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Abstract 

Thr・巴巴 geometrical methods for' determination of r巴lativ巴 geodetic position using 

artificial satellites, that is, th巴 simultan巴ous method, the trailing method, and the 

simultan巴ous-trailingmethod ar巴 brieflyoutlined. The latt巴rtwo of them are of very 

巴伍ciency,b巴causethey do not always, r巴quireprecis巴 timingdevice at all stations. 

The procedur巴 ofreduction for these geometrical methods is described in detail. 

Sinc巴 th巴 obs巴rvationequations can be derived to so-called “position planeヘw巴 cansolv巴

them together by assigning a weight to巴achequation. 

Formula巴 forweighting of position planes and corrections for phase effect of satellite 

are giv巴nin appendices. 

1. Introduction 

The problem on the geom巴tricconnections betwe巴npoints on the surface of the 

earth by observations of artificial satellites has been investigated by many authors. 

For the use of the passive satellites, simultaneous method, which is also called 

as the method of synthetic observations, is widely employed in the world and 

a method so-called trailing method was proposed by Hirose (1963) and is used 

fr巴quentlyin Japan. The latter does not necessitate timing device except at one of 

base stations, whil巴 theformer requires precise timing device at each station. 

In a previous paper (Yamazaki, 1968), the author discussed the relative advantages 

and disadvantages of thes巴twomethods of satellite triangulation, and point巴dout that 

the trailing method has advantages in efficiency and in cost, for the reason that orせi”
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2 AK.IRA YAMAZAKI 

nary astrocameras may be used. In the same paper, he also said that the trailing 

method needs to utilize satellites of proper inclination. Afterwards, from some 

experimental observations, the author found that a method which combines these two 

methods is very effective, even if we could not use but high inclination satellites. 

We shall call this method as“simultaneous-trailing method ”hereafter. 

In the present pap巴r,the methods of determining relative position by the above 

mentioned methods of observation are discussed. And formulae for weighting the obs巴1～

vation equations and corrections for phase effect of satellite are given in appendices. 

2. Out line of three methods of satellite tr旬ngulation

1) Trailing method 

In Fig. 1 a, A is a base station having a camera with a timing device, Bis another 

bas巴stationhaving a simple camera on a equatorial mounting without any timing device, 

X is an unknown station having the same camera as the station B, and So is the 

satellite position at a time t. We want to determine the position of X geodetically. 

B 

I 
I 

I 

， 
( ， 

I 、，、J，、，、、，、，、， 
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Fig. 1 a Trailing Method. 

Suppos巴 thatth巴 satelliteis photographed at A, B and X at about the same time. 

The photographic plate taken at A shows the dotted (or chopped) images of the 

satellite produced by the timing device and those taken at B and X show the trail 

image of satellite around t. 
一一一一令

The direction AS，。of50 as seen from A is obtained by interpolation from the dotted 

images to which time is tagged on the photographic plate tak巴nat this station, with 

ref巴renceto background stars. As is clearly S巴enfrom the figure, S0 is the point of 
〆’白＼

intersection of satellit巴’straj巴ctoryS1S2 in space and the plane AS0B defined by A, 
ー一一一今

B and AS0. Accordingly, the image point corresponding to the satellite position at 

t on the photographic plate taken at B is given as the intersection of th巴 great
~ 

circle containing the projection of AS0 as seen from B on the celestial sphere with the 
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←←一一4〉

trail imag巴， andthe dir巴ctionBS0 are determined with r巴fer巴nc巴 tothe bacl王gr
－一一←4〉

stars in the same way as ASo・

Since the coordinates of A and B are known, the space coordinates of S0 are 

fix巴das the inters巴ctionof two straight lines AS0 and BS0 which have the directions 
一一一一う ←一一一〉

AS0 and BSo, and pass through A and B, respectively. The unknown point X should 
〆’ー、＼

be on a plane which is defined by S0 and the proj巴ctionS1S2 of the satellite trail on 

the celestial sphere as seen from X. 

Hence, the coordinates of X are given by the inter百 ctionof such three or more 

planes. 

2) Simultaneous method 

In Fig. 1 b, as before, A and B are two base stations, X is unknown stations 

and S0 is satellite position at time t. Each of these stations are equipped with 

precise timing device. 

A B 

x 
Fig. 1 b Simultan巴ousMethod. 

B 

ヘiSo 

Fig. 1 c Simultaneous刷Trailing
Method. 

A 

一一一一今ー一一一今 一一一←う

The directions ASo, BSo and XS0 as s巴巴nfrom A, B and X can be derived, with 

reference to their background stars. The straight lines AS0 passing through A in the 
〉 一一一一歩

direction of ASo and the direction XSo define a plane AS0X, called as“position 
plane" hereafter. Similarly, the straight lines BSo and XS0 define another position 

plane BSoX. As X is on the inters巴ctionXSo of the position planes ASoX and BS0X, 
we can fix the position of X as the point of intersection of支s;;and another position 

plan巴 obtainedfrom the similar simultaneous observation in a different position. 

So far, for the sake of brevity, we have assumed that the positions of A and Bare 

known. However, the position of B relative to A can be fixed by two simultaneous obser-

vations made at A and B, if only the distance b巴tweenA and B is previously given. 

Accordingly, the simultaneous method makes possible the determination of the absolute 

position of stations independently to existing geodetic system covering A and B. 

3) Simultaneous司Trailingmethod 
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In Fig. 1 c, A is a base station having a cam巴rawith a pr巴cisetiming device, 

B is another base station having a simple camera on a equatorial mounting without 

any timing device, X is an unknown station having the same camera as A, and So 

is the satellite position in space at time t. 

In this case, the space coordinates of S0 are derived from the observations made 

at stations A and B, in the same way as the case of the trailing method. 

As X should be on the straight line玄Xwhich has the direction of the satellite 

as seen from X at tim巴 tand passes So，互主 isa kind of position line of X. 

Obviously, the position line is given by only one set of simultaneous obser-

vation at thr田 stations,and X is fixed as the inter百 ctionof such two position lines. 

As we have seen in the preceding sub-sections, the obs巴rvationequations in the 

trailing-and the simultaneous methods are given by the same form expressed by 

the position plane. Accordingly, in this case, too, it will be a great convenience 

to express the observation equations by two position planes which their inter百 ction

denotes position line SoX. 

As can easily be seen, one of thes巴 positionplanes AS0X can be directly derived 

from the pair of . observations mad巴 atA and X in the same way as the case of the 

simultan巴ousmethod. On the other hand, another position plane BSoX is obtained by 

combining the straight line BS; fixed by the coordinates of So and B with the 
一一一→

observ巴ddirection XSo・

This simultaneous司trailingmethod is available even if we have high inclination 

satellites alone, for which the trailing method is hardly be applied. Further, we can 

expect to get more succesful observations than the case of the simultaneous method, 

because much mor巴 pairsof stations having ordinary astrocameras without timing 

device can be treated as the base stations. 

3. Refer官 icecoordinate systems 

Prior to the description of the reduction technique, the definitions of reference 

coordinate systems which will be used throughout this paper are given in this s巴ction.

The first coordinate system (X, Y, Z) is defined by the actual axis of rotation 

of the earth (true pole) as the Z-axis, and the true vernal equinox as the X”axis 

and the point on the equator, th巴 rightasc巴nsionof which is 611, as th巴 Y-axisand 

C巴nteredat the center of gravity of the earth. In reality, this coordinate system 

is replaced by a system defined by the apparent places of the background stars 

belonging to a catalogue. We shall call this system as the sid巴realcoordinate system 

according to Veis (1963). 

The s巴condcoordinate system ( U, V, W) is obtained by rotating the first system 

about Z-axis so that XZ-plane coincides with the true Greenwich meridian. 

system is related to the first system by the following expression : 

( U ) coe H ein H 
VIニ（－sinH cosH 
w1 o o 

。）・（ y ), 

This 

( 1) 
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or 

(;)=(sin H 一cosH 0 ) ・ ( ~ ) ' (2) 

where H is the true sidereal time calculated from observation time in UTl by using 

the Ephemerides. We shall call this system as the true terrestrial rectangular 

coordinate system. 

The second system refers evidently to the instanteneous pole and is not fixed with 

respect to the earth surface. In this system, as the coordinates of stations vary as 

time goes on, it is inconvenient to solve the problems of position d巴terminationfrom 

observations spread over a long time interval. Accordingly, we shall introduce the 

third coordinate system ( Uo, Vo, Tれ） defined by Veis (1963) as follows. He call this 

system as the ideal terrestrial rectangular coordinate system. 

The origin is at the center of gravity of the earth analogous to the 1st and 2nd 

system, and oriented so that W0-axis is dir巴ctedtowards the mean north pole as defined 

by the International Latitude Service. The U0-Wo plane is parallel to th巴 mean

Gr巴enwichmeridian as defin巴dby the Bureau Internationale de 1’Houre.一一一Atthe 

XIIIth General Assembly of IAU in Prague (1967), a resolution was adopted that the 

origin of the north pole is defined by the mean pole 1900-1905 from 1967, which is 

called as the Conventional Int巴rnationalOrigin (CIO). Thus th巴above-definedmean 

north pole and the mean m巴ridianare referred to the CIO, hereafter. 

The actual motion of th巴 truepole, defined by the instantaneous axis of the 

rotation of the earth, is d巴terminedby the International Polar Motion Service, which 

gives the position of true pole in terms of the angular coordinates (x, y) of the 

instantaneous pole with respect to the CIO. 

The・ third system is related to the second system by the expression 

( 5. H ＿~ 
( v )=( 0 

0 

1 

0 

1 

y 

-y 

一；）－（ v ), 

－；）（日）

( 3) 

(4) 

From (1) and (3), therefore, the relation between the first and third systems is 

giv巴nby the expressions (Veis, 1963), 

( S.H正H-ysinH meH ,:) ( ~ ), ( 5) 

( Y )=(:in H ~cosH 
-x cos H-y sin H ¥ / Uo ¥ 

-x sin H十ycosHl・I Vi。｜
1 / ¥Wo1 

( 6) 
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In the reduction process of th巴 satellit巴 triangulation,the coordinates of sate!-

lites are given by the (XYZ) system, and the stations by the （日oVo Tれ） system. They 

ar巴 relatedby the formula (5) or (6). 

In order to get the three-dimensional coordinates of th巴 stationsin the t巴r-

restrial rectangular coordinate system, namely, independently of the reference 

ellipsoid, it is su白dentto adopt the above coordinate systems. However for those 

practical triangulation problems such as linking of an isolated island with a trian-

gulation net of main land, the positions of the stations are usually given by the 

geodetic coordinat巴 system(A, <p, h). 

Unl巴ssthe refer巴nceellipsoid is properly oriented in the terrestrial rectangular 

coordinate system, it is impossible in principle to transform the geodetic coordinates 

into the t巴rrestrialr巴ctangularcoordinates. 

So far as our purposes are limited to the relative position determination, we 

can take the following well”known r巴lationbetween the geodetic coordinates and the 

terrestrial rectangular coordinates, within the accuracy of the triangulation nets. 

and 

日＝（N十Ii)cos <p cos A , 

.Voご＝（N+h)cos <p sin,{, 

Wo=[N(lーが）十h]sin <p, 

N＝α（l-e2 sin2 cp)-1ノ2'

(7) 

where a and e me旦nthe叫uatorialradius and the eccentricity of the reference 

ellipsoid, respectively. 

4. Plate reduction 

The method of plate constants is adopt巴dto derive the celestial coordinates of 

the satellit巴 fromthe plate. 

We shall take the reference stars having magnitude (8田～9皿） as many as pos” 

sible in the vicinity of the satellite images concerned (within a field of about 3° 

diameter). 

Let (xi, Yi) and (xh Yi) respectiv巴lydenote the measured coordinates of refer-

ence stars and satellite’s chopped imag巴S(or subdivided points of satellite’s trailed 

image in the case without timing d巴vice).

As the celestial coordinates of the refer巴ncestars, we will adopt the apparent 

right asc巴nsionand declination αi' 0るwhichare computed from a star catalogue and the 

ephemeris, because the adoption of the mean place complicates a situation, especially 

in the trailing method. 

As well known, the relations between the celestial coordinatesαi• ot and the 

standard coordinates /;t，豹 areshown by 

cos i5t cosαt＝ん，

cos oi sin αi=?ni, 

smoi =ni, 

( 8) 
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-sin α0・lt十cosα0・mi エ＝f;t'

-sin oo・COS α0・ft-sinoo・sin α0・mi+cosao・ni＝ゎ，

coso0・COS α0・lt十cosoo・sinα0・mi十sinoo・1ti＝ふ，

~dt..=r;,' 
ぁ／f.t=ゅ，

( 9) 

where αo and o0 mean the right ascension and declination of the plate center. (G巴n巴rally

in a conventional satellite camera, a guiding telescope is not used to keep a star on 

the plate center, so we only know the approximate values of αo, oo at first. If we 

take account of the higher order terms for the plat巴 constantsas shown later, the 

errors resulting from such impr・operorientation of the plate center are almost negli-

gible. However, even when we must solve the problems by the method of linear 

plate constants, due to insu伍cientnumber of the reference stars, we can succesively 

derive the approximate values ofαo, a0, provided that the measured coordinates of 

the plate center are known.) 

So far as the higher order terms which originate from differential refraction, 

dec巴nteringerror, tilting error and camera distorsion etc., can be negl巴cted,the general 

relations b巴tweenthe standard coordinates and the measured coordinates are given with 

sufficient accuracy by the following linear expressions (Turner’s Method). 

f;t＝αXi十byi十C， 
ゅ＝dxi+e約十f, i=l，…，n. 

(10) 

The coefficientsα，b, c，…，f are called the plat巴 constants.

If the zenith distance is larger than 60° and the cam巴radistorsion cannot be 

neglected, the second or higher terms must be taken into account. In this connection, 

many di妊巴rentformulae have been derived so far. 

The auther presently use the following formula given by W. E. Good et. al. (1962). 

r;.=axi十byi十c十d均約十exHf(xHyl)xi,

豹＝gXi十hyi十i+jxiYi十kyHl(xHν；）Yi,
i=l，・.., n. 

(11) 

Here, it should be noted that (11) were derived from the assumption that x叩 dsand 

5・axisare parallel to each other. In use of a comparator without a turn table, we 

cannot set the x-axis of the comparator parallel to t;-axis, in general. 

In order to solve this problem, the author proposed the following method. 

We first determine th巴 plateconstants a, b, c，…J in (10) by applying the 

method of least squares. 

Let O be the angle between t;-and x-axis, and te1, tez th巴 scalef;;i.ctors in 5・and

r;・directions, respectively, then the following relations (Muller 1964) are held between 

(a, b, d, e) and (tei.κ2, (}) : 

α＝te1 cos(}' d＝κ1 sinO, 

b=tez sin θ， e= -tez cos(}, 
(12) 

and (} may be calculated from the valu巴Sof a, b, d, e by using the formula巴

tan (} = _!!:___ or －土
α， e 

(13) 
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Though th巴 twovalues of {) derived from (13) do not strictly agree with each other, 

we can approximately take their .mean value in general cases. 

Transform th巴 m巴asuredcoordinates (x；， 約） into the new coordinates （九あ）

which are given by the following relations. 

♂i=Xi COS｛）十Yisin{), 

官z口 x;sin{}-y芯cos{).
(14) 

Obviously, the above equations show that x-axis is approximately parallel to ~－axis. 

By using the values of （ぬ，仇） in place of （ぬ， Yi),we can solve (11) by the 

m巴thodof least squares. 

Here, it is also to be noted that at least thr巴estars are needed for the solution, 

becaus巴（10)have six unknown plate constants. On the other hand, as (11) have twelve 

unknown plate constants, six stars are needed at least. 

The standard coordinates of the satellite’s images （~1，マ＇J) can be calculated from 

(10) or (11) for the corresponding measured coordinates （町， y1)by using the plate 

constants just determined above. 

Finally, the celestial coordinates of the satellite （αJ> a1) are given by 

~1＝町、／吾干房王1,

手1＝ ザj'~j'
g1=fr~j' 

f1=COSα。（cosoo・C1-sinoo・手1)-sinα0・gj'

m1=COSα0・gj十sinao (cosδ0・C1-sinル手1)' 

的＝COSoo・方j十sinoo・C1,

smo1=n1' 

tanα1=m1/l1・

5. Smoothing of satellite’s positions 

(15) 

In satellite astrometry, it is to be especially noted that th巴 durationof the 

exposure for background stars and a satellite may differ from each other very much 

and occur at widely different times. As a result, the image motion of satellite caused 

by the atmospheric disturbances in the neighbourhood of camera may aff巴ctthe mean 

position of the trailed or dotted images of the satellite, while the star images are 

av巴ragedabout th巴irtrue positions in case of using an equatorial mounting camera 

Accordingly, we must be careful to smooth the observed positions of satellite. 

The satellite cameras of th巴 HydrographicDepartment of Japan are equipped 

with a special timing device having a travelling slit, which is designed to make 

three groups of eight dot imag巴Saparting about three degrees from each other on 

a plate (Ono 1966). 

The practical smoothing technique for the satellite positions observed by this 

camera is described below. (For the pr恒 cipleof this smoothing method, the reader 

should refer to the previous paper of the author (1968)). 

Now the standard coordinates of the satellite images at time ti> ~1，ザj can be 
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calculat巴dfrom the measured coordinates by using (10) or (11). The standard co-

ordinat巴s~h YJj are tr百 isfonnedinto the new standard coordinat巴sfj，万Jwhich are 

defined by 

~1=fj cosθ十ザjsin(}, (16) 

わ＝-fJ sin θ十万jcos(}, j=l，・・.， 8 for each group, 

and 

tanθ三（ザ8一方1)/(fs-6)・ 

The ~－axis is cl巴ar匂 taken配 a均rparallel to th巴 directionof the satellite 

trail「 一 －Weshall call them as the modified standard coordinates, hereafter. 

Assuming a relation between ~ J and手j,

わ＝E・5十F・ ~j十G, (17) 

we determine the coefficients E, F, and G by the least squares procedure. 

As obviously seen from the definition of the modified standard coordinates, th巴

variation of万withresp巴ctto time is very small. Therefore, it is suffici巴ntto 

assume m巴relythe following relation between ~J and th in order to smooth the 

satellite positions with resp巴ctto time. 

~j=E人t}+F人 tj十G'. (18) 

The co巴伍cientsE', F' and G', also, can be determined by the method of least squares. 

Let us, now, find the smoothed satellite position at any time t betwe巴nf1 and fa・

By substituting the value of t in (18), we obtain ~ corresponding to t. Similar匂，

万correspondingto ~ is given by (17). The transformations of the standard coordi聞

nates Z，平 intothe celestial coordinatesα，o are made through (16), (15), with the 
aid of the coordinates of plate centerαo, oo already known. 

The above procedure will be used only for t1 <tくん． When the satellite imag巴

at time t falls between each group of eight dot images, the proceclur・ewill not be 

so applicable due to extrapolation. 

In this case, it may be well to apply Hirose’s preliminary orbital smoothing method 

(1962) to the th日esmoothed positions of satellite which are obtained by the above 

procedure at the central times of exposures for each group t1, tu and trn. 

6. Reduction of trailing method 

1) Determination of th巴 direction of satellite as s巴巴nfrom B at time t 

Let us first derive the equation of the great circle that express巴sthe plane ABSo 

in Fig. 1 a in terms of th巴 modifiedstandard coordinat巴S from the plate taken at 

station B. Hereupon, it is to be noted that generally this great circle cannot be 

expressed by a linear form with resp巴ctto the measured coordinates, if we want 

take account of the higher terms of the plate constants. 

Before going into the problem, we obtain the celestial coordinates （α心む） of the 

satellite position as seen from A at time t by the procedur・巴 of the plate reduction 

described in the foregoing s巴ction,and calculate the direction cosines l,i, m,i, n,i 

corresponding to （α』む） from (8). And we can also calculate the direction cosines 

ln,i, 1nnA, 1lnA of B as s巴巴nfrom A given by the formulae 
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!BA =(.vn-XA)/!lnA' 

ntnA=(yn-YA)/!lBA' 

11nA=(Zn-ZA)/!lnA' 

(19) 

with 

flnA＝、／〔おB ~）＇斗切B二五矛干京一二ZA)2.

Here, XA, YA, ZA; xn, Yn, Zn r巴spectivelymean the geocentric rectangular coordi-

nates of stations A and B in th巴 siderealcoordinate system (X, Y, Z) derived from 

the relations (7) and (6) for their given geodetic coordinates.-According to the 

previous pap巴r(Yamazaki, 1968), we shall use the refraction heights instead of the 

g巴odeticheights of stations through this pap巴r.*
←一一一今

As already stated the plane ABS0 is defined by th巴directionAS0 and th巴straight

line互B.Thus the equation of gr巴atcircl巴 isgiven by 

l m n 

{A 1nA 11A i=Q, (20) 

lnA ntnA 11BA 

where (!, m, n) mean the direction cosines of an at・bitraryV巴ctoron the plane ABS,。
(Fig. la). 

We rewrite (21) 

l・A+m・B十n・C=O, (21) 

with 

A=I 
I 1nBA 二＼， B= I :::A 

A
 

J

A

B

 

－，，u

，，tv
 

一一C
 

The trasformation of (!, m, n) into the corresponding standard coordinates （ふマ）

is given by the following equations derived from (9) or (15) : 

t=rncos oo-sin oo・マ） cosα。－t;・sinαo}' 

m=i:{(cos oo-sin oo・マ） sinao十5・cosα。｝， 
n=i:{cos oo・ザ＋sinoo}. 

(22) 

On the other hand, the relation between （乙甲） and the modified standard coordi-

nates （~，万） is given by (16). 

Thus, by means of (16) and (22), the巴quationof the great cir・cle(20) can be 

transformed into the following equations in terms of the modified standard coordinates: 

ρ ・ ~＋q・手十fニO ' (23) 
where 

ρ＝（B cosα。－Asinα。） cosθ十Ccoso。－Asinoo cosα。－Bsinoo sin α。） sin θ， 

q＝一（Bcosα。－Asin α。） sin 0十（C cos oa-A sin oo cosα。－Bsinoo sin α。） cosθ， 
r= A cos oo cosα。＋Bcosoo sin α。＋csinoo・

w巴 havealr巴adys巴enthat the direction of satellite as S巴enfrom B at time t 

is given by the intersection point of this great circle with the satellite trail. 

百ence,our next step is to obtain the巴quationcorresponding to the satellite 

trail on the plate taken at station B (without timing device). 

* If w巴 wantto treat with the corrections of th巴 parallacticr巴fractions,in the trailing 
method, w巴 mustapply the corrections for all subdivided pointョonthe satellite trail. 
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Let XJ> Yi be the measured coordinates of the subdivided points (e.g. with a space 

of about 2 mm) of the trailed image. The (.'Ci> Yi), by means of (10) or (11) and (16), 

are transformed into the corresponding （乙，ゎ）， with the aid of the plate constants 

determined by the procedure of the section 4. 

If we take enough short part of trail, this part can be approximated by the 

following formula to su伍cientaccuracy. 

手j=EB・~｝十FE ・ ~j+GB, (24) 

coefficients of right hand side can be also obtained by th巴 methodof least squares. 

Thus, the coordinates of intersection point of the great circle with the satellite 

trail （~B, 'ijB) is given by the two equations (23) and (24). 

Transformation of （~B，手B) into （ら， mB,nB), which is d巴fin巴das direction cosines 

of satellite as seen from B, can be carried out through (16), (15). 

In passing, here we will derive the quantities needed in the later section. 

We chose a point on the satellite trail about 0.1° apart from （~B, 'ijB). The 

co or世nates（~＇ B, 'ij1 B) of this point are 

eB＝ ~B+0.1× sin 1° , 

ずB=EB ・ ~＇}i+FB ・ ~1B+Gn ・
(25) 

Then, （~~，弘） are transformed into the corresponding direction cosines (lら， ?nmn'n) 

after the same procedure as described above. 

Finally, we derive the quantities L, M, N, which denote the direction cosin巴Sof 

normal vector of the plane BS1Sa of Fig. 1 a, from the following equations : 

L=mBnら－nBm'n
M=nBl'n-ln地

N=lBm'n-mBl'n. 

2) Determination of geocentric coordinates of satellite 

(26) 

Let α，p and r be the interior angles ζSo AB，ぷABSoand L.BSoA of L1ABS0 in 

Fig 1 a, respectively. Then w巴 caneasily see that they will be given by 

cosα＝lA!BA +mA1nBA +nAnBA' 

cos /3＝ー（lnlnA十tnntnnA十nBnBA)' (27) 

r=l800ー（α＋戸）．

And the distance LlA and LlB from A and B to the satellite are given by 

L}A＝どfnASin /3/Sin r , 

Lln=LlBA sinα／sin r. 
(28) 

Thus the geocentric coordinates of the satellite (x白 y.,Zs) can be calculated by 

Xs=XA十lALlA=Xn+lnLlB'

Ys=YA＋ηZALlA=YB十1nB,JB, (29) 

Zs=ZA十nALlA=ZB十nB,JB・

It will be noted, here, that the aberr祉 ioneffect, as already stated in the pre-

C巴dingpaper (Yamazaki, 1968), can be ignored in the trailing m巴thod,so long as 

the required accuracy is the order of 1" for satellite position. 
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3) To derive the position plane 

In s巴ction1, the position plane is d巴finedas such one that the coordinates of 

satellite in space mal王ewith the projection of satellit巴 trailon the celestial sphere 

as seen from the unknown station. 

Although the satellites generally draw a curved line in the space, we can take 

such small s巴gementthat can be regarded as a straight line on the satellite trail. 

Suppos巴 thatwe could take such small segement on the satellite trail close to 

the satellite position at time t. Further, let (l'x, m'.y, n'x) and (!';., m';., n';.) be the 

direction cosin巴Sof the both ends of this sedgement as s巴enfrom X. 

Obviously, Xis on the plane defined by the two straight lines which have respec開

tively the direction cosines （ι，m'x，η会） and (l';., m'L n';.), and pass through the pre” 

viously obtained satellite position (xs，官s,Zs). 

Thus, we can express the equation of the position plane by 

,r: Xs y-ys z Zs 

l'x 

也

m'x 

m';. 

n'x 1=0. 
n'}_ 

(30) 

Now the problem is reduc巴dto finding the direction cosines （ι，m'x, n'.y) and 

(l'j_, m'j_, n'j_). 

A point corresponding to So is situated somewhere on the trail image but its 

position is unknown, b巴causethe station Xis not巴quippedwith a timing 色村田． 羽Te

now introduce an assum巴dposition X' in place of X (for this assumed position it 

will be sufficient to know within th巴 orderof 1 mile). 

Let Llx, be the distance betw巴enSo and X', which is given by 

Llx,= v(X；二云五；）量子~ils二1f,y，）斗 （zs-zx,)2 , (31) 

where (xx,, Yx" zx,) means the geocentric rectangular coordinates of X' and are 

calculated by (7), (6) for the geodetic coordinates. (Ne巴dlessto say, we must use 

the refraction height for the height of X'). 

Then, the direction cosines of S0 as seen from X' are given by 

l,~ ＝（xs-xx,)/Ll.P, 

m~＝（Ys Yx,)/Ll.Y', 

n'x=(zs zx,)/Llx,. 

(32) 

Transformation of (l~ ， m；了， n'x) into th巴 modifiedstandard coordinates （~'x，方x) is 

can 

Now, let （~j，万j) b巴 themodified standard coodinates of subdivided points on 

the sat巴llitetrail photograph巴dat X. They can be derived by the same procedure 

as foregoing section. 

In ord巴rto obtain a smoothed satellite trail, we also assume the following rela-

tion betw田 n~j andゎ， anddetermine its coefficients by the method of least squar巴s:

万j=Ex ・ ~｝＋Fx ・ ~i+Gx, i=l, 2，…. (33) 

If the values of the assumed coordinates of X' and the satellite coordinates 

derived above are free from errors, the point （~~，詰） should be on the satellite trail 

and show the true direction of the satellite as s巴enfrom X at tim巴t,but it is not the 
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general case. The direction of the satellite as seen from th巴 assum巴dposition will 

not deviate from the true dir巴ctionby more than 0.1°, so far as the assumed position 

is not apart from the true position by one mile or more and we observe the satellites 

passing through at an altitude higher than 1000 km. Here, it should be noted that we 

can regard an arc l巴ngthof 0.1° on the satellite trail as a straight line within the 

accuracy concerned. 

Let a point （ ~'.r，守主） on the satellite trail, now, be the nearest point to the point 

（~~＇平日． From the above reason, then this point will be situat巴dwithin 0.1° from 

the true direction of the satellite at time t. On putting ~'.r ＝ι， and calculating 

the value of弘 by(33), we can easily find the point （ι，弘）， since the raxis is 

nearly parallel to the satellite trail. 

Next, we take a point Wi，従） close by the point （ι，見） on the sat巴llitetrail, 

say, at a distance of 0.1°. In the case of this example, the value of ~＇± is calculated by 

~'k＝ ~'.r+0.1 × sin 1° , (34) 

and the value of桜 isobtained from (33) by substitution ~＇±· 

It will be self-evident from the above discussion that the points （~'.r，活） and 

（~＇±，桜） respectively correspond to the directions （ι，m'.r, n'.r) and (l');, m'k, n'k) in (30). 
Finally, tr羽 isformationsof （ ~'.r，政） and （~＇±，出） into (l'.r, m'.r, n'.r) and （位、 m'.i.,n'.D

are carried out by (16), (15). 

4) Observation equations 

Equation (30) appears to be solv巴dby three sets of simultaneous observations since 

it contains only three unknowns. As is clearly S巴enfrom (6) , however, the var包bl巴s

x, y, and z in (30) are given as a function of time. Accordingly, we cannot solve the 

equation from the sets of observations made at different times, as it stands so far. 

In order to solve (30), we must rewrite the巴quationby using the ideal terrestrial 

rectangular coordinates ( Uo, Vo, vVo) mstead of the sidereal coordinate system (X, 

Y, Z), as follows: 

Uo-ztos Vo一－Vos Wo-Wos 

l~x 
111 tox 

m~x 

’F 1nox 

n~x l=O, 
n；を

(35) 

wh巴re(uos, Vos, Wos), (lbx, m:x, 1Zbx), and （自主， 1nbを，n佐） correspond to (xs，抑，Zs),(l'.r, 

m'.r, n'.r) and (!'±, m'k, n'k), r巴sp巴ctively,and th巴y can be calculated from (5) by 

substituting (xs，抑， Zs),（ι，ηi'.r, n'.r) and （ιm'k, n'.D for (X, Y, Z), respectively. 

When we solve (35) practically, we had better introduce, as before, the assumed 

position. Here it is remarked that cofactors of (u0, v0, w0) are not sufficient in th巴

number of digits, since Clbx' 1nbx, nbx) and Clb'.n mb'.r，バ主） are nearly parallel to each other. 

Let (uox, Vox, Wox) and (uox,, Vox,, Wox') be the ideal terrestrial rectangular coot～ 

dinates of the true position X and those of th巴 assumedposition X' corresponding 

to (xx,, Yx'' z,d of (31). Furth巴r,let Llttox', Llvox', Llwox' be th巴 correctionswhich 

should be applied to the assum巴dposition so as to obtain th巴 trueposition. Th巴n,

the following equations hold : 
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Uox = Uo.Y' + Llzto.Y' , 

Vox=Vox，十L1Vox', 

Wox=Wox,+Lltvox,. 

(36) 

On substituting ztox, Vox, tvox, given by (36), for u0, v0, tv0 in (35), and rearrang” 

ing the equation, we get the observation equation 

with 
A・ Llztox' + B ・ L1Vox＇十C・Lltvox,=D,

A=(m~x例会－n~xm~:i:),

B=(n~xl~i-l~xn；た），

C=(l~xm佐－m~xl：佐），
D三一｛A(zto.P-Uos）十B(Vox'-Vos)+ C(tvox, -tvos)} . 

(37) 

As (37) has three unknowns, three sets of simultaneous observations are needed 

at least. 

For such a practical problem as the location of islands relative to the main-land, 

it is usual to ask for the position expressed by the existing geodetic coordinates. 

In order to rewrite (37) in terms of the geodetic coordinates, we substitute the 

right hand sides of the following equations, which are obtained by differentiating (7), 

for Llzto.t:-i Llvo.Y', Lltvox, in (37). 

Llztox＇口一（N十lzx,)sin¥Ox' COSAx,・Ll¥Ox，一（N十fix,)cos ¥Ox' sin Ax'・ Llkr-

+cos ¥Ox' cos h，・.dfix,,

L1Vox，＝一（N+fix,) sin ¥Ox' sin A,y, • L1少x'+(N+ftx,)cos¥Ox' coskr,・L1Ax, (38) 

十coS¥Ox'・sinAx,・Llh.Y',

Lltvox' = (N (1ーが）十fix,)cos ¥Ox'・ L1ψx，十sin¥Ox'・ Llfix, , 

where Ll¥Ox'' LlA.P are given in radian, and the terms higher than the order of e2 

are omitted. 

In order to denote L1内，， LJA,y,in unit of length (meter), we introduce the radius 

of curvature of meridian R隅＝N3(lーが）／a2and the radius of parallel of latitude 

RP=Ncos¥O・ Then,the following relations between their unit hold : 

Ll¥O (in meter)=Ll¥O・R叫（inradian) , 

LlA (in meter)=LlA・Rp (in radian). 

With the aid of (39), (38) can be written as 

with the notations of 

Llztox' ＝α・ Ll¥Ox' +d・ LJA,y, +f • Llhx' , 

Llvo.Y' =b ・ Ll¥Ox，十6・LlA_p+g・Llhx,,

Lltv。X'= C' fl¥Ox' +i・Llh.Y'' 

α＝一（l-e2sin2伊＇X＇）・sin¥Ox' cos Ax,/(l-e2), e=cos AX' , 

b＝一（l-e2sin2 ¥Ox＇）・sin¥Ox' sin Ax, /(l -e2) , f =cos ¥Ox' cos A,p , 

c= (l-e2 sin2ヂ＇X＇）・cos¥Ox' , 。＝cos\Ox• sin Ax, , 

d=-sin Ax', z=sm ¥Ox'. 

(39) 

(40) 

Inserting (40) into (37), and normalizing the coe伍cientsof Ll¥Ox' L1Ax,, Ll/i,p, we 

finally get the observation equations (the equations of position planes) expressed by 

th巴 geodeticcoordinates 
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P・ fl<px，十Q・flJ.x,+R・flftx,=K, (41) 

with 

A・a+B・b十C・c=Jう，

A・d+B・e =q, 

A・f+B・g+C・i=r,

九／jJ干F平戸＝n,

P=P/n, Q=q/n, R=r/n, K=D/n. 

In these equations, K means the distance between the position plane and the 

assumed position of unknown station. 

7. Reduction of simultaneous method 

In Fig. 1 b, let (xA, YA, ZA) b巴 thecoordinates of station A, and (!;1, m;1, n;1), 

(lx, mx, nx) be th巴 directioncosines of sat巴11iteas seen from stations A and X at 

time t, respectively. Then, we can find their values by the same procedure as 

described previously. (Here it should be noted that station X is equipped with a 

timing device). 

In this case, as is clearly seen from Fig. 1 b, the position plane is expressed by 

the equation 

♂－XA y-yA Z-ZA 

ん 11ZA 1ZA 1=0. (42) 

lx mx nx 

As ( 42) is given by the sidereal coordinate syst巴m,we must transform the 

coordinate system into the ideal terrestr匂lrectangular coordinate system by (5), 

from the same reason as mentioned in the trailing method. 

Then, we get the following equation instead of (42). , 

Uo-UoA Vo-VoA Wo-WoA 

loA 11ZoA noA 1=0 (43) 

lox mox nox 

Next, let (fluox" flv0x,, flwod be the corrections for the coordinates of the assumed 

unknown station (uox" Vox" Wox,) in order to get the corresponding true coordinates 

(Uo;r, Vo;i:, Wロ）．

Analogous to (37), expanding (43) by fluox" flvox" and flwox" we obtain 

with the notations 

A'・ fluor + B＇・flVox，十C'・ flwox' = D' , 

A'=moA・nox-noA・ mox, 

B' =noA ・lox-loA・1lox,

C' =lo A・ 11Zox-111oA ・lox・
D＇＝一｛A勺tox,-UOA）十B'(Vox,-VoA)+C'(Wox,-WoA)}.

(44) 

To express ( 44) by th巴 geodeticcorrections (flヂox'>flJ.ox" flhox,) instead of (fluo,P, 

flvox" flwox,), we can employ the same procedure as (38), (39), (40). Then, we get 

the observation equation 

G' ・ fl<pox，十H'・ flJ.ox' +I'・ fllzox' =] 1, (45) 
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A＇・G十B'・b十C'・c=g’
A'・d十B＇・e =h' 

A人f十B'・g+C' ・i =i' 

.v g'2十fi'2十戸 ＝が

G' =g'/n', H'=h'/n', I'=i'/n', J'=D'/n' 

where the coefficientsα，b, ... , i are given by (40). 

In the pr℃vious paper (Yamazaki, 1968), the author pointed out that the planetary 

aberration e妊回tis more S巴riousin the simultan回 usmethod than in the trailing method. 

To take account of this effect, the author employed a relative correcting method 

I LIA Llx ¥ 
which us巴sthe value at time ( t十一一 一－ l as the direction of satellite as seen 

¥ c C I 

from A, without any corr巴ctionsfor station X Here Llx and LIA mean the distanc四

between the satellite and stations X and A, respectively, and c means the light 

velocity. As for th巴 valuesof Llx and LIA, it will be sufficient to use those given 

by the prediction. On the other hand, th巴displacementsdue to th巴diurnalaberration 

are generally so small that they are negligible. If necessary, the corrections can 

be applied to the positions of satellite according to出epr6cedure commonly adopted 

in spherical astronomy. 

8. Reduction of simultaneous-trailing method 

As was discuss巴din section 2, the position line SoX (Fig. 1 c) can be obtained 

by only a set of simultaneous observations in the case of simultaneous”trailing method. 

However, it is more convenient to solve the problems by observation equations given 

in the form of the position plane instead of the position line, b巴causethis procedure 

makes it possible to treat together with the results of the observations made by other 

methods. As those position planes, we take the planes ASoX and BS0X (Fig. 1 c), 

whose intersection yields the position line SoX. 

In this method, A and X are equipped with a precise timing device. Then, we 

can apply the simultaneous method for the results of simultaneous observations made 

at A and X, by which the position plane AS0X is obtained. 

On th巴otherhand, we do not know the direction of satellite as S巴巴nfrom Bat 

time t, because B is not equipped with the timing device. How巴ver,we can calculate 

it according to the method described in S巴ction6, for a set of observations made at 

A and B. This brings the same result as the case in which B is equipped with 

the precise timing device, too. Combining this calculated direction of satellite as 

seen from B with the observed one as s巴巴nfrom A, and applying the simultaneous 

method, we get the position plane BS0X. 

9. Concluding remarks 

So far, we have S巴巴nthat all of the observation equations for the thre巴kindsof 

sat巴llitetriangulation methods can be given as巴quationsof position planes. Accord-

ingly, we can solve the results of the simultaneous observations made by these 
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different methods together, provid巴dthat these observations are independent to each 

other. But, here, we must pay attention to the followings. 

As pointed out in the previous paper (Yamazaki, 1968), the trailing method has 

a serious disadvantage that the resulting accuracy depends on the geometrical relation 

of the base stations to the satellit巴 track,though this m巴thodhas such advantages 

that ordinary astrographs are applicable and precis巴 timingdevices are unnecessary. 

Th巴 sameis true in the simultaneous‘trailing method, although the unknown station 

n巴巴dsthe precise timing device. Thus, if we want to solve these observation equa-

tions together, the weights should be assigned to them, as is explained in the Appendix 1. 

Then, it should be noted that eith巴rof the trailing method and the simultaneous-

trailing method n自由 thetwo base stations, of which the coordinates are known. There幽

fore, in these methods, we only get the positions relative to the two base stations 

belonging to the same geodetic system. For the purposes of controlling the existing 

geodetic system and determining the absolute position, the simultaneous method only 

gives a effective direct means. 

As is evidently seen from Fig. 1 b, two s巴tsof two-station observations made by 

the simultaneous method make possible to determine the direction between the stations 

(the reader is ref巴1・r巴dto Aardoom, et al., 1966). Starting from an initial point, we 

can successively locate all stations by the simultaneous method, while a scale factor 

remains as unknown. At present, transcontin巴ntaltraverses by electronic distance 

measuring devices are us巴dto scale the satellite tr匂ngulation,but they may be 

replaced by las巴rranging of satellites in futur・e.

Now, we have seen that the coordinates of the stations derived from the sat巴llite

triangulation are giv巴nby the three-dimensional coordinate system which origin may 

generally not coincid巴withthe center of gravity of the earth, although its axes are 

parallel to those of the ideal terrestrial rectangular coordinate system. In order to bring 

the origin to the center of gravity of the earth, it needs to combine the results 

obtained by the geometrical 111巴thoddescribed in this paper with those by the dyna-

mical methods which analyze the motion of artificial satellites in the gravitational 

field of the earth. 

This is a dissertation presented for the degree of Doctor of Philosophy at Kyoto 

University. 

Appendix 

1. Weighting of the position plane 

In the previous pap巴r(Yamazaki, 1968), the author point巴dout that it is unfavorabl巴

to assign th巴 equalweight to the position planes deriv巴dfrom diff巴rentmethods, say, the 

trailing and the simultaneous methods, and proposed th巴formulaeappropriate to these weights 

by means of vector analysis. In th巴 following,these formulae will be derived巴mploying

the notations in this paper. 

1) Trailing-m巴thod

In th巴 previouspaper, the weight Wis giv巴nby the following formul＜；＼号
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W=l八l(EHEt十E'x)
with 

EA口［｛（b・rBA)/(b・α）｝2十〈（α・芯）（b・J'BA)/(b・α）2}2］凶・勺，

E＝［｛（α・ x).lrBAl!(b・α）戸＋〈（α・x)(b・）＇BA)/(b・α）2}2］凶．εB’ 、、‘，，，，・1（
 

Exロ lrx•sl ×εx ・
Here, the notations m巴an: (Fig. 1 a) 

α ：unit vector of th巴 directionof satellit巴 ass巴enfrom A 

b : unit vector of normal of the plan巴 BS1S2

x : unit vector of normal of the plane XS1S2 

l'BA : relative position vector b巴tw巴enA and B 

l'x’8 : relative position vector between an assumed position X’of X and satellite S 

CA• CB and εx= obs巴rvationerrors of satellite at station A, B and X, r巴spectively.

The factors in the right hand side of (i) ar巴 express巴dby notations of the present 

paper as follows : 

（α・X）口 lALx 十mAMx +nANx, 

(b・α）＝！ALB +mAMB +nANB' 

(b・l'BA)=LB(XB-XA）十MB(YB-YA）十NB(zB-zA),

Ir BAI ={(x A -,r;B)2十（YA-YB)2十（z,i-ZB)2}1/2=LJBA'

lrx•sl ={(xs-Xx,)2十（Ys-Yx•)2十（zs-zx,)2}112=Llx,,

）
 

a
l
 

－
－
 （
 

wher巴

Lx=A/(A2十B2十C2)112' Mx=B/(A2十B2+c2)112, Nx=C/(A2十B2十C2)1ノ2'

LB=L/(L2十M2÷N2)112' Mn=M/(L2÷M＇十N2)112' NB=N/(L2+M2十N')1ノ2.

2) Simultaneous-method 

In the previous paper, the weight W is given by the following formulae. 

W＝｛（εHε~）凶・ lrAX,lfsin ¢}-2, (iii) 

whereψmeans the angle subtended b巴tweenstraight lines AS0 and XS0 (Fig. 1 b), and 

r Ax' means the relative position V巴ctorb巴tweenan assumed position X' and A. They are 

also巴xpressedby the notations of the pres巴ntpaper as follows : 

sin ψ口 （A’E十B’2十C'2)112,

[rAX•l={(xx,-xA)2十（Yx•-YA)2+(zx,-Z,i）り1/2.
(iv) 

3) Simultaneous-trailing method 

In the previous pap巴r,th巴 authordid not derived the formulae for this case. Analogous 

to the oth巴rcas巴s,w巴 can巴asilyd巴riv巴 theformulae. 

Let us d巴notethe unit vector of the direction of satellit巴 asse巴nfrom B by S, the 

position vector of B by rn> and its satellit巴 rangeby LlB (Fig. 1 c). 

Then, the position v巴ctorof satellit巴 r8is given by 

l's=l'B十LlB・s. (v) 

On the other hand, r8 is given as the intersection point of th巴 directionof satellite as 

seen from A with the trail of satellite as seen from B by ((5) in the previous pap巴r)

l'sロ r十αA(b・l'BA)/(b・α）， (vi) 

where rJ means the position vector of A and others have the same meanings as in (i), (ii). 

Differentiating (v) and (vi), we can d巴rivethe reduced positioning巴rroras of sat巴llits

as se巴nfrom B as follows : 

占S i企恒La Cb・州加λ {(ob・ rAn)(b· α）一（b•J'An) 一』 α一 ＋ 巴，
一l(b・α） (b・α）2 (b・α）2 [/ 

(vii) 
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with the assumptions 1)1'n=O, and or,i=O. 

We hav巴 alreadys巴enins巴ction8 of the present pap巴r,that th巴 simultaneous-trailing

method can be divided into two simultaneous m巴thodswith the aid of the calculated S. 

In regard to the resulting weight, we can also use th巴 sameformula as (iii) for the com-

bination of B and X, that is, 

W=[{(en)2十（εx)2p12・li'x唱 I/sin ψ］－2. (viii) 

In the above, all factors excepting en have the same m巴aningsas the notations in (iii), and 

en is th巴 resultingerror which can be calculated by th巴 followingformula from th巴

obs巴rvation巴rrorsn of the station B. 

「rCb・rλn)2 h・J'ARz l 
en=loSl=l 1~ ＋工ユιlI l (b・a) (b・α）4 r 

(ix) 

+I~と十企~l·s},T2/
l (b・α）2 (b・α）4 rーII 

The relation between the notations in (viii), (ix) and those of th巴 pres巴ntpaper may 

be analogiz巴dfrom the relations (ii) and (iv). 

2. Corrections for the shape of日atellite

In the observations of balloon satellites, the center of photographic image of satellites 

may not generally coincide with the tru巴 centerof the satellite, due to the phas巴 angleat 

the satellit巴 b巴t耳，veenthe sun and the obs巴rvingstation. For instanc巴， inthe case of satellite 

of diameter about 40 m, such as Echo II, this displacem巴ntreaches to about 20 m at the 

phas巴angl巴of180' on calculation, though we may not, of course, observe for such extreme case. 

In general, however, this effect is not so serious, because in the satellite triangulation 

we. tr巴atth巴 relativ巴 discrepancybetween the satelli句、 directionsas seen from巴very

station. How巴ver,for the satellit巴 havinglarger diamet巴rand lower altitude, this effect 

could not b巴 ignor巴d.

On th巴 existingballoon satellites, w巴 haveat pr巴sentvery little informations about 

their巴xactshape in flight. However, if we assume that the satellites hav巴sphericalshap巴and

prop巴rtyof sp巴cularr巴旦巴ction,the problem can巴asilyb巴 solvedas b巴low. (Even for dif-

fuse refi巴ctionwe can take the same solution within th巴 accuracyconcerned, if the obser-

vations are not mad巴 at巴xtrem巴 phas巴 angle.)

S巴eFig. 2 L巴ts b巴 thesun, A the c巴nt巴rof the sat巴llite,0 the observer, and }J!J the 

。

s 
Fig. 2. Phase Effect 
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reflection point for th巴 specularreflection. By the law of r巴日巴ction,we have 

どこSAM＝ど＇＿MAO.
一一一一う

L巴tus denot巴 theapparent direction of the satellite as seen from 0 by OA1. Th巴n,
一一一一う

the prol》lemis reduced to cl巴t巴rminingthe corr巴spondingtru巴 directionOA by applying 

corrections for f5M. 
Let X0, Y0, Z0 be the g巴ocentricequatorial r巴ctangularcoordinat巴sof the sun (which 

are given in th巴 ephem巴ris),XA, YA, ZA those of the satellit巴（forwhich the predict巴clvalues 

can be used with sufficient accuracy), and x0, y0, z0 those of the station. 

We now consider a n巴w rectangular coordinate system by taking parallel to th巴 above

system and has the origin at th巴 C巴nterof the satellite. 

Let fo, m0，幻① and10, mo, 110 l〕巴 thedirection cosines of th日 sunand station 0, respec-

tiv巴I,as seen from the center of th巴 sat巴llitein the n巴W coordinate system. Th巴irvalu巴s

can be calculated by the following equation 

l0=(X白－xA)/D0""X0/D0,

1110＝（｝も YA)/D0""Y0/D0. 

ll0=(Z0-ZA)/D0回 Z0/D白 ，

lo＝（♂。－xA)fD,,,

押lo=(Yo一YA

?lo=(zo ん）／DA,

(x) 

(xi) 

with 

D0出～／xも＋Yも十Zも，

DA=,/(x0-;cA)2十（Yo-YA)2十（zo-ZA)2. 

Similarly, we write lM, 111M, n,lf for th巴 directioncosins of the point M. Since the 
－→ 

vector SM is on the plane OAS and乙OAMこどこSA!W,the law of reflection givens the follow-

mg equations 
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e

o

 

，，b

，，ιv

，，，v
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－
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z
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’
4

’
4

，
 

(xii) 

and 

l,1d0十111,l[Jn白＋11,11ll0=l,11l0十m,1r1ilo十1/.,1f11o・
By rearranging (xii), (xiii), w巴 obtain

lML+m,11kl十nMN=O,

l,"(!0-lo）十川r(m0-mo）十川r（向－110=0,

(xiii) 

(xiv) 

with 

L=(m0110 1101110). 

111＝（向 lo-!0110) , 

N =(l01110-m0lo) 

On th巴 oth巴rhand, rightascension and declination of NI as seen from A, a,1r, rl,ir, ar巴

r巴latedto li!r. 1ilN, n,11 by 

(xv) 

lMニcosa,1t・cosOM. 

tnM=sin日Jl•COS O,Jf, (xvi) 

11M=Sll10M・

Inserting (xvi) into (xiv) and rearranging, w巴 get
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T " {L(n~ -n0ヒ虫色三位ian日M一一一一一一一一一一一三
日品 {N(m0 m心 Mヤ1.0 n品

Tano,ir 
(cosa""・L+sin日M・M)

N 、
(xvii) 

wh巴r巴 th巴 signof日且fis discriminated by th巴 condition！日。 α叶ミ6h. Thus w巴 cancalcu-

lat巴 th巴 valuesof lu, mu, nu from (xvii) and (xvi). 

Now let xH, Ym z,,1 be the g巴oc巴ntricequatorial r巴ctangularcoordinates of . Th巴nkf

th巴irvalues are giv巴11by th巴 followingequations 

お盟二部A」ャγ・lu,

YJ1=Y,1+r寸/IJI、
ZN=ZA十r・nu,

wh巴rerm巴ansth巴 raclius of th巴 sat巴llite.

(xviii) 

Also, l巴t, l~1• m,;1, 11.:.1 b巴 th巴 observeddirection cosines of th巴 satellit巴（corresponding
一一令 ーー〉

to OM  in Fig. 2) and l~ ， ηt'.,, 11~ th巴 trueones (corr巴spondingto OA in Fig. 2). Then, their 

values can b巴 calculatedby th巴 following巴quationsfrom th巴 coordinatesof A, JVl and 0: 

l’＝い滋－x0)/Du、 l' =(x,1-.v心／D,1、
m',iニ（y波－Yo)/DN、 11（，＝〔官’ー官心／DA、 (xix) 

%、＝（z,,1-z心／DN 、 n~＝（zA-z心／D,1 、

wh巴1・eDu means the distanc巴 b巴twe巴11th巴 reflectionpoint 111. and th巴 observer0, which 

can be calculat巴dby 

DM=V（お証－Xo)2+(YJI－官必キ（zM-zず ‘ (xx) 

Clearか， thecorr巴ctionsLll~1, Llm'.,1, Lln'.,, which should b巴 appliedto lム， m;,,1ら inorder to 

get t;,, m~， n~ are giv巴nby 

Lll＇.＂＝ι－l~1 , Llm'.¥[=m’ーηら， hら＝？らー鈍」． (xxi) 

We can now proce巴dto show thes巴 correctionsby the values of right ascention and 

declination Lla'.,1, Llo~，. 

L巴ta'."' o'.11 be th巴 observ巴drightascension and d巳clinationof the satellit巴. They ar巴

related to l'.,1, m;,, n'..1 by th巴 followingequations: 

tan a'.,1ニ111,;,/l'.,1, sin a ,;1 =n,;, • 

Di任巴1・巴ntiating(xxii), we g巴t

Aα；1 =(f.;1 ・ Llm,;1ー骨t'..1.Lll'.11：〕cos2収＇.11/l'..1' 

LJ0'.11=S•巴C 位・ Lln,;1.

(xxii) 

(xxiii) 

Finally, w巴 getth巴 correctedtru巴 positionsof th巴 sat巴llit巴 α~. a~ from th巴 equations

日：戸日；f十d日',i'

日与＝o'.11十Lla,;1. 
(xxiv) 

Her巴 itis to be noted that in th巴 trailingm巴thodth巴 directior.sof the satellite’s trails 

as m巴nfrom B and X (Fig. la), which ar巴 unequippedwith timing device, ar巴 shownby 

th巴 standardcoordina t巴s（~i· r;t. i=l，…， N) instead of the c巴lestialcoordinates （的， iJ;,i=l, 

., N). In this case, accordingly, the procedure for th巴 abov巴 correctionsmust b巴 tak巴11

after transformations to th巴 c巴lcstialcoordinates. 
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