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A NUMERICAL SOLUTION FOR PRECESSION AND NUTATION
OF THE RIGID EARTH

Yoshio Kubo and Toshio Fukushima®

A numerical solution for the luni-solar precession and nutation of the rigid Earth is obtained
and compared with the result from the analytical theories which are the basis of the current IAU
precession and nutation formulae, We follow a simplified scheme of numerical calculation by
modifying the equations of motion and thus avoiding a small step numerical integration. Some
errors are found in the long periodic region of nutation in the current IAU theory.
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1. Introduction

The values of precession in astronomical ephemeris are fundamentally based on the theories by
Newcomb (1894, 1906) and Andoyer (1911). As for nutation, the authority is the 1980 IAU
nutation theory (IAU, 1982) which was developed by Wahr (1981) for a non-rigid Earth using as the
basis the nutation theory of the rigid Earth which was obtained by Kinoshita et al. (1979). This
theory for rigid Earth is a thorough recomputation of the preceding work by Woolard (1953).

All these theories on precession and nutation for rigid Earth are analytical. The precision of the
theory of precession is believed to be better than 0,0001" except for the obliquity of ecliptic at
the epoch and the coefficient of the linear term in the precession in longitude which have to be
determined by observation. The nutatjon series for rigid Earth which is the basis of the 1980 1AU
theory contains all the terms greater than 0,00005, thus the precision being considered to be better
than a few numbers at the place of 0,0001",

Rather curiously, no numerical treatment has been attempted for precession and nutation. One
of the reasons may be a great rapidity of the rotational motion of the Earth, i.e. one rotation in a
day, which makes one feel at the first glance that the step in numerical integration of the equations
of motion must be very small. Of course, another reason may be full confidence in the analytical
theories.

Having a slight doubt about the precision of the current theories and intreducing a method
which enables to avoid numerical integration with a very small step, the present authors develop a
numerical solution {o luni-solar precession and nutation.

Because of some reasons a large computer, especially, precise ephemerides of the Moon and the
Sun were not available in this study. Therefore the present work is in the nature of a pilot study
and a more complete treatment should be made later.

2. Equations of motion

We describe the equations of motion for the rotation of rigid Earth in a fixed coordinate system.

Received 1 January 1987
# Satellite Geodesy Office



168 Y. KUBO, T. FUKUSHIMA

Z
p
‘C-axis
Equator ,
A-axis
[
o ” Y
v ¢ e
%C\w‘
N
X

Figure 1. Eulerian angles.

The ecliptic and mean equinox of J2000.0 are adopted as this fundamental reference frame. The
precession thus obtained can be compared directly with the expressions given by Lieske et al,
(1977), but the result for the nutation must be reduced to the ecliptic and mean equinox of date
before comparison because the nutation in astronomical ephemeris is referred to this frame,

Eulerian angles are used as the variables. They are the angtes shown in Figure 1, The obliquity of
ecliptic € used in precession and nutation theory is equal to @ in the figure, although ¢ is usually
described as the angle measured from the equator to the ecliptic at the ascending node of the
ecliptic on the equator, While, it should be noticed that the angle expressed by the notation
in precession and nutation theory is measured on the ecliptic westward from the X-axis to the above
mentioned node, Hence it is equal to 180°—/, ¥ being one of the Eulerian angles.

In order to formulate the equations of motion, we first write the Lagrangean of the Earth

rotating around its center of mass under external forces. It is given by
L:'%(e'u g}zsmzeng(¢+¢cose)2+0(¢,e;t). )

In this equation, 4 and C are the moments of inertia with respect to an axis in the equatorial plane
and the axis perpendicular to the plane, respectively, the latter of which we call the figure axis
hereafter, We consider the Earth axially symmetrical so that 4 = B, U is the perturbing function due
to the Moon and the Sun.

One of the Lagrangean equations obtained from (1) is

d 3L oL _

ar 3p) " 5y

From this we imediately get

d L

d—t((p‘i'lf/cose):ﬂ. (2)
Hence,

@+ cos§ = w (= const.), (3)

where  is the sidereal angular velocity of the rotation of the Earth, From this equation we can get
y if we have solved ¢ and 8, Equation (2) is also written as
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¢S+1]Jcos9—1i.)ésir18=0. (4
A second equation lead from (1) is

d 9L . 8L _

ar (o5 26 )= 7Y
which results

. < e av_

A&—(A—C)l})zSmGCOSG'E'Ct,U(pSHIG—é"é“=0- (%)
Also, from the Lagrangean {1) we have the equation:

d _ aL )- oL _

dt ( al;} ay

which gives
A (¥sin28+24 6 sinfcos )+ C(@cosd+ ¢ cos2f - ¥ 8 sin 0 cos 0)
—C931n8(gp+x}fcosf?)-~—@m0 6)

From equations (3), (4), (5) and (6) we obtain the following equations of motion for the

orientation of the figure axis:

o C 2. 18U
] H—wsm&'d;-&slnﬂcosaw +Z R
- C 1 cosf - 1 U
= —3—2 b
V=3 o VOt Tamd oy )

Fundamentally, all we have to do is to solve equations (7) by a numerical integration, This
approach, however, is not practical. The motion of the figure axis contains the well-known
Eulerian motion or free nutation which is a circular oscillation with the period of about one day in
space.

This free nutation is independent of precession and nutation which are a forced motion, there-
fore it is not taken into account in the computation of precession and nutation, Nevertheless, we
would have to solve this motion simultaneously in order to get the forced motion of the figure axis
by performing a numerical integration, in which the step would have to be taken very small

because of the rapidity of the motion,

3. Modification of the equations of motion

We now introduce a modification of the equations of motion {7). First, since the second terms in
the right-hand members of the both equations are of a magnitude of lﬁ/w or 10-7 as compared to
the first terms, we let them included in the first terms. In doing this we give V¥ its average value .

Next, we put
f—;-wsinﬂ—\bsinficosﬂ=P,
C i Teosf
A sin =0
1 aU

_—— = BJ At’

1 3 (o, y;t)
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1 aU
Asin28 ay
Then we have

§=-Py+f,v;0),
V=006 +g(6, ;). (9)

Now we consider 7 and Q to be constant and f(@, ¥, ) and g(8, ; £) functions of ¢ alone, This
approximation may be valid enough though we will not give a mathematically rigorous argument

=g(8, ;9. (3)

here.
Under this assumption, if there were not f{¢) and g(¢} in equations (9), they would have the

following solution:

g=asin(/0Pt+7),

=-V1C g cos (/PO 1+7), (10)

o and v being arbitrary constants,
Guided by these expressions, we assume the following solution of equations (9):

6 =asin (/PO + ) - ég(r)w(r),

§=- VP2 qeos (VPB4 )+ S s+ o), (11)

where p(¢) and (¢} are functions of ¢,
Substitution of (11) into (9) gives

. 1 .
p(fy=-Pq(}+ ) &(2),
. I
i0=2p0) -~ 5 £,
By repeating the same procedure, we obtain as the solution of equations {9),

= asin (/PO 14 9) - 5O+ o D)+ W1Q_2 £() - PJ—Qz Fio+

1/ 1
Qo:cos VPQrty)+p f(f) + (t) ( - g g(B + ... (12)
Integration of the equations gives the following expressmns for the orientation of the figure axis:

Trg O VTCrD- fé s() dt + s S 4 L i g(t) g 1O
V=vo - 5PN+ (3 @O dr+ g(t) f(f) P D (13)

In the right-hand members of these, the first terms are constant and the second terms mean the

=04 -

free nutation, 1t is easily seen that the third terms correspond to precession and the Poisson terms of
nutation if we neglect the small additive terms in P and Q. Then the fourth and following terms
must be the so-called Oppolzer terms of nutation. This can be confirmed directly if we calculate
these terms and compare them with the analytical values for Oppolzer terms which are found in
Kinoshita (1977).

The result is shown in Table 1 for three pairs of terms of nutation which have a greater Oppolzer
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Table 1, Comparison. between numerical and analytical for some Oppolzer terms.

Term Period Poisson 4th 5th 6th Oppol. Anal.
term term term term term value
o A () 0]
(Obliquity) 286 0 70 - g | 586pp
days
cos £2 -6798.4 +92277 -10.04 +0.00 +0.00 -10.0 =100
cos 282 13.661 +885 +59.08 +4.69 +0.31 +64.1 +64.1
cos(24-82) 13.633 +183 +9.95 +0.97 +0.05 +11.0 +11.0
. t t g(t
(Longitude) A oi ‘i:,(Q) - 15 Q) - pg;(Q)z Mopp
sin §2 -6798 4 +172675 -33.91 -0.00 +0.00 =339 339
sin 282 13.661 12041 | +162.10 ¢ +10.81 +0.85 +1738 +173.7
sin (24-£2) 13.633 +343 +33.54 +1.82 +0.18 4+35.5 +35.5

Epoch: 1900.0, Unit: 0.0001",

term, The third column of the table gives Poisson term for each nutation term. Using it, the 4th, 5th
and 6th columns are calculated which correspond to the 4th, Sth and 6th terms in equations (13),
respectively. The 7th column is the sum of these three columns, and gives Oppolzer term. The 8th
column is the value by Kinoshita, All the values are evaluated for the epoch of 1900.0. The
coincidence is satisafetory to 0.00001",

In the following, we only calculate the third and following terms in equations {(13). They
correspond exactly to the analytically given nutation of rigid Earth which constitutes the basis of
the TAU nutation series. In carrying out the integration of the third terms, we no longer consider the
integrands to be functions of ¢ alone but to contain @ and  which are not constant,

4. Perturbing function

Since the fourth and following terms in equations (13) can be calculated easily by numerical

differentiation of the functions f{r) and g(f), we take up only the third terms:
1 al/

Af=- - o
fc:» sin@ {1 —(Ay/Cw)cosd} P
1 AU
Ay=+ - = 4t
J’Cw sind@ (1-2(A0/Ce)cosb) a9 (14)

These are the same as those found in Woolard {1953) if we neglect the small additive terms in the
denominators and they very nearly give precession and Poisson terms of nutation.

U is the perturbing function due to the atfractions of the Moon and the Sun, They are separated
into two parts caused by the respective bodies, that is,

U=U; + Uy,

The two constituents have the same form:
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_3e2m(C-4) 2 = 32m(C-A) g

Vs = 25 2p3

n? §, (15)

where the suffix B means d or @, k is the Gaussian gravitational constant and m, r, z and & are
respectively the mass, the geocentric distance, the z-coordinate and the declination of the body
referred to the equator of the Earth, The units of m and r are the solar mass and the astronomical
unit of distance (2,u.), respectively.

In terms of the ecliptic longitude A and latitude § of the Moon or the Sun, (13) can be expressed

as
_32m(C-4)
B
. where « is the conventional unit in which r of the Moon or the Sun is expressed, The suffix 0

(_%L)a {cosf sin B, +sin @ cos B, sin (Ag - W) } 2, . (16)

assigned to X and f means that they are referred to the ecliptic and mean equinox of J2000.0.

The coordinates of the Moon and the Sun are taken from an abridged trigonometric series for
them developed by Kubo (1980}, The error of the seres is estimated to be 2" in average and 10" at
maximum. The effect of the error to the result will be discussed in Section 6.

We now discuss on the quantity k2m/fwa3 in the coefficients in equations (14), in which w is the
sidereal mean motion of the rotation of the Earth with the value 1299548.204" /day.

In case of the Moon, we take as ¢ the equatorial radius of the Earth a,. Introduce a4 defined by

3 2
g = ,/@(_m@__‘;’mf) = 0.002571881428 a.u., (a7

Rq
where mgand mq are the masses of the Earth and the Moon, respectively, and nq (= 47434.88963"/
day) is the sidereal mean motion of the Moon. Further, we have a relation among g, #, and the
mean distance of the Moon ag:

aq =a/Fy=a,[3422.448"[F, = 6032291182 q,, (18)
F, being a constant whose value is 0.999093142. Hence,

2
kKimg _  aq 2 My . k2(mg + mq)
Witg 3 de mg t+rig wag ?

2
= (60.32291182)3 x 001215056777 x 24

w
= 4617924.822"(day. (19)
In case of the Sun, we take 1 a.u, as a. Introduce a5 defined by
2
2o = s/ Blno ;m,j’ *Ma ) - 1000000036 0., (20)
o

where meis the mass of the Sun and g (= 3548.192807"/day) is the sidereal mean motion of the
Sun. Then,

Kimo oy Mo  Plmo g +mq )

wa3 a’ mg Fmg +myg wa 3

2
= (1.000000036)% x 0.9999969596 x "o
w

= 9,687701648"/day. (21)

Finally, as the common factor in Uy and Uy |, we adopt
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C%‘i = 0.0032739935. (22)

All the numerical values adopted above are coincident with the IAU (1976) system of astro-
nomical constans and are the same as those used in the analytical theory,

5. Integration

In carrying out the inegration of (14), the integrands depend almost only on ¢ and hardly on 8
and s because the changes of these variables are very small. Therefore the integration is almost a
mere calculation of areas rather than usual numerical integration of equations of motion.

The calculation is carried out by the Simpson’s formula for definite integral with a step of 2
hours. In doing this, the perturbing force by the Sun is evaluated at OR every day and interpolated
to every 2 hours, while for the Moon the coordinates are evaluated at O every day and interpolated
to every 2 hours and then the force is calculated. Differences up to the fourth order are taken into
consideration in the interpolation, The update of the values # and ¥ is made once a day since the
rate of their change is very slow. In doing this, the geodesic precession 1,.927(Jc or 0.0000526" /day
is compulsively added to .

The initial values adopted in the integration are as follows:

t, = 1D 2446066.5 or Jan. 1, 1985 0P DT

(Ty= - 0.1499931553),

0; =23° 26" 21.448" + 4.849",

¥, = 180° - 5038.7784* T; + 1.07259" 7% + 0.001147" T3 + 13.715", (23)

where T is measured from J2000.0 in the unit of Julian century. The values of §; and {; are chosen
s0 that they coincide with the analytical values within 0.001”, but it should be noticed that
adoption of a slightly different value for &, or J/; only results a constant bias of the same amount to

all the values of 8 or { throughout the period to be integrated,

6. Result and discussion

The integration has been carried out for a period of about 18,000 days. In the following
discussion, ¢ is used in place of § and 180°-y in the preceding sections is replaced by W, according
to the conventional notations used in precession and nutation theory,

As mentioned in Section 2, the nutation obtained in the fixed reference frame 2y, and &g,
must be reduced to the ecliptic and mean equinox of date, The formulae for the reduction are

7 sin
sinZe
be = Ogy ~qrsin [T &gg, 24

A = My + weos [T cot e g, +

ED)

where
7 =47,0029” T - 0.03302" T2 + 0,000060" T3 (in radian),
I =5° 07 25.018" -4168.9695" T+ 1,03723" T2 + 0.001147" T3. (25)
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We first examine the short periodic terms of nutation. We compare our result with the analytical
one for a period of 250 days beginning from JD 2446066.5, In Figure 2 the differences between our
values (denoted by N: numerical) and analytical values (denoted by A) for Ay and Ae are shown,
Figure 3 is their power spectra. The constant biases of about 1 milliarcsecond in &y , and dey
are meaningless because of the reason mentioned in Section 5. As far as short periodic region of
nutation is concemned, the differences between N and A in &y and 2 are reasonable considering the
precision of the analytical computation,

When we proceed to precession and long periodic region of nutation, however, we see a fairly
different aspect. Figure 4 shows the Ayy » and dey_, for a period from JD 2445106.5 to JD
2462706.5. In the grapfs, one dot is the average for 32 days. Figure 5 is their power spectra.

In &y 4 all the analytical values of precession and nutation have been subtracted from the
numerical solution. Therefore it would be a horizontal straight line if both 2y and Ay, were

0.001"
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Figure 2. Ay s and Aey_p for JD 2446066.5 to JD 2446315.5.
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Figure 3. Power spectra of Ay _, and Aey_, for short periodic region.
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correct. In 2ey_,, however, only the analytical nutation has been subtracted from the numerical
result. Therefore from the graph of Aey_, should be further subtracted the analytical precession,

ie.,
+0.05127” T2 - 0.007726" T3, (26)
An analysis of &y 4 and 2ey_, where the theoretical precession (26) in fey o has been

removed, gives the following expressions for the differences in precession and long periodic terms

of nutation:

Sy o4 =+0.01517 T -0,00227 T2 +0.0006" sin (§2 — 26°) + 0.0013" sin (26) - 29,
(£25) (£149)

0.001"
A z,b N—A aron
6= Rl I
-~ . b [ £
] e T i heArld
2 G ' - ~ o
1 : e T
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-2 -“""w"u":
0.001" A&y,
2 T
- ._f\.“"‘-"""'w
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Figure 4. A Y. and Aey.a for IJD 2445106.5 to ID 2462706.5,
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Figure 5. Power spectra of Ayy_, and Aey_, for long periodic region.
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Aey_p = -0.0003" T - 0,0067" T2 + 0.0008" cos (£ + 26”) - 0.0003" cos (22 + 37°), 27
(x12) (+62)

the first and the second terms being for precession and the third and the fourth terms for nutation
in each equation. £2 is the longitude of the ascending node of the Moon’s orbit on the ecliptic.

Among the four terms for precession in (27), only the linear term +0.0151" T in &4y 5 s
significant judging from the mean errors. Since this term is to be determined by observation, the
difference is not important physically. However, it must not exist because the same constants are
adopted in both the numerical and analytical solutions. All the terms for nutation in (27) are
significant. Among them the terms with the argument of 282 are well coincident with the result
Kubo (1982) obtained analytically:

5 (Ay) =+ 0.0012 sin 282,
§ (Be) = = 0.0002"" cos 28 (28)

As for the remaining two terms of nutation +0.0006" sin (£ ~26°) and +0.0008"" cos {2 +26°),
as well as +0.0151” T in precession, we can not tell in which side N or A there are errors. The
errors arizing from the modification of the equations of motion and from the integration in our
solution are estimated to be small enough, The largest source of the error in our calculation would
be in the low precision of the coordinates of the Moon and the Sun we have adopted. Especially,
some long periodic terms which are missing because of their smallness in the trigonometric series
for the Moon might be questionable, although the effect to our result does not seem so large as
0.0002".

However, it is desirable to follow the present scheme once again, using precise ephemerides of the

Moon and the Sun and, if possible, applying a more rigorous formula for numerical calculation.
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