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A NUMERICAL SOLUTION FOR PRECESSION AND NUTATION 

OF THE RIGID EARTH 

Yoshio Kubo and Toshia Fukushima* 

A numerical solution for the !uni-solar prece田ionand nutation of the ngid Earth 1s obtained 

and compared with the result from the analyl!cal theones which are the basis of the current !AU 

prece四onand nutation formulae We follow a s1mplif1ed scheme of numencal calculation by 

mod1fymg the equatrnns of motion and thus avoidmg a small step numerical integration. Some 

errors are found in the long periodic region of nutation in the current !AU theory. 
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I Introduction 

The values of precess10n in astronomical ephemeris are fundamentally based on the theories by 

Newcomb (1894, 1906) and Andoyer (1911). As for nu臼tion,the authority is the 1980 !AU 

nutation theory (!AU, 1982) which was developed by Wahr (1981) for a non-rigid Earth using as the 

basis the nutation theory of the rigid Earth which was obtained by Kinoshita et al. (1979). This 

theory for rigid Earth is a thorough recomputation of the preceding work by Woolard (1953). 

All these theories on precession and nutal!on for rigid Earth are analytical The precision of the 

theory of precession is believed to be better than 0.0001”except for the obliq出tyof ecliptic at 

the epoch and the coefficient of the linear term in the precession in longitude which have to be 

determmed by observation The nutat10n series for rigid Earth which is the basis of the 1980 !AU 

theory contains all the terms greater than 0.00005ぺthusthe precision bemg considered to be better 
than a few numbers at the place of 0 0001”． 

Rather curiously, no numerical treatment has been attempted for precession and nutat10n One 

of the reasons may be a great rapidity of the rotational motion of the Earth, i.e. one rotat10n ma 

day, which makes one feel at the白rstglance that the step in numerical integration of the equations 

of motion must be very small. Of course, another reason may be full confidence in the analytical 

theories 

Having a slight doubt about the prec1s1on of the current theories and introducmg a method 

which enables to av01d numerical integrat10n with a very small step, the present authors develop a 

numerical solution to luni-solar precession and nutation. 

Bec叫 seof some reasons a large computer, especially, precise ephemendes of the Moon and the 

Sun were not available出血isstudy.百四reforethe present work is in the nature of a pilot s加dy

and a more complete treatment should be made later 

2. Equations of motion 

We descnbe the equations of motion for the rotation of ng1d Earth in a fixed coordinate system白
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Figure 1 Eulerian angles 

The ecliptic and mean equinox of J2000.0 are adopted as this fundamental reference frame. The 

precession thus obtained can be compared directly with the express10ns given by Lieske et al 

(1977), but the result for the nutation must be reduced to the ecliptic and mean equinox of date 

before comparison because the nutation m astronomical ephemeris is referred to this frame. 

Eulerian angles are used as the vanables. They are the angles shown in Figure I The obliquity of 

echphcεused in precession and nutation theory is equal to 0 in the figure, although E is usually 

desmbed as the angle measured from the equator to the ecliptic at the ascending node of the 

ecliptic on the equator While, 1t should be noticed that the angle exp問団edby the notation iJ; 

in precession and nutation theory is measured on the ecliptic westward from the X-axis to the above 

mentioned node. Hence it is equal to 180°『札中 beingone of the Eulerian angl田，

In order to formulate the equations of motion, we 日rstwnte the Lagrangean of the Earth 

rotating around its center of mass under external forces. It is given by 

L~t仙ド sin20)+ ~ （戸 ψc叫 2+ U（川t). ）
 
I
 
（
 

In this equation, A and Care the moments of merha with respect to an axis in the equatorial plane 

and the axis perpendicular to the plane, respechvely, the latter of which we call the figure axis 

hereafter We consider the Earth axially symmetrical so thatA = B U 1s the perturbing function due 

to the Moon and the Sun. 

One of the Lagrangean equations obtained from(!) is 

d aL aL ~ 
一（→）ーー＝O
dt a'!' a"' 

From this we imediately get 

竺（や＋ψcos0) = 0. 
dt 

Hence, 

(2) 

'I'＋中cose = w (= const.), (3) 

where w is the sidereal angular velocity of the rotation of the Earth. From this equation we can get 

<p if we have solved ψand 0. Equation (2) is also written as 
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(4) ザ＋ψcose －昨esine = 0. 
A second equation lead from(!) is 

d aL aL A 

dt （τ ）ー＝ O
日e ae 

which results 

(5) 
au 

Ae-(A司 C)1/12 sine cos e + C中ψsine－一＝0. ae 
Also, from the Lag悶ngean(I) we have the equation: 

d aL aL 
ー（ τ ）ー＝O
dt a申 a申

which gives 

{6) 

A （ψsin28+2中8sin e cos 8) + C （長cose ＋ψcos28問中8sine cos 8) 
au_ 

-C8sin8（ψ＋ψcos 8）司－0.
a中

From equations (3), (4), (5) and (6) we obtain the following equations of motion for the 

onentation of the figure axis: 

au 
品目’

' . 
ii=-;[ wsin8申＋sine附 0昨2+ i 

や C Iρ  コwSI日 iJ-2示i-~e ＋ 五回 au 
B中

Fundamentally, all we have to do is to solve equations (7) by a numerical integrallon This 

approach, however, is not practical. The motion of the figure axIS contains the well-known 

Eulenan motion or free nutat10n which IS a cucular oscil!at10n with the period of about one day in 

(7) 

space. 

This free nutation is independent of precession and nutation which are a forced motion, there-

fore it IS not taken into account m the cornputat10n of precess10n and nutation Nevertheless, we 

would have to solve this motion simultaneously m order to get the forced motion of the figure axis 

by performing a numerical integration, in which the step would have to be taken very small 

because of the rapidity of the motion. 

Modification of the equations of motion 

We now introduce a modification of the equations of mot10n (7). First, since the second terms in 

the nght-hand members of the both equations are of a magnitude of l/J/w or IQ-7 as compared to 

the first terms, we let them mcluded m the first terms. Jn doing this we giveψits average value 4人
Next, we put 

3. 

w sin O山中sinecose =P, 

C I '""cose 
Aw豆五百－2ψ百五百 =Q, 
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1 au 
ーでτー ~g(O，や； t). (8) 
A sm2 0 aψ 
Then we have 

。＝－Pψ＋f(O，申，t),
申＝Q e + g(O，中；t). (9) 

Now we consider P and Q to be constant and f(O，中，t)and g(O；ψ，t) functions oft alone. This 
approximation may be valid enough though we will not give a mathematically rigorous argument 

here 

Under this assumption, if there were not f(t) and g(t) in equations (9), they would have the 

following solution: 

。＝αsin（ゾQPt＋γ），

ドー苧αcos（晶t+ ")'), 
αand "Y being arbitrary constants. 

Guided by these expressions, we assume the following solut10n of equations (9): 

ii =ex sin両＋"Y）ー；g(t)+ p（の

←－？αcos （何t小；f(t)+ q(t), 
where p(t) and q(t) are functions oft. 

Substitution of{! I) into {9) gives 

p(t）ーPq（わぷ仇
dο 
By repeating the same procedure, we obtain as the solution of equations (9), 

ti ＝α山（ゾ宿t+ "Y）ー~ g(t) ＋土i(t)+ ~ g(t) －ユE／（の＋
Q PQ 1 Q 1 ，乙

、vPQ I I ・ 1トラαcos（何t＋内

(10) 

）
 
－
 
l
 
（
 

Integration of the equations gives the following expressions for the orientation of the figure axis: 

rl 
0 =00 ---"-cos（品川）－ r 州 dt+ - f(t) ＋主的）－ _!__ ／（の＋，

PQ JQ PQ JQ P2Q2 

円o － ~sin （品t吋＋ I .!. tCtl dt ＋与（t)-_!__ t(t）ーよ g(t)+ （日）
J p PQ P2Q P乏Q'

In the right-hand members of these, the first terms are constant and the second terms mean the 

free nutation. It is easily seen that the third terms correspond to precession and the Poisson terms of 

nutation if we neglect the small additive terms m P and Q Then the fourth and following terms 

must be the so-called Oppolzer terms of nutation. This can be confirmed directly if we calculate 

these terms and compare them with the analytical values for Oppolzer terms which are found in 

Kinoshita {1977). 

The result 1s shown in Table I for three pairs of terms of nutation which have a greater Oppolzer 
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Table I. Comparison between numerical and analytical for some Oppolzer terms. 

Term Period 
Poisson 4th 5th 6th Oppol. 
term term term term term 

(Obliquity) 68 poi 
f(t) g(t) f(t) 

"Bopp 
PQ w -P'否T

days 

cos [/. -6798.4 +92277 】 10.04 +0.00 +0.00 ー100 

cos 2[1. 13.661 +885 +59.08 +4.69 +0.31 +64.1 

cos(2<1-Q.) 13.633 +183 +9.95 +0.97 +0.05 +11.0 

(Longitude) 61/Jpoi 
g(t) 

予／（言Et) P長，g, ど＇l/Jopp
PQ 

sin [/. -6798.4 +172675 同 33.91 -0.00 +0.00 -33 9 

Sill 2[1. 13.661 +2041 +162.10 十10.81 +0.85 +173.8 

sin (2<l-!:J) 13.633 +343 +33.54 +1.82 十0.18 +35.5 

Epoch: 1900.0, Unit: 0.0001＇’ 

171 

Anal 
value 

-10.0 

+64.1 

+11.0 

ー339 

+173.7 

+35.5 

term. The third column of the table gives Poisson term for each nutation term Using it, the 4th, 5th 

and 6th columns are calculated which correspond to the 4th, 5th and 6th terms in equations (13), 

respectively. The 7th column is the sum of these three columns, and gives Oppolzer term. The 8th 

column 1s the value by Kmoshlta. All the values are evaluated for the epoch of 1900 0 The 

comc1dence is sallsafctory to 0.00001” 

In the following, we only calculate the third and following terms m equations (13). They 

correspond exactly to the analytically given nutation of rigid Earth which constitutes the basis of 

the !AU nutation series. In carrying out the integration of the third terms, we no longer consider the 

integrands to be functions oft alone but to contain 8 and ψwhich are not constant 

4 Perturbing function 

Since the fourth and following terms in equations (13) can be calculated easily by numerical 

differentiation of the functions f(t) and g(t), we take up only the third terms: 

r au 
/j, 8 ~ - I - dt, 
Jcwsin8 0-(A~／Cw)cos8) aψ 
r au 

4申＝＋ I ' dt. (14J 
Jcwsin8 { l -2(Al/J/Cw)cos8} ao 

These are the same as those found m Woolard (1953) 1f we neglect the small additive terms in the 

denommators and they very nearly give precession and Poisson terms of nutation. 

U is the perturbing function due to the attractions of the Moon and the Sun They are separated 

into two parts caused by the respecllve bodies, that is, 

U=U< + U。
The two constituents have the same form 
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where the suffix B means ≪ or 0, k is the Gaussian gravitational constant and m, r, z and 8 are 
respectively the mass, the geocentric distance, the z coordinate and the declination of the body 

referred to the equator of the Earth. The units of m and rare the solar mass and the astronomical 

unit of distance (au.), respectively. 

In tenns of the ecliptic longitudeλand latitude p of the Moon or the Sun, (15）凶nbe expressed 
as 

3k2m(C-A） ミ

UB ＝『一~（7)3

where a is the conventional unit in which r of the Moon or the Sun is expressed. The suffix 0 

assigned toλand P means that they are refeued to the ecliptic and mean equinox of 12000.0. 

The coordmates of the Moon and the Sun are taken from an abridged trigonometric series for 

them developed by Kubo (1980）.官官errorof the series 1s estimated to be 2”in average and 10”at 

maximum. The effect of the error to the result will be discussed in Sect10n 6. 

We now discuss on the quantity k2m/wa3 in the coefficients in equations (14), in which w is the 

sidereal mean motion of the rotation of the Earth with the value 1299548.204”／day. 

In case of the Moon, we take as a the equatorial radius of the Earth a,. Introduce a< defined by 

=3~戸＝0.002571881山 .u., (17) 
＂《ー

where m., and mq are the masses of the Earth and the Moon, respectively, and n《（＝47434.88963”／ 

day) is the sidereal mean mot10n of the Moon. Further, we have a relation among a,, a< and the 

mean distance of the Moon α。：

(16) ( cos 8 sin Po 十sin8 cos Po sin （~ oーや） ) 2' 

a< 

(18) =a。／F2= a,/3422.448”／F2 = 60.32291182 a,, 
F2 being a constant whose value is 0 999093142. Hence, 

立を中ず元 x勺デ］

a< 

" 2 
= (60.32291182)3 x 0.01215056777 xこL

w 

(19) 

In case of the Sun, we t玖e1 au as a. Introduce a0 defined by 

/ k2(m c + m., + m, ) 
a~ ＝ 、・ .,. 了 ’屯よ ＝1.000000036 a.u. 

no• 
where m0is the mass of the Sun and n0(= 3548.192807”／day) is the sidereal mean motion of the 

Sun. Then 

k2mo 

wa3 

(20) 

= 4617924.822”／day. 

x k2(m。＋m.,+m《）
一一仏＞a。3
n2《

詑（1.000000 6)3 x 0朔 99仰 6xず

（空旦)3ー← 豆
a m0 + m., + mq 

(21) = 9.687701648”／day. 

Finally, as the common factor in Uq and U0 , we adopt 
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C A 
三「＝0.0032739935. 

173 

(22) 

All the numerical values adopted above are cornc1dent with the !AU (1976) system of astro-

nomical constans and are the same as those used in the analytical theory. 

5. Integrat10n 

In carrying out the integration of (14), the integrands depend almost only on t and hardly one 

and iJ; because the changes of these variables are very small. Therefore the integration is almost a 

mere calculahon of areas rather than usual numerical integration of equat10ns of motion. 

The calculation is carried out by the Simpson’s formula for de白niteintegral with a step of 2 

hours. In doing this, the perturbmg force by the Sun is evaluated at Oh every day and interpolated 

to every 2 hours, while for the Moon the coordinates are evaluated at Oh every day and interpolated 

to every 2 hours and then the force is calculated. Differences up to the fourth order are taken into 

considerahon in the mterpolat10n. The update of the values e and ψIS made once a day smce the 
rate of their change IS very slow. In doing this, the geodesic precession I 92”／Jc or 0 0000526”／day 

is compulsively added toψ 

The mitial values adopted in the mtegrat10n a阿国follows:

11 =JD2446066.5 orJan. l, 1985 Oh DT 

(T；ロ－0.1499931553), 

e, = 23。26’2l.448”＋ 4.849’1 

内＝ 180° -5038.7784“九十 1.07259”r,2+ 0.001141”T13 + 13.715ぺ (23) 

where Tis measured from 12000 0 in the unit of Julian century. The values of e1 and l/J; are chosen 

so that they coincide with the analytical values within 0.001”， but it should be noticed that 

adoption of a slightly different value for 01 or l/J; only results a constant bias of the same amount to 

all the values of e orψthroughout the period to be integrated 

6. Result田lddiscussion 

The integration has been carried out for a penod of about 18,000 days. In the following 

discussion, e is used in place of e and 180°『官inthe preceding sections is replaced by仇according
to the conventional notations used m precession and nutation theory. 

As mentioned in Section 2, the nutation obtained in the fixed reference frame "'I/Jo and "'e0 

must be reduced to the ecliptic and mean equinox of date. The formulae for the reduction are 

rr sin 11 
Aψ ＝6ψ。＋πcosIl cote 6ψ。＋ ~τ二二ムε0・

s1n~e 

Aε ＝6ε0 －πsin TI Aψ0> 

where 

π ロ47.0029”T-0.03302”T2+ 0.000060”T3 (in radian), 

Il = 5。07’25.018”－4168.9695”T+1.03723”T2 + 0.001147”T3 

(24) 

(25) 
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We first examine the short penodic terms of nutat10n. We compare our result with the analytical 

one for a period of 250 days beginning from JD 2446066.5. In Figure 2 the differences between our 

values (denoted by N: numerical) and analytical values (denoted by A) for aゆandδεareshown. 

Figure 3 is their power spectra.τ'he constant biases of about I milliarcsecond m＂ψN-A and AεN A 
are meaningless because of the reason mentioned in Section 5. As far as short periodic region of 

nutation is concerned, the differences between N and A出合ゆ and"• are reasonable considering the 

precision of the analytical computation 

When we proceed to precession and long periodic region of nutat10n, however, we see a fairly 

different aspect. Figure 4 shows the A中NA and "•NA for a period from JD 2445106.5 to JD 

2462706.5. In the grapfs, one dot is the average for 32 days. Figure 5 is their power spectra. 

Jn aψN-A all the analytical values of precession and nutation have been subtracted from the 

numerical solution. Therefore it would be a horizontal straight line if both 合ψNand aψA were 
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Figure 2. Li中N-Aand Li•N-A for JD 2446066.5 to JD 2446315.5. 
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correct. In "'N・A' however, only the analytical nutation has been subtracted from the numerical 

result. Therefore from the graph of 企＇N-Ashouldちefurther subtracted the analytical precession, 

i e., 

(26) 

An analysis of AψN-A and AεN -A, where the theoretical precession (26) in "'N A has been 

removed, gives the following expressions for the differences in precession and long periodic terms 

of nutation: 

+0.05127”T2 -0.007726”T3 

"i/JN-A =+0.0151”T-0.0022”T2 + 0.0006”sin (n -26。）+ 0.0013”sin (2n -2°), 
(±25) （士149)

0 001" 
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企εN・Aロー0.0003”T司 0.0067”r2+ 0.0008”cos (S1 + 26°) -0.0003”cos (2S1 + 37。）， (27) 

（土12) (±62) 

the first and the second terms being for prece田ionand the third and the fourth terms for nutation 

in each equation. S1 is the longitude of the ascending node of the Moon’s orbit on the ecliptic. 

Among the four terms for p問団ssionin (27), only the linear term ÷0.0151”Tin＂ゃN-Ais 

significant judging from the mean errors. Since this term is to be determined by observatton, the 

difference is not important physically. However, it must not exist because the same constants are 

adopted m both the numerical and analytical solutions All the terms for nutation in (27) are 

sigmficant. Among them the terms with the argument of 2S1 are well coincident with the result 

Kubo (1982) obtained analytically: 

/) （＂中） ~ + 0.0012”sin 2S1, 

o ("e) = -0.0002”C田 2S1. (28) 

As for the remaining two terms of nutation +0 0006”sin (S1 -26。）and +o 0008”cos (S1 +26°), 

as well as +0.0151”T in precesston, we can not tell in which side N or A there are errors. The 

errors arizing from the modification of the equations of motion and from the integral!on in our 

solutton are estimated to be small enough The largest source of the error in our calculation would 

be in the low precision of the coordinates of the Moon and the Sun we have adopted. Especially, 

some long periodic terms which are missing because of their smallness in the trigonometric series 

for the Moon might be questionable, although the effect to our result does not seem so large as 

0.0002” 

However, it is desirable to follow the present scheme once again, using precise ephemerides of the 

Moon and the Sun and, if possible, applying a more rigorous formula for numerical calculatton 
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歳差・章動の数値積分（要旨）

久保良雄・福島常志夫書

天体位置表等の天体暦に掲載されている歳差・章到jの数ft在の基になっている剛体地球の歳差・章到J理論

は従来，解析的方法によってのみ行われてきた，本稿では，その数値的解法を試み，得られた結果を現行の

理論値と比較する目歳差においては有意な差は見られないが，長周期械の章到j項に0.001"に達する差異が存

在L，これは現行の理論の精度が十分でないためと考えられる．


