Estimation of the Positions of the First Order Control Points from Global Analysis of Ajisai and LAGEOS SLR Data[†]

Arata SENGOKU*

Abstract

The positions of 13 first order control points occupied by the HTLRS were estimated from global analysis of Ajisai and LAGEOS SLR data by using the University of Texas orbit analysis system, UTOPIA. The multi-arc strategy was applied in the analysis to reduce orbit error. The station coordinates except for the HTLRS were fixed to the SSC (CSR) 94 L 01 r 02. Comparison between Ajisai and LAGEOS SLR results suggests that accuracy of estimated station coordinates of the HTLRS in a global geocentric terrestrial reference frame be about 3-4 cm. The accuracy of the baseline length between the HTLRS and Simosato is about 2 cm. The results can be utilized for other geodetic studies, such as GPS local campaign or geoidal height estimation. Key words : SLR, Ajisai, LAGEOS, first order control points, UTOPIA.

1. Introduction

The Hydrographic Department of Japan completed a transportable satellite laser ranging (SLR) station, the HTLRS, in 1987 (Sasaki, 1988a). The primary purpose of the HTLRS is to determine the positions of selected islands, called the first order control points (Fig. 1), for the national geodetic control. The first observation of the HTLRS was carried out at Titi Sima from January to March 1988. Until the end of 1996, the HTLRS occupied fourteen sites. In 1996, the second occupation by the HTLRS started at Titi Sima, which is expected to detect variation of baseline vectors due to regional plate motion or local crustal deformation.

The positions of the first order control points have been determined by Ajisai and LAGEOS SLR data by using a software, called HYDRANGEA, developed by the Hydrographic Department (Sasaki, 1984, Sengoku, 1986, Sasaki, 1988b). The HYDRANGEA estimates dynamical parameters such as a satellite state vector at an epoch as well as station coordinates. A batch estimation procedure based on the algorithm is used in the software. One of the major limitations of HYDRANGEA is that all the parameters are global and can be estimated only once in the whole arc. Hence, it is not a satisfactory tool for low orbiting satellites, such as Ajisai or Starlette, whose orbits have to be adjusted in shorter time intervals because of changes in forces which can not be simply modeled.

A very short arc analysis method, called SPORT (Successive Passes Orbit Revising Technique), was developed to improve the positioning accuracy of SLR geodetic results (Sengoku and Kubo, 1986). In SPORT, only two successive passes simultaneously observed by both the HTLRS and Simosato are used to determine the baselines. The estimated parameters are the initial satellite position and veloc-

[†] Received 1996 October 31st; accepted 1997 February 18th. * 航法測地課 Geodesy and Geophysics Division.

Fig. 1 SLR stations around Japan. Stations except for Simosato were occupied by the HTLRS.

ity at the epoch and the coordinates of the HTLRS. A relative positioning strategy is used and the estimated baseline length is known to be less affected by errors in the applied force models. The positioning results of the HTLRS from Ajisai SLR data obtained by SPORT are found in Sasaki (1990), Sengoku (1991), Fukushima et al. (1991), Sengoku et al. (1992), Sengoku et al. (1993), Sengoku et al. (1994), Suzuki and Fujita (1995), and Fujita (1995). Global LAGEOS data were also analyzed in five-day arcs and the mean positions of the first order control points were estimated by a statistical procedure. Comparison between these two results, computed from Ajisai and LAGEOS SLR data, shows good agreement of baseline length within a few cm, but more than 10 cm discrepancies exist in the absolute rectangular coordinates (Sengoku, 1991). This discrepancy might be caused by inaccuracy in the Ajisai SPORT analysis rather than LAGEOS five-day arcs because of the small amount of

Ajisai SLR data utilized in the SPORT analysis. Consequently, geodetic results using global Ajisai data are required since LAGEOS data are not available at some HTLRS sites.

2. UTOPIA analysis

The positions of the HTLRS were determined by the University of Texas orbit analysis system, UTOPIA (McMillan, 1973, Tapley et al., 1985). This data analysis system implements a weighted least square batch procedure. The integration step size for Ajisai was 30 seconds. The UTOPIA used in this study was implemented on a CRAY supercomputer at the University of Texas Center for High Performance Computing.

Models and reference frames

The force and measurement models adopted in the analysis are shown in Table 1.

Adopted terrestrial reference frame was SSC (CSR) 94 L 01 r 02, which was determined by

model and value	reference
JGM-3 (70x70)	Tapley et al., 1994
to third and fourth degree	Eanes and watkins, 1994
Cheng et al. (1993)	Cheng et al., 1993
398600.4415 km ³ /s ²	IERS standards, 1992*
IERS Standards, one body	Ries et al., 1988
DTM	Barlier et al., 1978
Anisotropic reflection model	Sengoku et al., 1995
UTOPIA model	Knocke et al., 1987
UTOPIA model	Knocke et al., 1987
IERS Standards	Marini and Murray, 1980
1.01m	Sasaki and Hashimoto, 1987
IERS Standards effect)	IERS standards, 1992*
IERS Standards	Holdridge, 1967
	model and value JGM-3 (70x70) IERS Standards, expanded to third and fourth degree Cheng et al. (1993) 398600.4415 km ³ /s ² IERS Standards, one body DTM Anisotropic reflection model UTOPIA model UTOPIA model IERS Standards 1.01m IERS Standards effect) IERS Standards

Table 1. Adopted force models and measurement models for Ajisai orbit analysis

* IERS standards (1992) was edited by McCarthy.

UTOPIA from LAGEOS SLR data (Eanes, private communication, 1994). The applied values of the position and velocity of Simosato at the epoch (MJD=47161) in a geocentric reference frame were,

(Simosato)

 $X = -3822388.341 \,(\mathrm{m}),$

- Y = 3699363.588,
- Z = 3507573.175,
- $v_{X} = 0.0023 \,(\mathrm{m/yr}),$
- $v_{Y} = 0.0057$,
- $v_{z} = -0.0036$.

Permanent tide corrections to the station coordinates were not applied in the solution, that is, the estimated positions are not the true mean.

The EOP's were also fixed to the values of EOP (CSR) 94 L 01 r 02 (Eanes, private communication, 1994), which are consistent with the station coordinate set.

Analysis strategy for Ajisai

Generally, the quality of lower satellites'

orbits, like Ajisai's, usually suffers from errors in the geopotential and atmospheric density models. Therefore, appropriate solution strategies are required to obtain an Ajisai solution that has accuracy comparable to LAGEOS.

The multi-arc strategy was applied in the analysis: the whole arc of Ajisai for a first order control point, typically a few months, was divided into 3-day arcs to improve orbit accuracy. The global parameters, which were estimated once for the entire arc, were the position of the HTLRS, the radiation pressure coefficient, and ocean tide coefficients for M_{M} , M_F , O_1 , M_2 , S_2 , and K_2 . From the comparison with LAGEOS results, it was found that tide parameters can accommodate some portion of errors in the applied force models. It should be notes that all the stations, except for the HTLRS, were fixed to SSC (CSR) 94 L 01 r 02. Other parameters were estimated in every 3-day arc. Empirical periodic accelerations in the radial and normal directions were

introduced whose periods correspond to the orbital period of Ajisai. This type of empirical acceleration is very effective in removing orbit errors. The initial state vector of the satellite, the radial and normal components of once per revolution accelerations, and the Earth orientation parameters (EOP), x_p and y_p , were estimated every three days. The author estimated the atmospheric drag coefficient, *Cd*, once a day.

Analysis strategy for LAGEOS

The integration step size for LAGEOS was 300 seconds. The length of data arc for LAGEOS was 5days. The estimated parameters were also the same except for an along-track empirical acceleration instead of Cd.

3. Data description

Table 2 summarizes the used SLR data of the HTLRS. Both Ajisai and LAGEOS SLR data were analyzed though LAGEOS data were not always available in the HTLRS sites. The UTOPIA analysis was carried out for the

site	Aiisai		L		
	pass	NP*	pass	NP*	
Titi Sima	34	420	11	234	
Isigaki Sima	27	320	20	521	
Marcus	43	438	29	602	
Okinawa	44	740	8	139	
Tusima	50	694	7	127	
Oki	27	220			
Minamidaito	12	144			
Tokati	22	263			
Iwo Sima	25	375	8	104	
Wakkanai	24	386			
Hatijo Sima	19	200			
Makura Saki	11	107			
Oga	12	131			

Table 2. Data summary of the HTLRS

* NP: normal point

Table 3. The positions of the HTLRS by the UTOPIA multi-arc analysis of Ajisai SLR data

site	epoch (MJD)	duration (day)	<i>X</i> (m)	Y (m)	Z (m)
Titi Sima	47202	42	-4491072.430	3481527.879	2887391.822
Isigaki Sima	47383	42	-3265753.817	4810000.887	2614265.484
Marcus	47566	57	-5227190.038	2551882.420	2607609.819
Okinawa	47742	50	-3505323.671	4532740.995	2792253.144
Tusima	47825	42	-3344473.902	4087076.260	3564512.471
Oki	48169	33	-3536204.454	3749974.199	3744418.399
Minamidaito	48278	21	-3786331.491	4320316.234	2761963.938
Tokati	48524	60	-3788457.853	2820917.933	4271798.293
Iwo Sima	48676	51	-4522801.792	3622640.333	2656232.066
Wakkanai	48883	48	-3522929.074	2779243.452	4517637.387
Hatijo Sima	49041	36	-4087880.274	3451764.270	3460902.388
Makura Saki	49402	42	-3528449.709	4162495.194	3291166.921
Oga	49588	21	-3731492.582	3164405.358	4078228.577
			97		

period when the HTLRS was operational at the first order control points, which was a few months for a site.

4. Estimation of the positions of the first order control points

Table 3 shows the estimated coordinates of thirteen first order control points from Ajisai SLR data.

Table 4 gives the LAGEOS results obtained by using the same force/measurement models

and reference frames as the Ajisai analysis except for surface force models and degree/ order of the geopotential field which were truncated at 20 in LAGEOS analysis.

5. Accuracy of the positions of the HTLRS estimated by UTOPIA multi-arc analysis

Table 5 shows the difference between the Ajisai and LAGEOS UTOPIA results for the sites where LAGEOS tracking data were available, which implies the accuracy of Ajisai, or

Table 4. The positions of the HTLRS by the UTOPIA multi-arc analysis of LAGEOS SLR data

site	epoch (MJD)	duration (day)	<i>X</i> (m)	<i>Y</i> (m)	Z (m)
Titi Sima	47202	50	-4491072.458	3481527.892	2887391.817
Isigaki Sima	47383	50	-3265753.804	4810000.907	2614265.510
Marcus	47566	60	-5227190.049	2551882.424	2607609.813
Okinawa	47742	50	-3505323.678	4532741.002	2792253.105
Tusima	47825	35	-3344473.901	4087076.249	3564512.430
Iwo Sima	48676	45	-4522801.761	3622640.492	2656231.997

Table 5. Differences between the Ajisai and LAGEOS UTOPIA results (baseline length and rectangular coordinates)

site	baseline length (m)	<i>∆X</i> (m)	ΔY (m)	<i>∆Z</i> (m)	D* (m)
Titi Sima	0.020	-0.028	0.013	-0.005	0.031
Isigaki Sima	0.005	0.013	0.020	0.026	0.035
Marcus	0.008	-0.011	0.003	-0.005	0.013
Okinawa	0.028	-0.008	0.007	-0.039	0.040
Tusima	-0.011	0.000	-0.011	-0.041	0.042
Iwo Sima	0.023	0.031	0.159	-0.069	0.176

* $D = \sqrt{\Delta X^2 + \Delta Y^2 + \Delta Z^2}$

(geodetic coordinates)

site	latitude (")	longitude (")	horizontal (m)	height (m)	
Titi Sima	-0.0006	0.0003	0.019	0.024	
Isigaki Sima	0.0006	-0.0008	0.029	0.018	
Marcus	-0.0004	0.0001	0.011	0.007	
Okinawa	-0.0013	0.0001	0.040	-0.009	
Tusima	-0.0009	0.0003	0.030	-0.030	
Iwo Sima	-0.0031	-0.0051	0.172	0.039	

LAGEOS, SLR analysis, though the difference depends on analysis softwares and on the parameters estimated in the analysis. The baseline length is the straight line distance between the HTLRS and Simosato.

From Table 5, the accuracy of the estimated positions of the HTLRS in global geocentric terrestrial reference frame is inferred to be about 3-4 cm except for Iwo Sima. The accuracy of the HTLRS horizontal position is about 3cm and smaller for the vertical component. The accuracy of the baseline length between the HTLRS and Simosato is 2 cm, which is better than the other components.

6. Conclusion

It should be noted that LAGEOS SLR data obtained by the HTLRS is not abundant due to its low system size and the difference may be caused by the insufficient LAGEOS data. At Iwo Sima, the difference in horizontal position is large though differences in height and baseline length are comparable to other sites. It might be due to insufficient sky coverage of the LAGEOS satellite or problems in LAGEOS data quality of the HTLRS.

Table 5 suggests that the range bias of the HTLRS is stable and independent of satellite, if any, which means the height determined by the HTLRS is reliable. The range bias of Simosato SLR station is assumed 7 cm in the analysis. Analysis of colocation observation between the HTLRS and other SLR station is required.

The positions of the sites where the HTLRS was deployed are precisely determined by using Ajisai SLR data in a geocentric reference frame. These sites can be utilized as fiducial points for other geodetic studies, such as GPS local campaign or geoidal height estimation. The HTLRS will occupy several sites from 1996 in order to detect velocities of the sites, which will reveal tectonic motion in Japanese territory.

Acknowledgments

The author especially wishes to thank kind support and helpful suggestions of Dr. Mingkang Cheng and Prof. Robert E. Schutz. He also expresses his gratitude to the members of the Simosato Hydrographic Observatory and the Geodesy and Geophysics Division of the Hydrographic Department of Japan for their long-standing effort to track Ajisai since its launch.

references

- Barlier, R., C. Berger, J. Falin, G. Kockarts, and G. Thuillier: Atmospheric model based on satellite drag data, Ann. Geophys., 34, 9, (1978).
- Cheng, M. K., R. J. Eanes, C. K. Shum, B. E. Schutz and B. D. Tapley: Ocean tide model for satellite orbit determination, *The 12th International Symposium on Earth Tides*, Beijing, China, Aug. 4, (1993).
- Eanes, R. J., and M. M. Watkins: Earth orientation and site coordinates from the Center for Space Research Solution, Earth orientation, reference frames and atmospheric excitation functions submitted for the 1993 IERS Annual report, *IERS Tech. Note 17*, Central Bureau of IERS, Observatoire de Paris, Paris, France, (1994).
- Fujita, M.: Re-computation of positionings of the first order control points in the marine geodetic control network, *Data Rep. of Hydrogr. Obs., Series of Satellite*

-58-

Geodesy, 8, 83, (1995).

- Fukushima, T., T. Uchiyama, E. Nishimura: Positioning of the first order control points in the marine geodetic control network in 1988, *Data Rep. of Hydrogr. Obs., Series of Satellite Geodesy*, 4, 60, (1991).
- Holdridge, D. B.: An Alternate Expression for Light Time Using General Relativity, JPL Space Program Summary 37-48,
 III, 2-4, Jet Propulsion Laboratory, NASA, Pasadena, CA, USA, (1967).
- Knocke, P., and J. C. Ries: Earth radiation pressure effects on satellites, Center for Space Research, The University of Texas at Austin, Austin TX, USA, (1987).
- Marini, J. W., and C. W. Murray, Jr.: Correction of laser range tracking data for atmospheric refraction at elevation above 10 degrees, *Rep.* X-591-73-351, Goddard Space Flight Center, NASA, Greenbelt, MD, November 1973, (1973).
- McCarthy, D. D. ed.: IERS Standards (1992), Central Bureau of IERS, Observatoire de Paris, Paris, France, (1992).
- McMillan, J. D.: Mathematical Specifications of the University of Texas Orbit Processor and Application to the Laser Observations of the Beacon Explorer Satellite, AMRL 1052, Applied Mechanics Laboratory, The University of Texas at Austin, Austin, TX, USA, (1973).
- Ries, J. C., C. Huang, and M. M. Watkins: Effect of General Relativity on a Near-Earth Satellite in the Geocentric and Barycentric Reference Frames, *Phys. Rev. Let.*, **61**, 903, (1988).
- Sasaki, M.: Algorithm for determination of satellite orbit and geodetic parameters

by using laser ranging data and preliminary results of its application, *Rep. of Hydrogr. Res.*, **19**, 107, (1984).

- Sasaki, M. and H. Hashimoto: Launch and Observation Program of the Experimental Geodetic Satellite of Japan, *IEEE Transactions on Geoscience and Remote Sensing, GE-25*, 5, 526, (1987).
- Sasaki, M.: Completion of a transportable SLR station of the Hydrographic Department, Data Report of Hydrogr. Obs., Series of Satellite Geodesy, 1, 59, (1988a).
- Sasaki, M.: Algorithm for determination of the earth rotation parameters and geodetic coordinates by using satellite laser ranging data, *Rep. of Hydrogr. Res.*, 24, 59, (1988b).
- Sasaki, M.: Study of the earth's dynamics by means of satellite laser ranging techniques, *Rep. Hydrogr. Res.*, 26, 99, (1990).
- Sengoku, A.: High Speed Estimation of Geopotential, Proceedings of the 19th symposium on "Celestial Mechanics", eds., Kinoshita, H. and H. Nakai, 107, (1986). (in Japanese)
- Sengoku, A. and Y. Kubo: Simulations on SLR translocation method, Proceedings of Japanese Symposium on Earth Rotation, Astrometry and Geodesy, I. Okamoto and T. Hara (eds.), Tokyo, 19, (1986). (in Japanese)
- Sengoku, A.: Determination of the precise positions of Titi Sima and Isigaki Sima by Satellite Laser Ranging, *Rep. of Hydrogr. Res.*, 27, 181, (1991).
- Sengoku, A., T. Uchiyama, E. Nishimura: Positioning of the first order control points in the marine geodetic control network in 1989, *Data Rep. of Hydrogr.*

Obs., Series of Satellite Geodesy, 5, 43, (1992).

- Sengoku, A., T. Uchiyama, E. Nishimura: Positioning of the first order control points (Oki Syoto and Minami Daito Sima) in the marine geodetic control network, Data Rep. of Hydrogr. Obs., Series of Satellite Geodesy, 6, 45, (1993).
- Sengoku, A. and T. Uchiyama, E. Nishimura: Positioning of the first order control points (Tokati and Iwo Sima) in the marine geodetic control network, *Data Rep. of Hydrogr. Obs., Series of Satellite Geodesy*, 7, 35, (1994).
- Sengoku, A., M. Cheng, and B. E. Schutz: Anisotropic Reflection Effect on Satellite, Ajisai, *Journal of Geodesy*, 70, 140, (1995).
- Suzuki, A. and M. Fujita: Positioning of the first order control points (Wakkanai and Hatizyo Sima) in the marine geodetic control network, *Data Rep. of Hydrogr. Obs., Series of Satellite Geodesy*, 8, 34, (1995).
- Tapley, B. D., B. E. Schutz, and R. J. Eanes: Station Coordinates, Baselines, and Earth Rotation From LAGEOS Laser Ranging : 1976-1984, J. Geophys. Res.,

90, 9235–9248, (1985).

Tapley, B. D., M. M. Watkins, J. C. Ries, G. W. Davis, R. J. Eanes, S. R. Poole, H. J. Rim, B. E. Schutz, C. K. Shum, R. S. Nerem, F. J. Lerch. E. Pavlis, S. M. Klosko, N. K. Pavlis, and R. G. Williamson: The JGM-3 Gravity Model, XIX General Assembly of the European Geophysical Society, Grenoble, France, April 25-29, (1994).

あじさいとラジオスの SLR グローバル解析によ る一次基準点位置決定(要旨)

仙石 新

水路部が可搬式レーザー測距装置(HTLRS)に よって観測を行った13の一次基準点について,測 地衛星「あじさい」と「ラジオス」のレーザー測 距(SLR)データをテキサス大学の軌道解析ソフ トウエア「UTOPIA」を用いて解析し,一次基準 点の位置をグローバルな地球基準座標系に準拠し て決定した。多アーク法を用い,軌道誤差の低減 を図った。HTLRS-1以外の観測点の座標は,ラ ジオスのSLR 解析により推定された SSC(CSR) 94L01r02に固定した。あじさいとラジオスの成果 の比較から,HTLRS-1の地心位置の決定確度は 3-4 cmであることが示された。下里とHTLRS -1の基線長の決定確度は約2 cmであった。本成果 を用いることにより,GPSによる測量やジオイド 決定などの精度向上が図れる。