumstances. So, to compute the variation of the boundary 
layer, we integrate eqs (28) and (29) with adequately prescribed initial values 

-0f L and '/fJ' at the initial boundary layer which may be determined from the 
-0bserved data. 

Next, it must be remarked that the leaving point of the flow from the 
boundary layer is another singular point of the L, '/fJ'-equations since there 
velocity V vanishes and the boundary layer approximation no longer holds. 

Numerical examples on the boundary layer variation are left to the future. 

Appendix 
Table. for velocity profile for various values of L is obtained through the 

Runge's method of integration. 

* We cannot find the roots of eq (30) for the parameter K=140. 
For much larger values of K, there seems to be a possibility that a unique solution 
could be found. 

','·l_ 
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TABLE OF v/V FOR VARIOUS VALUES OF L 

210 

0.00 

-2.71 

-2.96 

-2.79 

-2.11 

180 

0.00 

-2.84 

-3.90 

-'3. 74 

-2.92 

L 

160 

0.00 

-3.27 

-5.31 

-5.16 

140 

0.00 

-6.90 

-9:6o 

-9.42 

130 

0.0 

-13.0 

-18.1 

-17.9 

-4.11 -7.74 ..'...14.9 

-1.26 -1.86 -2.76 -5.40 .-10.8 

-0.33 -0.68 -1.20 -2.76 -5.9 
---+o~3f---+«5~2o-·i -:-0.06 -o. 78 -2.3 

'------------------
0. 77 0.72 +0.63 +0.36 : -0.24 !,. ____________ _ 

0.97 0.96 0.96 0.90 +0.84 

+l.00 +1.00 +1.00 +l.00 +l.00 
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