KEEER e B195  IEABYE 3 H
REPORT OF HYDROGRAPHIC RESEARCHES, No. 19 March 1984

ALGORITHM FOR DETERMINATION OF A SATELLITE ORBIT AND
GEODETIC PARAMETERS BY USING LASER RANGING DATA AND
PRELIMINARY RESULTS OF ITS APPLICATION'

Minoru Sasaki*

Abstract

A satellite laser ranging system was installed at the Simosato Hydrographic Observatory
and the satellite observation has been continued since March, 1982, To process the range data
and to obtain satellite orbits and geodetic parameters, an orbital processor using numerical integra-
tion has been developed. The processor includes the terms of the non-spherical force due to the
geopotential, lunisolar and planetary forces, radiation pressure, atmospheric drag and tidal effects
of the solid earth and ocean. The algorithm and formation of the processor are described here.

The processor is applied to the range data obtained at the observatory and other laser
sites in the world to determine the position of Simosato site in the global geocentric coordinate
system. The coordinate of the intersecting point of azimuth and elevation axes of the laser ranging
system at Simosato site is obtained on the basis of the LPM 81.12 coordinate system. The prelim-
inary result is 33°34’39". 697N (latitude), 135° 56’ 13"". 156E (longitude) and 100.66 meters
(height from the reference ellipsoid: A=6378 137.0m, 1/f=298.257). The comparison of the result
with the geodetic coordinate surveyed in the Tokyo Datum derives the datum shift correction
from the Tokyo Datum to the LPM 81.12 system as AU=—142.5m, AV=+510.4m and AW=
+681.2m. If the position of the origin of the Tokyo Datum is expressed in the LPM 81.12 system
by using the datum shift correction, the values of the position is shifted by +11"".71 in latitude and
—117.83 in longitude on the basis of the values expressed in the Tokyo Datum and the shift
amounts to 468 meters to the direction of 321 degrees in azimuth.

According to the results of the lunar laser ranging, an eastward rotation of the LPM 81.12
system of 07.197 makes the same longitude for the reference point of the 2.7 meter telescope at
the McDonald Observatory. If it is applied to the longitude of Simosato site, the datum shift
correction changes to AU=~146.0m, AV=+506.7m and AW=+681.2m, The new expression for the
position of the origin of the Tokyo Datum obtained by using this datum shift correction on the
basis of the lunar longitude system is given as 35° 39/ 29", 217N (latitude), 139° 44’ 28", 878E
(longitude).

Key words: Orbital determination, Minimum Variance estimate, Satellite laser ranging, Tokyo
Datum

1. - Introduction
More than twenty fixed stations and two transportable stations for satellite laser ranging
(SLR) are operating in the world at present (Smith 1983) and the range accuracies of these SLR
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systems are from a few centimeters to one meter (Pearlman 1983). The orbit of Lageos and other
laser reflective satellites have been determined well. The root mean square (RMS) of the residuals
to observed range minus calculated range for the Lageos orbit determined to estimate the earth
rotation parameters reaches twenty centimeters level (Schutz 1983b). The Lageos orbits played
the major part for determination of the pole motion of the earth by BIH in the MERIT Short
Campaign (Tapley 1983) and will play an important role in the Main Campaign of the Project
MERIT from September 1, 1983 to October 31, 1984,

On the other hand, the National Aeronautics and Space Administration (NASA) of the
United States has been performed the Crustal Dynamics Project to measure crustal movements in
the large area and to detect the continental plate motions by using the SLR and VLBI. As for the
SLR in the project two transportable systems were developed (Silverberg 1980, Smith 1983) and
the third transportable system will be deployed in 1984 (Dunn 1983). In Europe a joint team of
West Germany and the Netherlands also has been making transportable systems (Wilson 1982).

In Japan the Tokyo Astronomical Observatory originated the SLR and gave much
achievements (e.g. Kozai et al. 1973). The Hydrographic Department of Japan (JHD) installed a
SLR system at the Simosato Hydrographic Observatory (SHO) (Sasaki et al. 1983). The operation
started in March 1982 and the system has been running since then (Sasaki 1982b, Sasaki et al.
1984). The range accuracy of the system reached a few centimeters (Pearlman 1983). The launch
of the Geodetic Satellite in early 1986 has also been prepared by the National Space Development
Agency of Japan. The satellite has globular form with 2.15 meters of diameter. It is made of the
synthetic resin and weighs 700 kilograms. The surface reflects the sunlight and the corner-cube-
reflectors on the parts of the surface also reflect the laser beam to the ground. The launch orbit is
circular with 1500 kilometers of altitude and 50 degrees of inclination (Funo 1983). A
transportable SLR system will be made for the satellite project by JHD.

As for the orbital processing in such a background there are several processors, e.g. named
UTOPIA (McMillan 1973), GEODYN (Martin et al. 1976) or KOSMOS (Murata 1978). However
these processors are not convenient to treat the SLR data obtained at SHO for the author and
staffs of JHD. And these processors did not have new astro-geodetic constants and systems. So the
author made an orbital processor based on a linear estimation theory (Tapley 1973) to treat SLR
data obtained at SHO and other sites and to analyze orbits, station coordinates and some geodetic
parameters. An outline of the processor and the results of a set of the baseline determination were
reported in a previous paper (Sasaki 1982a). The algorithm and formation of the processor and
preliminary results for the coordinate of Simosato site by processing the SLR data obtained at
SHO and other sites are presented in this paper.

2. Algorithm for estimation of the satellite orbit and geodetic parameters
(1) Basic relation
The equations of motion of a satellite around the earth in a non-rotating coordinate
system are expressed by the first order differential equations as

F=v ,  p=-— 7r3~+R<r,v,a,t) )

where r: position vector of the satellite, v. velocity vector, u: geocentric constant of gravitation
(=GM), R: perturbation acceleration which is a function of r,p, a set of model parameters @ and
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time ¢. In the strict sense R is unknown. However if the unmodeled error can be ignored R can be
expressed explicitly. If some geodetic constant parameters whose values should be estimated in the
estimation procedure are denoted by a vector 8, the equation of motion is
B=0. )
Equations (1) and (2) can be rewritten using an n-dimensional state vector X, which denotes the
position and velocity of the satellite and the geodetic parameters to be estimated, as following
equation: . o
d X=F(X,1), initially X (to)=Xo. 3
Usually the state vector is related to observed values non-linearly. The observations are also
influenced by random observation errors. An m-dimensional i-th observation vector, Y7, observed
at t; is expressed with an error vector & as

Yi=G( X5 )+ en i=1,2,+0, 4

where G(X,, t;) is m-vector of a non-linear function relating the state and observation.

(2) Linearization
To estimate the state of a non-linear dynamical system the linearization is one of the
most convenient method. In such a linearization method it is important to find a good
approximation at first and to consider errors due to linearization assumption.
If the difference between X(¢) and a reference trajectory X*(¢) is sufficiently small in the
duration £,<t<t, ., equations (3) and (4) can be expanded around the reference trajectory as
\

X=X+ [0/ aX X — X*) 4

’ 5
Vi=G(X%, t)+[0G/aX[H(Xi— X5 )+ +é&5. )
If the terms of (X—X*)? are neglected and the definitions
#()=X()—-X*(1), A(t)=[oF/oX T, (6)
yi=Yi—G(X1, 1), Hi(t)=[0G/oX ]z,
are used, equations (3) and (4) can be rewritten as
& =Alt)x, initially x(to)=x0, to<t<lmax (7)
and
)’z':ﬁi(ti)xz'+€i, i=1,2, N (8)

If a state transition matrix ®(#, tk) is introduced into the linear estimation theory the
equation

xi= @ity to)xo )
is the solution of equation (7), and equation (8) becomes
vi= Hi(t) Oty to)xo+e:. (10)
The state transition matrix satisfies the following relations (e.g. Liebelt 1967):

i) Ot tk):%g—% W) @, t)=0 (e 1:),

i) Oty 1)=I=0(L 1), V) Ot )=ADO(L, 1), (11)
iii) O(t:, ta)=0(t, fj)@(tj, i),
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If definitions
W Hi®(t, to) &
y= )?2 , H= Hz@(:l‘z, to) , e= 622 ,
Y Ho, t) €1

are used, all the observation equations can be expressed as
y=Hxo+e. ‘ (12)

(3) Minimum variance estimate
To solve n-unknowns, xo, and (I x m)-unknowns, e, from (/ x m) -observations, y, in
equation (12) is the proposition of this problem. As the number of unknowns is greater than the
number of observations, some constraint condition is necessary. In this estimation, to minimize
the diagonal elements of the covariance matrix,

P=E[(z—E[Z](z—E[£])7], (13)

is adopted as the constraint condition, where E means to take expécting value and X denotes the
solution of this statistic process. It is assumed that the observation error &: satisfies the a priori
statistics as

Ele]=0, Elei€ll=R:S, (14)

where §;; is the Kronecker delta and R; is an element of a positive definite matrix, R.
As the solution of equation (12), the best linear unbiased minimum variance estimate, &g,
of state x, is obtained by satisfying conditions described above, namely:

i) linearity expressed as  x =My,
ii) unbias E[x]=x,
iii) minimum variance Piifox =0,
The expression is given (e.g. Liebelt 1967) as

fo—_—(HTR“IH)_lHTvay.

The best estimate %, of x at t = r, obtained from the observations ¥, y,, ... y, at t =ty, t5, ....

tiis also expressed as -
xo:E[xolyu Yoy 0 yz]. (15)

If xz denotes a future prediction of x at ¢ = tx (>1;), X; should be also obtained from the same
observations ¥y, ¥, .... Vi as written by

= El ey, g ol
The relation of equation (9) follows that
Elxalyr,yz, vl = O(te,to)E [xoly1,v2,7 v

and prediction X, of x at ¢ = #, is given by the equation,

Te=O(tr to) To. (16)
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The expression of the covariance matrix of x, is rewritten using equations (13), (12) and (14) as

Po:E[( fo—ﬂfo)( fo“,’Co)T]
=E{((H'RH)'"HTR (Hxo+¢&)—x)((H'RTH )" H'R ' (Hxo+&)—x0)7]
=((H'R'H)Y'H'"R " )E[ee"(HTRT'H) "H'R™)"
=(HRH)™, a7

namely
Fo=PH™R 'y, (18)
If a future prediction of the covariance matrix at ¢ = £ is defined by
Pe=E[(xx— Te)(xx— ) Iy, vz, 3], (19)
this equation can be rewritten as followings

:E[@(fk,fo)(xo—' Xolxo— fo)T@T(fk,fo)]th/Z, """ )’l]

=@ty t)P@ (tsy o). (20)

It is considered to add a set of additional observation y; at t = t; (>1;) to observations
Y1,Y2,...y; already obtained or to add additional observation to a priori estimate X, and associated
covariance matrix Py at ¢ = t,. The additional observation is expressed as

ye=Hixe+€n. (21)

In the case of addition of new observation to several sets of old observations, the new observation
can be added into the matrix expression similarly as

[ i I ﬁl@({l, to)xo &
_3_;! =| Hi@, tdxo | + el
Y f{k X Ek
o [ [ HO(to, 1)
20 I B 4 AV oy lw) | £
» yk] =| el ] m[ ] 22)

If equation (22) is expressed as z;, = Hpx; + e, the solution of this equation can be obtained
similarly to equation (18):

Ta=(HIR '"H) "HIR 'z,

={eortn, womman({Tt (FO e L o, (il )(2)

=(HIR: Hut P ) N HIR: yi+ Pi' %o). (23)
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In the case of addition of new observation to a priori estimate ¥, and covariance matrix
Py, the relation X, = x; + m is applied into equation (22) instead of old observations and
equation (12), where 7, is error of estimation for x, and E[ng] =0, E[ngni] = Py as

and

The result of this case becomes the same expression as equation (23). The equation (23) gives the
best estimate of x in the case to add new observation.

3. Dynamical models and their formulation

In this processor several dynamical models are used. The principal dynamical models are

given in Table 1. Precise expressions will be given in the following sections.
(1) Time system

There are some time systems to express dynamical models conveniently. As the basic time
system, invariable-, continuous- and observable time system- should be adopted. So, TAI
(International Atomic Time) is used for the basic time system of the processor. To express the
independent variable of motion of the moon, the sun and planets, ET (Ephemeris Time) is used.
UT! is used for the parameter of time to denote the earth rotation and UTC (Universal
Coordinated Time) is for observation time. The relation,

ET — TAI = 32.1845,

(e.g. McMillan 1973) is used. For UTIR — TAI and UTC — TAI at each observation time the
values are provided by e.g. BIH or USNO.

Table 1 Adopted system of dynamical models

Astronomical constants IAU1976 System (1976)
Precession Lieske, J.H. et al. (1977)

Nutation

Pole position

Definition of UT

Geopotential

Earth model

Solid earth tide and its site
displacement

Ocean tide and its loading

Site displacement

Tidal variation in UT1

Air drag

Radiation pressure

Satellite constants

Luni-, Solar- and Planetary position

Wahr, J.M. (1979)

CIO

Aoki, S et al (1982)

GEM L2 (1983)

1066A(Gilbert.F. and A.M. Dziewonski, 1975)
Shen, P.Y. and L. Mansinha (1976), Sasao, T.
etal. (1977) and Wahr, J.M. (1979)
Schwiderski, E.W. (1978)

Goad, C.C. (1980), Sasao, T. and I. Kikuchi (1982)
Yoder, C.F. et al (1981)

exponential atmosphere

MERIT Standards (1983)

ibid.

Japanese Ephemeris (1980)
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(2) Coordinate system

A non-rotating coordinate system to the inertial space should be used to express the
equation of motion of the satellite simply. As the basic non-rotating system for the purpose, the
geocentric rectangular coordinate on the basis of J2000.0 mean equator is adopted. The direction
of the X-axis is taken to the equinox of J2000.0 from the center of mass of the earth and the
Z-axis is to the axis of the mean equator. The Y-axis is to be taken to make a right hand system by
the X, Y and Z axes. This coordinate and other associated coordinates to express a position on the
earth or in the space are as followings:

X20(Xa0, Y20, Z20) or simply X(X, Y, Z): coordinate rectangular coordinate of the
J2000.0 Mean equator,

X1as(X7a, Youe, Zomr): Geocentric rectangular coordinate of the Mean equator of
Date,
Xpr(Xpr, Yrp, Zpp):  Geocentric rectangular Coordinate of the True equator of Date,
Up(Up, Vp, Wp): Pseudo Earth-Fixed geocentric rectangular coordinate which does not
account for the pole motion.
Up(Ug, Vi, Wg): Earth-Fixed geocentric coordinate whose reference plane is perpen-
dicular to a line passing from the center of mass of the earth to the Conventional
International Origin (CIO) and with U-axis passing through the Greenwich meri-
dian.
Dy, N h):  Conventional geodetic coordinate referred an ellipsoid, namely, latitude,
longitude and height from the ellipsoid. .
®; (R, Az, EI):  Topocentric spherical coordinate where R is distance from origin, 4z is
eastward azimuth from north and EV is elevation from the horizontal plane.
The transformation matrixes from one coordinate to another for position and velocity on the
coordinates described above are as followings:
i) Geocentric rectangular coordinate of the J2000.0 Mean equator < Geocentric
rectangular coordinate of the Mean equator of Date

Xraw= PXoo Xy = PTXTM
X.TM = szzo Xzo - PTXTM

where it is assumed that P can be neglected practically and the expression of Pis

Pll PIZ Pl3
P: le PZZ P23

P31 PSZ P33
Pu=—sinf.sinz +cosf, cosz cosd
Pro= —cos.sinz —sing., cosz cosd
Pi= — cosz sind
Pan=sin{.cosz+cos{. sinz cosd
Py= cos{.cosz—sin{, sinz cosd
Pp= — sinz sind
Py= +cos¢, sind
P= —sing, sind

Pi= + cosé
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£,=230672181 T +0730188 72+ 07017998 T
z=2306.2181 T+ 1.09468 T%+0.018203 T°*
6=2004.31097 —0.426657%—0.0418337*  (Lieske et al. 1977)

and T is measured in Julian Centuries of 36525 days from JD 2451545.0 (2000 January 1.5).
ii) Geocentric rectangular coordinate of the Mean equator of Date < Geocentric
rectangular coordinate of the True equator of Date

Xer=NXru Xrm=N"Xrr
Xrr=NXru Xew=N"Xrr

where it is assumed that N can be neglected practically and / is a matrix of the elments as

Nu= + cosd¢
Niz= —COoSesr sind¢
Nyg= —sines sind¢
Ney = + cosesind¢

Noz= sinessine: +coseycose:cosdy
Naz= —coseysing; +siney cose:cosdy
Nay= + sine; sind¢
Ngz= —sineycose: +coseysine: cosdy
Niz= C€Osencose; +siney sine; cosdy
and
ec=en+de
e =23"26'21"448 4678150 7 — 0700059 T*+-07001813 T°°
49= 2 (a0t @ T)sin(buil + bacl +bsiF + buiD+ bi@)
106

de= 2 (cos+ 1 Teos(fril + forl + faiF + fa:D+ fo:2)

i=1
[=134°57'46"733+ (13257 + 198°52'02'.’633 )T+ 317310 T2+07064 T*
{'=357"31'39"804 + (90" +359°03°017224) T — 07557 T*— 07012 T
F=9316"187877+(13427+82°01°037137) T — 137257 T* 407011 T°
D=297°51017307+(1236"+307°06'417328) T —6"891 T*+07019 T
0=125°02'407280— (5"4-134°08'107539) T 477455 T*+07008 T"*

T: Julian Centuries from JD 2451545.0
As for the ag;, @y, bjj, Cos €1, [, consult Wahr (1979) or MERIT STANDARDS (Melbourne et al.
1983).

ili) Geodetic rectangular coordinate of the True equator of Date ¢ Pseudo Earth-Fixed
geocentric rectangular coordinate

Up:SX"/"r“i"SXTT XTT:ST[}P+STUP

cos@ singd 0 R —sing cosf 0
S=| —sinfd cosfd 0 and S=| —cosf —sinf 0| -w
0 0 1 0 0 0

{ Up:SXTr . { XTT:STUP
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8=12"+ UT1+ an+ dfcose.

@n=24110°54841 +86401845812866 Ty +0%093104 Tu>—652x107°7*  (Aokier al. 1981)
Tv=dul 36525

dv © the number of days of universal time elapsed since JD 2451545.0 (UT1)
dv=dra+(UT1— TAI )/ 86400

drar - fraction of days of TAI elapsed since JD 2451545.0 (TAI)

w .  angular velocity of rotation of the earth
UT1=UTIR+4UT1

41
AUT1= aaiSin(gxi[+g2i[,+g3iF+g4iD+g5i.Q)

and Ay, e, I, I, F, D and £ are the same as the previous section. For g;, &ji Yoder (1981) or BIH
Circular D (1982) should be referred.
iv) Pseudo Earth-Fixed geocentric rectangular coordinate < Earth-Fixed geocentric

rectangular coordinate

{M:Bm {MZBQ&
Us= BU» U»= B'U)

where it is assumed that B can be neglected and the following expression of B is obtained from the

strict formula in good approximation:

1 0 x
B={ 0 I =
—Xp Yp 1
If Q-matrix is defined by Q= BSNP, Ur = X4, and X, = QTUE are the direct expression of the

relation between X, and Ug.
v) Earth-Fixed geocentric rectangular coordinate <« Conventional geodetic coordinate

Ur=(Ne+ he)cosecosi
Vie=(Ne+ he)cospsind
We=(N(1—€*)+ he)sing
Ne=Ad (1-¢gsinp )7

where
A.: semi-major axis of the reference ellipsoid
e : eccentricity of the reference ellipsoid
he . height from the reference ellipsoid.

(3) Acceleration due to the perturbation force
The acceleration due to the perturbation force, R, in equation (1) is devided into a

modeled term, R,,,, and an unmodeled term, 5, as
R(r, v, t)=Rulr.v, )+75lr, v ),

If the unmodeled term is small enough to be ignored or it can be assumed to be random and
unbiased, the algorithm described above can be applied. The modeled terms in this processor are as
followings:

Rn = anstavg+ arp+ Qap+ @
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where

ays: non-spherical acceleration due to the earth gravity field

ayg: difference of two-body accelerations to the satellite and to the center of mass of

the earth due to the moon, the sun and planets
arp: acceleration due to the radiation pressure
a4p: acceleration due to the atmospheric drag
arp: acceleration due to the solid earth tide and the ocean tide.
The expressions of these perturbations are as followings:

i)  Non-spherical acceleration due to the earth gravity field
ans = QTa NS,E (expressed in the non-rotating coordinate)
ans,g=—grad U  (expressed in the earth-fixed coordinate)

where U is the non-spherical gravity potential as

U= ~ﬂi (A=) JuPutsing)+ ZN:

n=2m=1

n

These relations can be rewritten by using complex as followings (Cunningham 1970):

N n
aNS,E:Real[z 2 Ag(crz,m_isrz.m)g7'ﬂd Un.m:l

where e
dUn,m . Un+r,mey (n~m+2)’
ax = — D) -+ 2(72"772)./ Un+im—1
_ Un+1,1 _ U’;H»l.l
- 2 2
Unm _ , iUnsimer , i{n—m+2)!
Y =+ 9 2Wn—m)! Uniim-1
— iU:z+l,I . iU’;l+l.l
2 2
aUn,m __(7Z—m+1)./U
0z~ (n—m)] “rrem
Un,n:(zn—l)'('x_;i:gli)'(]n—x,n—l
Unm=(20=1)"5 Un-som
— (anl)_Z‘U _(7’2‘1“7%“1) Un—z,m
" m—m) 20NN (n—m) 7’

x =7 cos¢ cosA =Ug
y =7 cos¢ sind = V; } earth-fixed coordinate of the satellite

zZ =7 sing = Wg

y =(UR+ VE+ WE)t

A E@u+1)n—m)! T~ _(E@r+1)n—m)! 7
"'"'_< (n+m)! > Crmr S"""_( (n+m)! >S"""

z (A;—)HP,’Z’(Sin¢ WCnmcos mA-+ Sy msinmA )> )

(m>0)

(m=0)

(m>0)

(m=0)

(m=0)

(n=m—1)

(n#Fm—1)

1:m=0
k:
2. m+0
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The normalized harmonic coefficients C_’n,m and S n,m> are given by Lerch .eral. (1983) for
GEM-L2 gravity.model.

i) Perturbed acceleration due to the moon, the sun and planets

6
RPN TE o 155 48
o= “;M Xi XX

where
X:  position vector of the satellite
Xy position vector of the moon (k=1), the sun (k=2), Venus (k=3), Mars (k=4), Jupiter
(k=5) and Saturn (k=6)

m mass ratio of these to the earth.

iii) Acceleration due to the radiation pressure

. 2 7/15 E"Xz)
arp=VvPsA% m [X_XZ!3

where
X, X,: position vector of the satellite and the sun
{ 1: at out of the shadow by the earth
0: in the shadow by the earth ‘
Pg= 4.5605 x 10° Newtons/m?: solar radiation pressure at 1X — X,| = A4
(Melbourne et al. 1983)
Ay = 1.49597870 x 10''m: astronomical unit (IAU 1976)

y=

v reflectivity coefficient
Ag: cross section area of the satellite to (X — X3)
m: mass of the satellite

iv) Acceleration due to the atmospheric drag
Qap—= ‘“Bpl)rvr

where

vr=v—wxX and vr=]v:|
B :% : ballistic coefficient given by Melbourne er al. (1983) for each satellite
o =poe —R(r—Ame—ho) : atmospheric density
X, V: position and velocity vector of the satellite in the non-rotating coordinate
w . rotation vector of the earth in the non-rotating coordinate
r 1 geocentric distance to the satellite
Ane . mean radius of the earth (6371 km)
po . atmospheric density at height o. Refer to e.g. Allen (1973).

& scale constant of the atmospheric density
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v) Acceleration due to the solid earth tide and the ocean tide
am=—grad AU

The acceleration by the effects of solid earth tide and ocean tide associated with AUqy is calcu-
lated through the variation of geopotential coefficients, C,,,,,and §n m, as followings (Melbourne et

al. 1983):

For the first step, the corrections to add to the coefficients by the solid earth tide are:

PZD( Sin¢k )

2
~ _ 1, AN GM,
ACz,o——T/g‘kz 1 }Z} 7';‘3

2
3
=~ s LV GM. ‘
ACz,x"ZZ’Sz,xZ :13 \/gkzill ;—%{P;(smm)e A

2
e 1 T2, ARNY GMu s s i
AC22—idSs :E\/’?‘kz”?‘kzl )3 £ pi(sing.)e

where
k»: nominal second degree Love number
(ks @, M) o earth-fixed geocentric spherical coordinate of the moon (k=1) and the sun

(k=2).
Other notations are the same as described above.
For the second step,

Aén,m_l‘rASn'm:Fm Z 6ksHs( l>n_”‘ euenel'os

—1

n—m odd
S(n,m)
where
B (—1)m S0 = I m=0
" A/ 47 (2 bom) 0 om0

8k, . difference between Wahr model for k at frequency s and the nominal value k, in
the sense ky—k,

H,: amplitude of term at frequency s from a harmonic expansion of the tide generating
potential,

gs: IZ' B—: é 771’61’
n  six multipliers of the Doodson variables

g the Doodson variables
6S20 =0.
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The Doodson variables are related to the fundamental arguments of the nutation described above
by

s=F+Q=5
]Z:S—D:ﬂa
p=s—1=5
N'=—L0=8s
P1:S—D——//:B(s
r=0c+n—5=5
8, : mean siderial time of the conventional zero meridian

For F,, kH and it, see Melbourne et al. (1983).

As for the effect by ocean tide, the correction to the coefficients of geopotential are

calculated as followings:

~ e - + T s ot Tig,
Z]Cu,m— ZASn,m: Bnm (2 )2+( c.;nm**‘ ngn m)e !
s(n,m

where
B  AnGPw ( (n+m)! >%1+k,’,
=T\ (= m) 120+ 12— 8om)/ 2n+1
g=GM/A%

pw density of seawater
ky load deformation coefficients
G the universal gravitational constant

Céim S&m . ocean tide coefficients in m for the tide constituent s .

L -
For 04, the notation is the same as before. As for the values of C,,,,, Sgun and &’,,. see the table
in Melbourne er al. (1983).

(4) Expression of A-matrix

The unknowns of this estimation process are denoted by X as already described. For the
unknowns, satellite position, X, satellite velocity, V,and any astrogeodetic parameters which are
not weakly associated with satellite orbit can be taken, e.g., geocentric constant of gravitation
u(= GM),dynamical form factor for the earth J,(= —C; (>0), ballistic coefficient f(= Cady/2m),
reflectivity coefficient y, pole position (x,, y,) and all observation site coordinates except a
longitude of an observation site in the case of the range and range rate observation of satellite. In
this estimation procedure the following variables are taken as the unknowns:

X:[X7 Va Hy ]27 33 []1’ 1]2! """ ’ UN]T
X:F:[V, o O’ 0’ 0’ 07 0’ """ 3 0]’
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The expression of the A-matrix in equation (6) is:

03’ [3) 07 O, 0, 039 03; Tty 03
Ga B« a da da "
aF * aXy aV, 8#9 3]2’ aﬂ’ 3y 3y ’ 3
b e K A A L
03, O3g 0 0, 0, 03, 03, ttty 03
where
a=assz+(ans+ar)+avs+ are+ cap
(2753 :‘#‘7,—3
0, 0, 0 1, 0, 0
0s=| 0, 0, 0 and L=| 0, 1, 0
0, 0, 0 0, 0, 1
i) Expression of dazs/0X
025 0t25, 0285 3X° . 3IXY 3IXZ
X oY 0z rt 7 7'22 r*
aa!za: Ja 28y 0tz Otz _ M 3XY 3Y 1 3YZ
X T | dX Y ay | — r* r’ r? ’ rzz
Odzp,  O0C2p, 0z, 3XZ 3YZ 3Z 1
oX oY oz r’ r* r?

or in the expression of elements,

a(ZzB ‘ adzrj, {3X X 8}
I=T0X, R

i) Expression of o{ayg + app)/oX
The effects of the solid earth tide and the ocean tide are included in the corrected
harmonic coefficients of geopotential as described before. It is assumed that the coefficients in this
paragraph include the tidal effects.

T . '
By taking gradient of ayg = Q" ans, E, the relation of transformation from the earth-fixed
geocentric rectangular coordinate to the non-rotating coordinate as followings are obtained:

awvs T aaNSE
=QTEQ.

Using the similar notation to the paragraph of the acceleration due to the earth gravity field
described before, the following relations are given by Cunningham (1970):

a(XNs,E__ 0 U
U — 90U oU

or using (x, y, z) instead of (U, ¥, W) for earth-fixed geocentric rectangular coordinate and
notation of matrix element,
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where

n

N
Oans.k . 3* U _ n o 3* Un.m
ox lij*‘ a.\'uzl/i = ReaanmZOAg( Cn,m ZSn.m) a.\'{a]/i
azUn,m__ Un+2.m+2 (117m+2) (12—7}1‘1'4).,
axz = 4 2( }I—ﬂl)/ Un+2 m+ 4(72—771).’ U71+2,m—2
. Un+2,3 (77“1‘1)! . (ﬂ""l)/
= 2D YTy U
_ Unize  (n+2)! Uprze
= 4 - Y Unizot+—" 4
azUn,m - iUn+2.m+2 ( 7)l+4)
axay = — 4 + 4( I”‘?ﬂ)/ Un+2m 2

Z.Un+2,3 _ 7(7Z+1)/
T 4{n—1)! Unsas

Z‘Un+2,2 im+2.2

=TTy T
*Unm __ Unsamea (n—m+2)/U (n—m+4).’U
F 4 Wn—m)! ZPET 4(p—m)! TR
_ Unizs  (n+1)! (n+1)!
— 4 2(”_ ) Un+21+ 4( 1)! U;+21
_ Upiz2 _ (n+2)! U . Ukize
- 4 2n! R0 4
O Unm _(n—m+1) m(n—m+3)!U
axaz - 2 n+2,m+1, 2(72*7)2)! n+2,m-1
:’(n——;llUmtz,r’r (7?+1) U’;:+21
azUn,m__z'(n—nH—l)U _z(7z~m+3)/U
a_)’az - 2 n+2,m+1 2( 7’1—772)./ n+2,m—1
:—Z(n;l Unsai+ (”+1)U§+21
2 _ /
a Unm ( n ”Z+2) Un+2,m.

527 (n—m)!

ili) Expression of d@yp/0X, 0@z p/0X and 8@, ,/0X

where

where

aam; I B Mk 1 3<X Xk,)(X X}z})
oX '"UTHLMRE R}

é\ij

Re= (X — X ) + (X0 X2 ) +(Xs — Xos )22 -

e T e ]
2

(Ur,X ‘+‘ vr,(a)er) —UerJ}

aam . kl)r
X lij _B{

3

=(X24+ X2+ X2)2
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m>1

m=1

m=0

m>1

m=1

m=0

m>0

m=0

m>0
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m=0



122 MINORU SASAKI

0 Wz — Wy
.Q = — Wz O Wx
Wy - Wx 0

vn=(V—0xX): and  o,=(vi+v3+0d)7
iv) Expression of aa/dV

_Qgﬂ! _ c’?am | =
oV isT v 'Y

v) Expression of de/du, da/dJ, and da/0p

Ab’p%(vr,-vmt—&jvzr).

r

1
%‘52 “T‘Xa”fﬁzaNs .
da 1
. Ja Qs

where a7, can be obtained from the J; term of ayg,

a'a'LaAD
B BT

4. Observations of dynamical system
(1) Observation-state relationships
The range to a satellite from a j-th observation site, R, is

Ri=((U=Up*+(V = Vi) (W — W)= (X = X; P+ (Y — ¥; P+(Z~ Z,)?)3

where (U, ¥, W)is the coordinate of satellite position and (U]-, V;, W;)is the j-th site position in the
earth-fixed geocentric rectangular coordinate. (X, Y, Z)and (X;, Y}, Z;) are also the satellite
position and site position expressed in the non-rotating coordinate, respectiveis. To say in the
strict sense in this estimation procedure, (U, ¥, W)or (X, Y, Z)should be the position of the
center of mass of the satellite and (Uj, v W;) or (X]-, Y}, Z;) should be the position of the
reference point of the satellite laser ranging system at the j-the observation site.

The station position expressed in the earth-fixed coordinate has been treated as constant
in this procedure. Though the real station position on the earth is periodically moved slightly by
the solid earth tide and ocean tide loading, the constant coordinate of the j-th site, (U, V};, W)),
can be regarded as mean position. The site displacement by the tides is added to the mean
position. The raw range to the satellite observed by a laser ranging system contains the effects of
atmospheric refraction, difference between positions of reference point of reflectors and satellite
center of mass and individual range offset for each ranging system. If ¥ denotes the raw range, the
G-function relating the state and observation is expressed from equation (4) as followings:

Y =R+ dRpp+ ARrr+ ARcr + ARro+ €
G=R+dRpp+ ARrr+ ARcu + dRro

or
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where
R . distance from a mean reference point of a laser ranging system at the site to the
center of mass of the satellite
ARpp: component of tidal displacements along the direction from site to satellite
ARpr: change of range by atmospheric refraction
ARy - satellite center of mass correction
ARp 5 © range offset for laser ranging system obtained by system calibration.

(2) Site displacements by the solid earth tide and the ocean tide loading
The site displacement caused by the solid earth tide is estimated in two-step procedure.
The vector displacement of the j-th site due to tidal deformation for step 1 can be computed by
the formula

AUﬁZ GM“ [{3zz(uk uJ)}uk+{ (——lz)(uk wi)— ’“}m]

where
7, Uy o magnitude of the vector from the geocenter to the moon(k=1) or to the
sun(k=2) and unit vector of the vector
rj, u;:  magnitude of the vector from the geocenter to the j-th site and unit vector of the

vector
fz;:  nominal second degree Love number
/4 nominal Shida number,

For the step 2, only the displacement of one term K; {165.555 in Doodson number)

frequency needs to be corrected as a periodic change in site height given by

ShiV=S8hxk, HK,<—,/ 5 ) 3 sing; cos¢; sin(fx,+A;)
) 24
where

Shx,=hk, (Wahr) — h, (Nominal)
Hp, = amplitude of K; term in the harmonic expansion of the tide generating potential
¢ = geocentric latitude of j-th site
A = east longitude of j-th site

Ok = K; tide argument=7+5s=6, + .

For the values of Ay, Iy, 8hy | H, consult e.g. Melbourne et al. (1983).

There is also a zero frequency site displacement. The correction could be removed
analogously to the discussion above. If nominal Love and Shida numbers of 0.6090 and 0.0852,
respectively, are used, the permanent deformation introduced in the height direction is given by

ahm—vT (0.6090)(—0. 31455)<~sm¢ ;) (meter)

and in the north direction in the horizontal plane
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6n§-”:\/4_—57r-(0.0852)(~0.31455) 3 cos¢; sing; (meter),

The site displacements caused by the ocean tide loading have been computed for the M2,
S2, K2, N2, 0l, K1, P1, QI and Mf ocean tides by Goad (1980) using models generated by
Schwiderski (1978). The tables of tidal loading height displacement amplitude and phase values of
25 laser site locations for the nine constituents are listed in Melbourne er gl (1983). The height
displacement at j-th site can be obtained by summing nine constituents as follows:

31439):{2; amp;(#) cos(arg,(7,#)—phase(7) )

where arg; (i, t) can be also generated by the subroutine in the same paper.

As for the Simosato site Sasao and Kikuchi (1982) calculated the three components of
the ocean tide loading site displacement of height, from south to north and from west to east for
the nine constituents by using 1° x 1° lattice of Schwiderski model, 232 points on the coast line
and tidal data at six tidal stations around the Simosato site. The results are shown in Table 2. The
sense of amplitude sign is that up in height, to north and to east are all +. The phase and argument
are the same meaning as the equation described above.

Table 2 Ocean tide loading site displacement for Simosato site by Sasao and Kikuchi(1982)

vertical from south to north from west to east
constituent amp phase amp phase amp phase
(cm) (deg) (cm) (deg) (cm) (deg)
M2 1.817 86.6 0.366 108.7 0.276 —164.2
S 2 0.803 106.5 0.147 129.3 0.143 —131.1
K 2 0.237 109.5 0.043 130.3 0.037 —126.9
01 1.073 —146.4 0.160 —113.7 0.155 —8.4
K I 1.388 —196.1 0.215 —93.9 0.191 14,6
P 0.445 —192.0 0.067  —93.7 0.062 15.4
N 2 0.360 91.6 0.070 101.0 0.039  —161.8
01 0.228 —155.2 0.032 —129.0 0.033 —13.2
Mf 0.021 —926.9 0.002 —109.4 0.005 115.4

Latitude of Simosato site =33°578, longitude==135°937, height=62m .

Finally the range correction AR, forj-th site are

where ARop=[AU5+ (8BS + ShP+ ShS s+ (80 + an§°’;zj+ae§°’ej]'%i—2‘)|
7
u;: unit vector from geocenter to j-th site
u: unit vector from geocenter to satellite
h;:  unit vector from j-th site to the zenith
n unit vector from j-th site to the north in the horizontal plane

.

unit vector from j-th site to the east in the horizontal plane.

D
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(3) Correction of the atmospheric refraction
The following formula of the atmospheric correction to the laser range data given by
Marini and Murray (1973) is used in this processor:

ARwr— 8 A+B
T e, H) SinE+B/(A+B)
sink +0.01

where

2(1)=0.9650+ 0.(;1264 40000228
flo, H)=1-0.0026 cos2¢— 0.00031 H
A=0.002357P+0.000141e

B=(L084 x 107)PTK +(4.734 X 10™) e 5=y

K =1.163—0.00968 cos2¢—0.00104 7°+0.00001435P
— BR s -arsasiesrarr—arsasy
e=6.11 100 10

Here
AR kg Range correction (meters)
True elevation of satellite
Atmospheric pressure at the laser site (millibars)
Atmospheric temperature at the laser site (degrees Kelvin)
Relative humidity at the laser site (%)
Wavelength of the laser (microns)
Latitude of the laser site
Altitude of the laser site (kilometers).

e TINYD

(4) Other corrections and expression of 3G/3X
The center of mass correction should be applied for each satellite. The values are:

ARy = —0.24m for Lageos and —0.075m for Starlette.

As for the range offset for each laser ranging system, it is usually obtained by ground target
ranging or internal calibration techniques. The values for the satellite laser ranging system at
Simosato site, for instance, are distributed from 10 to 25 centimeters which depend on the energy
of output and input and environmental conditions.

The expression for G-function was given in the previous section. In the relation between
observed range and nominal range, Y or ¥; and R or R;, all the correction described above should
be considered. However the dependence of these correction to the selected unknown, X, is nothing
or so small. Therefore these cbrrections are ignored for 9G/3.X in this estimation.
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The expression for 3G/3X is as followings:

oG XT-XT
X~ K

090G v

av 0

9G _0G_ 3G
o~ df. A

aG B UT_O;T(;
an‘-_ Rj ij

where the definitions of these variables are the same as described in this chapter.

5. Processing of the laser range data and preliminary results
(1) Range data processing and constants used

The station coordinate of Simosato site is estimated using the estimation procedure
described above by the processor developed. For the estimation, 756 ranges of satellite laser data
in 24 passes of Lageos transit are used as listed in Table 3. These data are obtained at Simosato site
and other six sites which are distributed in Australia, north America, Central Pacific Ocean and
Europe. As the amount of data used are not so much in this time, the number of unknowns is
limited to nine variables, namely, satellite position and velocity at an initial time and the
coordinate of Simosato site. So, the positions of the six sites except Simosato are given a priori.
For the coordinate system of the six sites the LPM 81.12 (Schutz 1983a) is adopted. This
coordinate system has been used at the Center for Space Research of the University of Texas to
estimate the earth rotation parameters, and the every five days values of x and y component of
pole position and the Duration of Day are announced in the CSR reports and in the BIH Circular
D. The adopted coordinates of the six sites on the basis of the LPM 81.12 system are given in
Table 4.

For the coefficients of the gravity field model, GEM-L2 (Lexch ef al. 1983) is used. In the
gravity model the terms of 6—12’ ; and S5 ;, which are caused by the discrepancy of the polar axis of
the terrestrial system and the principal axis of moment of inertia by using CIO, have values as

Car=1.057x10"° and = S,1=-—3.068 % 107°,

To save computation time the coefficients less than 11 degrees and 11 orders which include major
effective terms are used in this estimation.

For the UT1R and x, y components of the earth rotation BIH evaluation in the Circular
D (BIH 1982) are used.

The mass ratios of the moon, the sun, Venus, Mars, Jupiter and Saturn to the earth of
TAU 1976 system are used. For the positions of these astronomical bodies a magnetic tape file of
the Japanese Ephemeris (JHD 1980) is used. In the transformation from the 1950.0 frame used in
the ephemeris to J2000.0, the correction from FKS5 equinox (J2000.0) to FK4 equinox as
following by Fricke (1980) is applied:

E(T)=0%035+07085 Ts
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Table 3 Lageos date set used for the coordinate
determination ofSimosato site

No. u T C Site No. of
pass d h m s h m s iD ranges
April 1982
1 8 3 333 31213 1 24
2 8 75115 815 39 4 39
3 8 11 24 40 11 54 41 4 40
4 9 955 6 10 36 36 4 40
5 9 17 56 33 18 10 33 1 25
6 10 16 29 34 16 37 40 1 17
7 11 18 45 15 18 53 22 1 14
8 13 8 127 8 38 18 4 40
9 13 12 33 56 12 36 32 5 16
10 13 16 29 26 16 35 1 2 40
11 14 2 37 44 3 044 6 28
12 14 14 59 43 15 36 35 2 40
13 14 18 28 54 19 10 0 2 40
14 15 115 24 1 39 28 6 28
15 15. 132 28 136 28 7 37
16 15 4 54 52 5 920 6 11
17 15 5 224 512 36 7 36
18 15 512 43 5 46 44 3 40
19 15 825 5 8 26 36 7 10
20 15 8 56 11 8 59 40 3 40
21 15 9 957 9 33 22 4 40
22 1513 3 34 13 26 10 5 40
23 15 16 45 54 16 58 11 1 31
24 1517 1 2 17 48 56 2 40

where Tsq is measured it Julian centuries from 1950.0.

The following constants are used in this estimation:

Light velocity; ¢ = 2.99792458 x 108m/s
Geocentric constant of gravitation; GM = 398600.44 km? /s

Lageos mass; m = 407.8 kg

Lageos cross section areas; Ag = 0.283 m?

Lageos reflectivity coefficient; y= 1.17

Lageos atmospheric drag coefficient; C; = 3.8

Lageos center of mass correction; Reoy = —0.24m

Lageos empirical acceleration; a,, = —2.9 x 107'?m/s?

Atmospheric density at & = 5000km; po = 3.98 x 10 kg/km®

Scale constant of the atmospheric density; & = 1.61 x 107 /km.

127
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Table 4 Station coordinates by LPM81.12

1D name/state Lat. Lon. Ht

1 Simosato/Japan (unknown)

2 Yaragadee/Australia 29° 274774692 S

115 20 48.0579E
244.960 m

3 Greenbelt/Maryland 39 1 14.1748N
283 10 20.1161 E
21.985 m

4 Platteville/Colorado 40 10 58.0085N
255 16 26,2849 FE
1504.807 m

5 Mt. Haleakala/Hawaii 20 42 25.9795N
203 44 38.5366 F
3068.264 m

6 Kootwijk/Netherlands 52 10 42,2302N
548 35.0936E
93.025 m

7 Wettzell/West Germany 49 8 41.7703N
12 52 40.9405E
660.988 m

Reference ellipsoid ; A=6378137.0m
f=1/298.255

(2) Coordinate of Simosato site and relation between the LPM 81.12 system and the Tokyo
Datum
The values of unknowns are obtained by integrating X* and ® and by evaluating / and y.
The results for nine unknowns are:

il

(8436.59040K™, 8281.561875™M, 3440.96763KmM)T

(0.329606460K1/S 2 482641673KM/3 5 0989403 10km/s)T
at £ =1982Y 04M 08P 031 00™ 205000000 (TAI) and

U, = (~3822.38450KM 3699 36641XM, 3507.57257KmMT,

Xo
Vo

1§

The residuals of range data based on the initial values and site coordinate are shown in Figure 1.
The root mean square (RMS) of the residuals is 55 cm. The position of the intersecting point of
‘the elevation and azimuth axes of the satellite laser ranging system, U;, based on the LPM 81.12
system can be rewritten in the conventional geodetic coordinate as:

33° 34397 697N  (latitude)
135 56 13.156E (longitude)
100 .66 m  (height from the reference ellipsoid)
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where semi-major axis and flattening of the reference ellipsoid are 4, = 6378137.0 m, and 1/f =
298.257.
The surveyed coordinate of the same point in the Tokyo Datum (Takemura 1982) is:

33°34'27" 496N (latitude)
135 56 23.537E (longitude)
62 .44 m (height above mean sea level).

The direct comparison of both heights derives geoidal height based on the reference ellipsoid as
38.2 m at Simosato site. If the geoidal height of the Tokyo Datum at Simosato site is estimated as
0.0 m by a geoid map of Ganeko (1976), the comparison of two coordinate values of the LPM
81.12 and the Tokyo Datum for the same point at Simosato site derives the datum shift correction
for geocentric rectangular coordinate from the Tokyo Datum to the LPM 81.12 system as

following: y
AU =—1425m
AV =+5104 m
AW =+681.2 m

where the U-, V- and W-axes in both the LPM 81.12 system and the Tokyo Datum are assumed to
be parallel for each axes. The datum shift correction derives the expression of the position of the
origin of the Tokyo Datum in the LPM 81.12 system as followings:

35°397297 223N (latitude)

139 44 28 .676E (longitude)
62.95m (height from the reference ellipsoid).

! : : RMS=55cm |

Figure 1 Residuals to the orbit of Lageos determined by the processor.
Solid lines show centers of dispersed ranges of each passes
with site ID.
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As the height above mean sea level of the origin is known as 26.80 m, the geoidal height at the
origin is estimated as 36.1 m on the basis of the reference ellipsoid of 4, = 6378137.0 m and 1/f=
298.257. The discrepancy in both coordinate systems for the position of the origin amounts to
468 m to the direction of 321° in azimuth on the basis of the Tokyo Datum. The similar
discrepancies can be obtained using the datum shift correction to the place at Simosato, Sapporo,
Kagoshima, for instance, as 462 m to 325° of azimuth, 411 m to 311° and 448 m to 330°,
respectively.

Within the procedure of orbital determination by satellite laser ranging data or Doppler
data, the longitude of a satellite-derived coordinate system and the position of the ascending node
of the satellite orbit can not be separated. So, it is necessary to define the longitude of one satellite
ranging site a priori. According to Schutz (1983c) 283° 10’ 19"/7510 is the definition of the
longitude of the LPM 81.12 system for the longitude of the reference point of the satellite laser
ranging system named STALAS at the Goddard Space Flight Center. So, the longitude of Simosato
site shown above is based on the definition. It is expected to be combined with such a satellite
derived longitude system and the precise astronomical longitude like the lunar laser ranging (LLR)
which has been operated at the McDonald Observatory, the University of Texas. As for the
relation between the LLR results and the LPM 81.12 system in longitude, Schutz (1983c)
informed to the author that an eastward rotation of the LPM 81.12 system of 0197 makes the
same longitude for the reference point of the 2.7 meter telescope at the McDonald Observatory as
obtained by LLR.

If the rotation applied, the datum shift correction from the Tokyo Datum to the global
geocentric coordinate system which is referred to the astronomical longitude system by LLR
becomes

AU =~146.0 m
AV =+4506.7 m
AW =+681.2 m .

If this correction is applied to the point of the origin of the Tokyo Datum, the new expression of
the origin is as followings:

35239297 217N (latitude)
139 44 28 .878E (longitude)
where A, = 6378137.0 m, and 1/f= 298.257.

The precise comparison of these values with other coordinate systems, estimation of
accuracies and more discussion will be made after processing much more data in the future.
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