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Abstract 

A nonlinear m巴thodof least squares has been developed. The combination of the solution 

of the normal equations, the variational method, and the method of successive approximation, is 

used to give a comjfact approximation formula of sequential data. The method is superior to the 

usual method of nonlinear programming in that not only parameters but the number and form of 

basic functions are optimiz巴d.The method has been realized in COMPAL, the FORTRAN program 

for nonlinear harmonic analysis. Numerical tests show its merits to be as follows ; 

1〕 dataare reproduced at any precision one likes as a linear combination of cosine waves with 

optimal amplitudes, frequencies and phases, 

2) a high resolution is assured through a、videfrequency range, 

3) the variance of estimat巴dfrequency is evaluated as well as those for other estimates, 

4) waves with different orders of magnitudes are detached, 

5) it can handle waves whose wavelength is longer than the data length, 

6) it works whether random noise is included in the data or not, 

7) trend is determined simultan巴ouslywith other parameters, 

8) th巴optimalnumber of terms of approximation formula is e任ectivelydetermined. 

Key Words: method of least squares-nonlinear programming-spectral analysis-multi-periodic 

phenomena 

1. Introduction 

The method of least squares has been a powerful tool in data processing. However 

two things are always troublesome to the user. One is what to choose as bases and the other is 

how many bases to choose. If groundless form or surplus number of bases are taken, the coef-

ficient matrix of the normal equations will become singular and the method will come to a 

dead end. In order to avoid the above situation, bases are usually taken as a complete ortho-

normal system. The expansion in Fourier series is a typical case of that (Cheney, 1966). 

Though such expansion is easy and stable to be calculated, it would demand a number of 

terms to reproduce the data. 

Why does such a trouble occur ? The reason is that the choice of bases is inappropri-

ate. If one can take necessary and su任icientnumber of bas巴sso as to represent data well, 

the normal equations will be solvable even though bases are not orthogonal each other. 

Then how should such bases be determined ? One of the answer is to represent each 

basis not as a function but as a sequential vector. The methods based on this idea include the 

method of spline functions (piecewise approximating polynomials) and the finite element 
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method as well as the factor analysis (Hino, 1977〕. However such methods have two 

disadvantages. One is that the result is often difficult to be interpreted physically. The 

other is that the larger the data become, the more memories the methods demand. The latter 

may be a fatal one when one reproduces data and predicts the future tendency. 

Another answer to the question above is to introduce some parameters into bases and 

optimize them. We will develop this idea in the present paper. In general, any smooth 

function can be represented by a set of some discrete and continuous parameters. This asser-

tion can be proved by the existence of the Taylor expansion. For example, it is expressed by 

an integer parameter wheter a function is a cosine type or an exponential type, while it is ex-

pressed by two real parameters what frequency and phase a cosine function has. From the 

view of the the principle of least squares, the optimizing function would be a square sum of 

the residue. The parameters above are usually nonlinear so that the problem turns out to be 

a nonlinear programming both with discrete and continuous parameters. As for the number of 

such parameters and bases, the method of successive approximation will be utilized as will be 

stated in the next section. 

From the view point to predict the future motion of observable quantities, there is 

another way which is slightly different from ours. That is to find a system of equations 

governing the observed phenomena. This typical example is the method of auto regression 

(Akaike, 1969〕whichis equivalent to the maximal entropy method (Burg, 1967). Our method 

may be equivalent to solve the equations above. Because, for example, to approximate data 

f(t) as a linear combination of cos wt and sin wt is equivalent to give the equation governing 

data as/+wゲ＝0and solve it. Clearly the way here is inferior to ours in the sense that it is 

difficult to reproduce data at any desired time. 

We will state a general treatment for the nonlinear method of least squares in the 

following section. Then based on the treatment, a practical program whose name is COM-

PAL (COMPact Approximation by Least squares) is constructed in the case of harmonic anal-

ysis in Section 3. Using COMPAL, a variety of artificial data are analyzed in Section 4. In 

the final section, we summarize a number of excellent properties of COMPAL. As for the re-

sults of analysis by COMPAL for the natural complicated phenomena, the readers will refer to 

the paper of the author (1981) which analyzed the ephemerides of planets in the same volume 

of this report. 

2. Method 

We are concerned with finding an economical approximation of sequential data in the 

sense of least squares. In other words, we look for the function g（・〕 thatcan be evaluated 

fast, needs a few memories and mmim1zes the potential defined by 

1 1 M 

φzテf-g,f-g）三言訟fi-g(t;)12, (1) 

where/i is a datum at t=ti, inner product （・，・） means product sum along sequence, and M 

denotes the number of data. 

Generally an approximation function can be expressed as a linear combination of ba-

sic functions with some nonlinear parameters as follows, 
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N 

g(t)＝五Cj。j（｛的｝ ; t). (2) 

Here are four kinds of undefiniteness : the number of bases N, the form of bases ｛め（・）｝, linear 

coefficients {ci}, and nonlinear parameters {wk}. In this section we shall use the word‘coef-

ficients’as linear coefficients and the word ‘parameters ’as nonlinear parameters. Note 

that the number of parameters J{ is not equal to that of bases. For simplicity we suppose 

that J{ is a function of N. Then the unknowns {c), ｛叫｝，｛め（・）｝ and N are determined as 

follows in the present method. 

On the first stage, let all of them but coefficients be fixed. Then the problem re” 

duces to find an usual least squares approximation and the optimal coefficients are determined 

by solving the normal equations 

N 五Cj（ゆJ，め）＝（／， ¢;), i=l, , N. (3) 

In this sense the optimal coefficients are unique functions of parameters as long as the form 

and number of bases are fixed. Of course, the variance of estimated coefficients is easily 

obtained through the Gram matrix Gii=Cめ，ゆj).

On the second stage, when the form and number of bases are fixed, parameters are 

determined by a sort of variational method since the normal equations for them are too com-

plicated to be solved directly. The minimization algorythm of function with multivariabl巴s

which was developed by Davidon (1959) and Fletcher and Powell (1960) is used for this pur-

pose. This technique needs the minimization scheme on a line and the evaluation of the 

gradient vector at any point. As the former the combination of the regular falsi method and 

the parabolic interpolation method has been developed. The Newton-Raphson scheme and 

other methods using the gradient on a line often failed to reach the true minimum. Prob-

ably this is because the potential has a complicated structure and some spurious optima exist. 

The gradient vector of the potential is given as 

it= i~l J~I C ； 々h 定）－主ci(t，~）・ c 4) 

where coefficients are optimal ones given by the normal equations. This combination of solv-

ing the normal equations and the variational method has been practically proved to be 

stably convergent and to save much computational time than the variational method only. 

This effect is remarkable in the case that the number of coefficients is greater than that of 

parameters. 

fined by 

As the present minimization algorythm gives the inverse of the Hess matrix de-

（民j戸（~rl (5) 

at minimal point. The variance of estimated parameters is easily obtained using this curvature 

matrix and the final decrement of potential. 

On the third stage, the form of bases is determined as follows. We remark that the 

form of bases is identified by an integer as stated in the preceding section. Let coefficients 

and parameters be optimal under the given number and form of bases. Then the only way to 
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decrease the potential will be to add some new bases to the approximation function. We 

could find no elegant way to determine the number of bases to be added. We decided to add 

only one new basis in order not to introduce false components. As for the form of such a 

basis, our strategy is basically the rule of trial and error. It consists of the following five 

steps. On the first step, the residual data produced by old approximation function are fixed. 

On the second, some sets of parameters are supposed as the initial guesses for the new basis to 

be added. Not a single but multiple sets are selected in order to decrease the risk to extract 

spurious components. A sort of spectrum of the residue may be a great help for selecting 

them. Even though such tool is not available, the Monte Carlo method can be always used. 

Anyhow it is not much important how the initial guess色sare generated. On the third, com網

binations with different form of functions are made for each obtained set of parameters. Of 

course the set of form of functions must be prepared before the method is applied. On the 

fourth, parameters of each combination are optimized to represent the residue as well as possi-

ble. This procedure is called the pre-minimization. Such decomposition of minimization 

procedure into a multi-stage scheme can be shown to save computational time since our mini司

mization routine costs time in proportion to approximately the fourth powers of the number of 

indepedent variables. On the last, the best combination is determined so as to reduce the 

residue maximally. It is merged to the old bases after the independency of bases is checked 

by calculating the determinant of the Gram matrix. The non-zero Gram determinant assures 

the solvability of the normal equations. 

On the last stage, the optimal number of bases is determined by the method of suc-

cessive approximation. The approximation goes while increasing the number of bases one 

by one from zero. On every stage of approximation, parameters are optimized and a new 

basis introduced. Of course, aρ1 iori information on data may be utilized as the zeroth 

approximation. In the case of data without noise, the approximation is terminated when the 

desired precision is attained, i.e. 

旦，＇！：~） fi-g 〔t;) Iく£， ( 6) 

whereεdenotes the permissible error. In the case of the data with noise, one can terminate 

the approximation when the potential becomes lower than a certain value. In the latter case, 

however, it is preferable to terminate when the residue becomes similar to white noise. This 

similarness can be measured by means of Fourier power spectrum since the power spectrum of 

ideal white noise is flat. Though this process is easy to be incorporated in an automatic rou-

tine, it is recommended for the user himself to see the spectrum and criticize. 

Roughly speaking, our method goes as follows. 

(O) Initial bases are supposed due to Gρriori knowledge. If such knowledge is not, go 

to (3). 

(1) Parameters and coefficients are optimized to reduce the potential. 

(2) It is criticized whether a further approximation is necessary or not. 

(3) A new basis to be added is determined from the residual data. 

(4) Return to (1). 

Finally we show that it is easy to extend the method in a multi-dimensional case. 
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When one would like to analyze an I-dimensional data vector with a ]-dimensional variable 

vector f(x), one only has to define an inner productく・，・＞ and define the potential as 

φ寸＜f-g，け＞

Then an I-dimensional approximation vector function g(.l:) is given by 

g(x)=C<jJ((J); x), 

(7) 

(8〕

where C denotes an I×L coefficient matrix，ψ（・） an L-dimensional base vector function, and 

(J) a K-dimensional parameter vector. Note that all the dimension of vectors g, x, <fl and (J) 

are different each other in general. The normal equations and the gradient vector are 

easily obtained through differentiating the potential formally by coefficient matrix and 

parameter vector respectively. 

3. Program COMP AL 

The method of the preceding section has been realized in the FORTRAN program 

COMPAL, which was intended to be one dimensional harmonic analyzer. It seeks for a fol-

lowing approximation formula from the given data, 

J 

g(t〕＝co十ぱ十五（C2jCOS (J)i十C山 sin(J)1t) 

K 

+ I: (C2kf COS Wkf十C2k十dsin αikf), 
k,=J+ 1 

(9〕

where the amplitudes {ci}, the frequencies {wk}, and the number] and Kare to be opti-

mized. 

The linear term tis added to cope with the data including a trend and/or waves with 

very low frequency. The mixed terms t cos wt and tsin wt are added by a different reason. 

Let the data consist of a pair of cosine waves with close frequencies w and ω十owwhere Iδw/wl 

<I. If the approximation function has cosine type bases only, then the Gram matrix will be 
nearly singular as the optimization goes. The amplitudes of such waves will be enlarged by 

the order of ｜ω／δw I causing to loose a precision. The situation above is due to the inappro-

priate choice of basic functions and will be adjusted by choosing both cos wt and t cos wt as 

bases. Further mixed terms, t2 or t2 cos wt for example, are not necessary since they can be 

represented well by the bases above. Of course, these linear and mixed terms can be exclud-

ed through an user’s option. 

The power spectrum by Fourier transformation is utilized to select the initial guesses 

of frequencies for the pre-minimization in notations of the precedeng section. It has been 

empirically shown that good initial guesses are pointed by the peaks with high Q-value or 

high power in the spectrum. We note that the frequency derivative of the approximation 

function are calculated as simple as 

ag 
ヨ了＝－c2ktsin 叫 t十C2k+1t COS Wkt I亘h豆］，
υ山 h

= -c2kt2sin叫 t十C2k+if2COS叫 tJ+l豆h壬K. (10) 

The program COMPAL is written in about 2300 structured FORTRAN statements. 

It needs memories in double precision (two words per one real variable) as many as 
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{19十（9K2十39K十4M)/1024}Kilo words, (11) 

where Kand M denote the number of frequencies and data, respectively. 

4. Numerical tests 

Using COMPAL we have analyzed a group of data generated by following functions : 

I I (t) =cos 4t+ cos 64t十cos65t十cos124.5t＋ρ， （12a) 

f2(t〕＝cost+0.2ρ，（12b) 

/3(f)=-sin t+0.2p, (12 c) 

/4(t)=cos0.6t+0.2ρ， (12 d) 

Jら（t)=0.5+t/2π十coslOt+ 0 .1 cos (25t十O.l)+0.01 cos (45t十0.2)

十0.001cos(70t十0.3), (12 e) 

where ρis a uniform random noise with a range O豆ρ豆1.The number of each set of data is 

257 and the sampling rate is constant. The range of independent variable t is－ーπ豆t孟tr:.

Therefore the Nyquist frequency WN  and the basic frequency w B  are given as 

N:=_!C_口 128, WB＝~＝l 
At 7 

(13) 

where At is the sampling rate and T is the data length (Hino, 1977). 

All calculations were done in double precision (18 decimals〕byNEC System 700 at 

Hydrographic Department. 

The first generating function is taken from the paper of Radoski et, al. (1975) in order 

to test the resolution and e百ectiverange of frequency. The result is shown in Table 1. Here 

the first column of the Tables shows the number of iteration, the second the number of poten-

tial evaluation n which amounts to a great part of computing time, the third the accumulated 

computing time in second, the fourth the maximal absolute error in the same unit of data, the 

紅白 thefraction of the frequency area A where the power is greater than 1 % of the maximum 

in the spectrum of residue, and the last shows the analyzed result. Though the approxima-

tion is terminated when A exceeds 50%, one more iteration is examined to convince the ef-

fectiveness of the termination condition. Final estimations of frequency are following : 

64.02±0.06, 4.001±0.004, 124.48土0.07,65.02±0.06, where the estimated errors are calcu-

lated from the obtained Hess matrix. Considering that the mean and standard deviation of 

noise are 0.5 and 1/ ./12=0.289 respectively, the obtained result is much satisfactory. 

In order to examine the effect of phase and data length, the second three functions 

are taken from the work of Ulrych (1972) though the number of samples is di妊erent. The 

results are shown in Tables 2 through 4. As Urlych said in his paper, the usual Fourier spec-

tral analysis cannot identify the frequency lower than the basic frequency. The results here 

show that a direct method as COMPAL is apt to handle with very low frequency phenomena. 

Finally in order to see the effect of trend and amplitudes, the last function is ex・

amined. The result is shown in Table 5. As noise is excluded, the generating function is 

completely reproduced after five iterations. 
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Table 1 Data with noise : signal= cos 4t+ cos 64t+ cos 65t+ cos 124. 5t 

Iter. 11 CPU (sec) Smax A(%) Result 

1 1 7.5 4.04 8.0 0.502 

2 1 15.2 2.87 11.3 0.497 

十1.258 cos c 64. 48 t -0. 02) 

3 17 52.9 2.15 8.4 0.497 

十1.250 cos c 64.48 t -0.01〕

+ 1. 018 cos c 4. oo t +o. oo〕

4 27 92,5 1.42 34.8 0.497 

十1.251 cos c 64. 48 t +o. oo〕

+ 1. 018 cos c 4. 00 t十0.00)

+ 1. 003 cos (124. 48 t -0. 02) 

5 96 193.5 0.60 93.0 0.502 

+ 1. 015 cos ( 64. 02 tー0,02)

十1.021 cos c 4. oo t +o. oo) 

十1,001 cos (124. 48 t -0. 02〕

+o. 934 cos c 65. 02 t +o. 01) 

6 32 258.0 0.53 92.8 0.502 

十1.016 cos c 64. 02 t -0. 02〕

+ 1. 021 cos c 4. oo t +o. oo) 

+ 1. 001 cos (124. 48 t -0. 02) 

+o. 933 cos c 65. 02 t +o. 01) 

十0.091 cos c 57. 95 t -1. 69) 

Table 2 Data with noise : signal= cost 

Iter. 持 CPU (sec) εmax A(%) Result 

1 1 7.3 1. 09 3.3 0.096 

2 22 46.l 0.11 93.8 0.102 

十1.004 cos c 1. 006 t -0. 010) 

3 22 80.3 0.12 95.l 0.102 

十1.004 cos c 1. 006 t -0. 010) 

+o. 215 t cos c112. 40 t -2. 44 ) 

Tabl巴 3 Data with nois巴： signal=-sin t 

Iter. 11 CPU (sec〕 Smax A(%) Result 

1 1 7.4 1. 08 1. 8 0.098 

2 9 29.2 0.11 91.8 0.098 

十0.993 cos ( 1. 000 t + 1. 570) 

3 34 65.9 0.12 94.1 0.098 

十0.993 cos ( 1. 000 t十1.570)

十o.019 cos (15. 635 t -1. 785) 
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Table 4 Data with nois巴： signal=cos 0. 6 t 

Iter. n CPU (sec〕 emax A(%) Result 

1 1 7.2 0.90 4.9 0.606 

2 17 38.2 0.10 91. 0 0.093 

十1.008 cos ( o. 597 t -0. 013) 

3 16 65.2 0.12 92.2 0.094 

十1.007 cos ( 0. 597 t -0. 013) 

+o. 021 cos (111. 56 t +2. 99 ) 

Table 5 Data without noise: signal=O. 5+ t /2π＋cos lOt+O. l cos (25 t +O. l) 

十o.01 cos (45 t +o. 2）十o.001 cos (70 t +o. 3) 

Iter. 11 CPU (sec〕 emax A（%〕 Result 

1 1 10.3 1.111 3. 7 0.49997 

十1.01677 t /2π 

2 11 32.4 0.111 3.5 0.49992 

十o.99329 t /2π 

+o. 99998 cos oo. 001 t十0.000)

3 22 63.8 0. Oll 3.5 0.50000 

+o. 99958 t 12π 

十o.99999 cos c10. ooo t +o. ooo) 

十o.09999 cos (24. 999 t +o. 100〕

4 41 l19. l 0.001 3.3 0.50000 

十1.00001 t /2 tr 

十1.00000 cos (10. 000 t十0.000〕

十0.10000 cos (25. 000 t +0.100) 

+o. 01000 cos (45. ooo t +o. 200〕

5 57 204.3 3. 85E-ll exactly same as signal 
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5. Concluding remarks 

The numerical tests in the preceding section show the effectiveness of COMPAL as 

follows : 1) the input signal is reproduced with high accuracy, 2〕notonly frequencies 

but also amplitudes and phases are determined from data, 3) a high resolution is achieved 

in a wide frequency range, 4) low frequency phenomena can be handled, 5) the variance 

of estimated quantities can be evaluated, 6〕waveswith di妊erentorders of amplitudes are 

detached, 7〕itworks well whether noise is included in the data or not, 8) trend is 

determined simultaneously with other parameters, 9) the optimal number of approximating 

terms is e妊ectivelydetermined. 
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