海洋情報部研究報告 第 58 号 令和 2 年 3 月 19 日 REPORT OF HYDROGRAPHIC AND OCEANOGRAPHIC RESEARCHES No.58 March 2020

欠測の多い潮位データの最小二乗法による調和分解

土屋 主税*

Harmonic analysis of tidal data with missing values based on the least squares method[†]

Chikara TSUCHIYA*

Abstract

Principally, if the observed period is one year, a set of 60 harmonic constants can be analyzed using hourly tidal data with a large amount of missing values by the least squares method of tidal harmonic analysis. In this paper, the response of the harmonic constants to the amount of missing values using tidal observation data at a tide gauge is investigated. It is shown that harmonic constants are robust in the case of sporadic missing values, of which the proportion is less than 80% of the observations. It is also shown that harmonic constants are robust in the case of continuous missing values, of which the proportion is less than 30% of the observations.

1 はじめに

調和分解は、1 地点の水位又は流速の1 時間間 隔時系列から、あらかじめ潮汐由来とわかってい る周期の振動(分潮)の振幅と位相を求める解析 である.各分潮の位相は、平衡潮汐論により求め られる各成分の位相からのずれで表され、遅角と 呼ばれる(海上保安庁、1992).調和分解によっ て得られる各分潮の振幅と遅角のセットは調和定 数と呼ばれる.

海上保安庁では、1年間の時系列データの調和 分解に、最小二乗法を用いている.最小二乗法に よる調和分解は、原理的に、1時間間隔時系列 データに欠測があっても、調和定数を算出できる (彦坂・他、1966).調和分解には、観測データを 品質管理の上、2時間程度のローパスフィルター で平滑化し、1時間ごとのデータとした時系列を 用いている.従来の潮汐観測で欠測があった場合 は,観測方法の見直し等を行い欠測の少ないデー タの取得に努めるので,欠測の出現数と調和定数 の信頼性の関係を調べる必要はなかった.

天文最低低潮面(Lowest Astronomical Tide: LAT)は、想定される最も低い潮汐基準面であり、 1年間以上の観測から得られる調和定数を用いた 19年間の推算値のうち最も低い水位として算出 される(佐藤・他、2017). 日本沿岸の常設験潮 所等の観測データを用いた LAT は、現在潮汐表 に掲載されている(海上保安庁、2019). 常設験 潮所は主に港湾内に設置されており、外洋に面し た自然海岸付近や離島における LAT の算出には、 自律型海洋観測装置(Autonomous Ocean Vehicle: AOV)等の利用が検討されている(土屋・他、 2019).

[†] Received September 13, 2019; Accepted November 8, 2019

^{*} 環境調査課 Environmental and Oceanographic Research Division

AOV は、米国製のウェーブグライダー (Wave glider) に, GNSS アンテナなど各種観測機器を 搭載しており、リアルタイムの洋上現場観測を長 期間実施している(西村・他, 2017; 松永・他, 2018). AOV の観測機器は、ソーラーパネルで発 電した電力を充電したバッテリーから給電されて いるが、荒天が継続し、バッテリー残量が少なく なると、AOVの管制に必要な電力を確保するた め、観測を中断することがある。AOV 製造元に よれば、バッテリー残量の目安は400Wである。 また、台風直下の強風や高波下では AOV 本体や 観測機器がダメージを受けることがあるため、非 常に激しい荒天が予想される場合は、事前に観測 海域を離れることがある.これらのことから、 AOV で観測した潮位データには、まとまった欠 測が多く含まれる.

バッテリー残量の低下の実例としては,2016 年9月から2017年2月に奄美大島西方で観測し た際,900 Wのバッテリーを搭載していたが,5 回程度400 Wを4,5日間下回っている(松永・ 他,2018).また,冬季の日本海では,晴天がな い日が1か月程度続くことも考えられる.強風・ 高波の事例として,2016年9月に波照間島南方 で観測した例では,AOV は台風のすぐ北方にと どまって観測していたが,3mを超える波高が約 4日間継続している(松永・他,2018).台風か ら避航する場合,観測海域から数+km以上離れ た島影に移動する必要があるため,観測海域に戻 るまで数週間かかることも考えられる.

このように,現場海域の状況によっては,数日 から数か月程度 AOV による潮位観測値が得られ ないことがある.これは前述の観測データ品質の 悪化によるものではなく,また,外洋の貴重な現 場観測データであるため,欠測があっても調和分 解を行うことを検討している.

ここで、時系列データに含まれる欠測がどの程 度の長さまでなら、得られた調和定数が信頼でき るといえるか考えたい.この問いに答えるため、 本稿では、もともと観測データが揃っている常設 験潮所の潮位データを用いて、任意の時間を欠測 とし, 欠測期間の長さに対する調和定数の応答を 調べた.

2 欠測期間の設計

前述の AOV の観測中断の期間の例を考慮して, 欠測期間を設計する.まず,欠測の出現は1か月 程度と仮定し,この1か月程度の欠測を複数回設 定することとした.欠測の現れ方には,一時的な 荒天と回復を模した間欠的な欠測のパターンと, 冬季の曇天・雨天が途切れることなく現れて長期 間観測できない状態を模した連続的な欠測の二パ ターンを考えた.

欠測データ数の全データ数に対する割合は, 10%から80%まで10%刻みとした(Fig. 1).間 欠的な欠測のパターンは,10%の欠測が複数回起 こるように設計する.10%の欠測の開始時刻を, なるべく均等に割り振る.観測全期間をまず4つ の小期間に分割し,それぞれの小期間の開始に 2%,終了に1%必ず観測データが残るようにす る.すると,80%の欠測の場合,ひとつの小期間 に2回の10%の欠測を入れることができる.こ の場合,それぞれの小期間は,2%の観測,10% の欠測,2%の観測,10%の欠測,1%の観測とい う順に欠測が現れることになる.10%の欠測の場 合は,最初の小期間の最初の欠測のみとし,20% の欠測の場合は,最初の小期間の最初の欠測と,

Fig. 1. The setting of missing time, defined by the ratio between the patterns of sporadic and continuous missing cases.

図1. 間欠的な欠測のパターンと連続的な欠測のパ ターンの欠測の割合ごとの欠測時刻の設定.

- Table 1. The setting of missing time, defined by the ratio between the patterns of sporadic and continuous missing cases.
- 表1. 間欠的な欠測のパターンと連続的な欠測のパ ターンの欠測の割合ごとの欠測時刻の設定.

間欠的な欠測												
欠測の割合	開始%	開始時刻	終了時刻	総時間	開始日時	終了日時						
10%~80%	2%	178	1063	886	2015年1月8日 9:00	2015年2月14日 6:00						
50%~80%	14%	1241	2125	1771	2015年2月21日 16:00	2015年3月30日 12:00						
30%~80%	27%	2392	3277	2657	2015年4月10日 15:00	2015年5月17日 12:00						
70%~80%	39%	3455	4339	3542	2015年5月24日 22:00	2015年6月30日 18:00						
20%~80%	52%	4606	5491	4428	2015年7月11日 21:00	2015年8月17日 18:00						
60%~80%	64%	5669	6554	5314	2015年8月25日 4:00	2015年10月1日 1:00						
40%~80%	77%	6820	7704	6199	2015年10月12日 3:00	2015年11月17日 23:00						
80%のみ	89%	7883	8768	7085	2015年11月25日 10:00	2016年1月1日 7:00						

	連続的な欠測												
欠測の割合	開始%	開始時刻	終了時刻	総時間	開始日時	終了日時							
10%	2%	178	1063	886	2015年1月8日 9:00	2015年2月14日 6:00							
20%	2%	178	1948	1771	2015年1月8日 9:00	2015年3月23日 3:00							
30%	2%	178	2834	2657	2015年1月8日 9:00	2015年4月29日 1:00							
40%	2%	178	3719	3542	2015年1月8日 9:00	2015年6月4日 22:00							
50%	2%	178	4605	4428	2015年1月8日 9:00	2015年7月11日 20:00							
60%	2%	178	5491	5314	2015年1月8日 9:00	2015年8月17日 18:00							
70%	2%	178	6376	6199	2015年1月8日 9:00	2015年9月23日 15:00							
80%	2%	178	7262	7085	2015年1月8日 9:00	2015年10月30日 13:00							

3つ目の小期間の最初の欠測があるものとする. Fig. 1 に示すように,4つの小期間の最初に欠測 を設定した後,50%以降は,各小期間の2番目に 欠測を設定していく(Table 1).

連続した欠測のパターンは、観測開始から全期 間の2%(177時間)は観測できたとして,178 時間目から欠測が起こるとする. 10% (885.6 時 間)の欠測を想定する場合,178時間目から1063 時間目を欠測とし,886時間分の欠測を作る. 1064時間目から観測終了までは元のデータを残 す. 20%の欠測を想定する場合は, 178時間目か ら1948時間目までを欠測とすることで、1771時 間分の欠測を作る. 30%から80%についても, 欠測開始を178時間目とし、そこからまとめて欠 測させる (Table 1). 連続的な欠測のパターンで は、のちに述べるように、欠測の割合のわずかな 増加に対し調和定数が大きく変動するため、これ とは別に、観測開始から178時間目以降、欠測を 設定し、欠測の割合を1%ごとに増加させて同様 の解析を行った.

3 調和分解における最小二乗法について

AOVの潮位データ解析には、調和分解以外に もいくつかの処理を行うため、すべての処理を Python で記述したプログラムを新たに作成して いる(土屋・他, 2019).従来の海洋情報部にお ける調和分解は、5年ごとの調和定数更新用の FORTRAN プログラムと、1年間の調和分解を含 む各種潮汐・潮流データ解析用の FORTRAN プ ログラムを BASIC に移行し Windows 上で動作す るようにした沿岸海象データ処理プログラム(最 新版はバージョン 5.2, 宗田・福島、1995)の機 能の一部がある.これらの調和分解プログラムで は、短期調和分解の一部を除き最小二乗法が用い られている.

毎時tの潮汐観測値H(t)は、潮汐の推算値 $\tilde{H}(t)$ と誤差 $\varepsilon(t)$ を用いて次のようにあらわさ れる.

$$H(t) = \tilde{H}(t) + \epsilon(t) = A_0 + \sum_{i=1}^{M} A_i f_i \cos(\omega_i t + V_i + u_i - \kappa_i) + \epsilon(t)$$
$$= A_0 + \sum_{i=1}^{M} \{a_i f_i \cos(\omega_i t + V_i + u_i) + b_i f_i \sin(\omega_i t + V_i + u_i)\} + \epsilon(t)$$
$$= \tilde{T} \quad (1)$$

ここで、添え字*i*は各分潮を表し、 ω_{i} , A_{i} , κ_{i} はそれぞれ各分潮の角速度,振幅,遅角である. A₀は平均値に対応する.太陰の昇降点の18.6年 の周期変化は、各分潮の振幅、遅角の補正項fiと u_iで表し,通常,1年間ごとに変化する値として, 1年の中日の値を計算して用いる. 天文引数 V は平衡潮汐論により求められる各成分の位相であ り,1年の初日の値を用いることで,1月1日0 時における時刻 tを0としている(海上保安庁, 1992). コサイン, サインの係数 *a_i*, *b_i*はそれぞ $n_{a_i} = A_i \cos(\kappa_i), b_i = A_i \sin(\kappa_i)$ である. 調和分 解は, N 個の観測値からA₀, A_i, κ_iの計2M+1 個の未知数を求めることに対応する. その際, 誤 差εの二乗和を最小とする方法を、最小二乗法に よる調和分解と呼んでいる. 誤差の二乗和が最小 となるとき,

$$\frac{\partial}{\partial A_0} \sum_t (\varepsilon(t))^2 = 0$$
$$\frac{\partial}{\partial a_i} \sum_t (\varepsilon(t))^2 = 0$$
$$\frac{\partial}{\partial b_i} \sum_t (\varepsilon(t))^2 = 0$$

が成り立つ.式の簡略化のため、*V_i*+*u_i*を*c_i*と置 次のように行列形式で記述できる(小田巻, くと、未知数を求める 2M+1本の連立方程式は, 1981).

$$\left| \begin{array}{cccc} N & \sum_{t} f_{1} \cos(\omega_{t}t+c_{1}) & \sum_{t} f_{2} \cos(\omega_{2}t+c_{2}) & \cdots & \sum_{t} f_{1} \sin(\omega_{t}t+c_{1}) & \cdots \\ \sum_{t} f_{1} \cos(\omega_{t}t+c_{1}) & \sum_{t} f_{1} \cos(\omega_{t}t+c_{1}) & \sum_{t} f_{2} \cos(\omega_{2}t+c_{2}) & \sum_{t} f_{1} \cos(\omega_{t}t+c_{1}) & \sum_{t} f_{1} \sin(\omega_{t}t+c_{1}) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum_{t} f_{1} \sin(\omega_{t}t+c_{1}) & \sum_{t} f_{1} \cos(\omega_{t}t+c_{1}) & \sum_{t} f_{1} \sin(\omega_{t}t+c_{1}) & \sum_{t} f_{2} \cos(\omega_{2}t+c_{2}) & \sum_{t} f_{1} \sin(\omega_{t}t+c_{1}) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum_{t} f_{1} \sin(\omega_{t}t+c_{1}) & \sum_{t} f_{1} \cos(\omega_{t}t+c_{1}) & \sum_{t} f_{2} \cos(\omega_{2}t+c_{2}) & \sum_{t} f_{1} \sin(\omega_{t}t+c_{1}) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum_{t} f_{1} \sin(\omega_{t}t+c_{1}) & \sum_{t} f_{1} \sin(\omega_{t}t+c_{1}) & \sum_{t} f_{2} \sin(\omega_{t}t+c_{1}) & \sum_{t} f_{1} \sin(\omega_{t}t+c_{1}) & \sum_{t} f_{1} \sin(\omega_{t}t+c_{1}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum_{t} f_{1} \sin(\omega_{t}t+c_{1}) & \sum_{t} f_{1} \sin(\omega_{t}t+c_{1}) & \sum_{t} f_{1} \sin(\omega_{t}t+c_{1}) & \sum_{t} f_{1} \sin(\omega_{t}t+c_{1}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum_{t} f_{1} \sin(\omega_{t}t+c_{1}) & \sum_{t} f_{1} \sin(\omega_{t}t+c_{1}) & \sum_{t} f_{1} \sin(\omega_{t}t+c_{1}) \\ \vdots & \vdots & \vdots & \vdots \\ \sum_{t} f_{1} f_{1} \sin(\omega_{t}t+c_{1}) & \sum_{t} f_{1} \sin(\omega_{t}t+c_{1}) \\ \vdots & \vdots & \vdots & \vdots \\ \sum_{t} f_{1} f_{1} \sin(\omega_{t}t+c_{1}) & \sum_{t} f_{1} \sin(\omega_{t}t+c_{1}) \\ \vdots & \sum_{t} f_{1} \sin(\omega_{t}+c_{1}) \\ \vdots & \sum_{t} f_{1} \sin(\omega_{t}+c_{1})$$

従来のプログラムでは、この連立方程式を求め るために、ガウスの消去法をそのまま実装してい る.しかし、今回は、コードのメンテナンス性を 重視し、最小二乗法の行列式を引数にしてその解 を返す Python の数値計算モジュールである numpyの線形代数パッケージ linalg に含まれる 関数 lstsq を用いた. 関数 lstsq のアルゴリズム は、式(2)の右辺を左辺に移項した行列の行列 式を最小化して解くことであり、内部で数値関数 ライブラリ LAPACK を呼び出している.式(2) 左辺の係数行列の逆行列が存在する場合、ガウス の消去法と同じ結果が得られる.

4 使用したデータ

横須賀験潮所の2015年1月1日0時から369 日間の1時間間隔の潮位データを用いた.この期 間に欠測はなかった.観測データのゼロ位は験潮 所観測基準面で単位はcmである.これを元デー タとし,第2章で述べた欠測を人工的に設定し, 調和分解を行った.また,最後に,海上保安庁所 管の20験潮所(釜石,千葉,横須賀,神津島, 三宅島,八丈島,呉,広島,徳山,大分,博多, 佐世保,大泊,西之表,名瀬,厳原,粟島,竜 …式 (2)

飛,中之島,横浜)の2015年1月1日0時から 369日間の1時間間隔の潮位データを用いて,上 記と同じ解析を行った.このうち,欠測は,千葉 験潮所で38時間,徳山で6時間,大分で7時間, 大泊で54時間,粟島で14時間,竜飛で27時間, 中之島で28時間あったが,時系列の最初と最後 である2015年1月1日0時と2016年1月4日 23時にはすべての験潮所で欠測はなかった.

5 結果

5.1 調和分解コードの確認

第3章で述べたように、コーディング上の変更 点があるため、調和定数更新用プログラム、沿岸 海象データ処理プログラム、今回使用する Python版のプログラムのそれぞれで、欠測のな い横須賀験潮所のデータを調和分解した結果を Table 2 に示す.調和定数更新用プログラムは、 実数変数の宣言と代入を倍精度にしてから実行し た.沿岸海象データ処理プログラムのコードに は、M1、L2分潮の補正項*f_i と u_i を、*本来は一年 の中日で計算するはずのところ、初日で計算する バグがあったため、他の値と異なる.しかし、 M1、L2 は通常非常に振幅の小さい分潮であるの

- Table 2. Period of tidal constituents, and harmonic constants at Yokosuka in 2015. From left; results from codes by Python calculated for this data, from BASIC, and from FORTRAN code. The difference of the harmonic constants among these three codes is shown on the right. Unit for the amplitude is in centimeters (cm), and for phase lag is in degree.
- 表2. 各分潮の周期及び2015年の横須賀験潮所の調和定数. 左から,今回算出した Python 版コードの結果,沿岸 海象データ処理プログラムの結果,調和定数更新用 FORTRAN コードの結果. Python 版との差も右に示し た. 振幅の単位は cm, 遅角の単位は度.

分潮		Python版		沿岸海象プログラム		調和	定数更新用	Python一沿岸		Python-	- 更新用
分潮名	周期	振幅	遅角 (<i>κ</i>)	振幅	遅角 (<i>κ</i>)	振幅	遅角 (<i>κ</i>)	振幅差	遅角差	振幅差	遅角差
Sa	365.243 日	12.44	175.65	12.44	175.65	12.44	175.65	0	0	0	0
Ssa	182.621 日	5.2	255.52	5.2	255.52	5.2	255.52	0	0	0	0
Mm	27.555 日	1.59	102.19	1.59	102.19	1.59	102.19	0	0	0	0
MSf	14.765 日	2.3	326.12	2.3	326.12	2.3	326.12	0	0	0	0
Mf	13 661 日	1.36	178.33	1.36	178.3	1.36	178.3	0	0.03	0	0.03
201	28,006 時間	0.49	127.9	0.49	127.91	0.49	127.91	0	-0.01	0	-0.01
SIG1	27.848 時間	0.40	154.00	0.45	154.1	0.60	154.1	0	-0.01	0	-0.01
01	27.040 时间	0.09	154.09	0.09	151.10	2.01	154.1	0	-0.01	0	-0.01
Q1	20.000 时间	3.91	101.11	3.91	101.12	5.91	101.13	0	-0.01	0	-0.02
RHUI	20.723 时间	0.85	141.45	0.65	141.40	0.85	141.40	0	-0.01	0	-0.01
01	25.819 时间	18.86	159.25	18.86	159.26	18.86	159.26	0	-0.01	0	-0.01
MP1	25.668 時間	0.36	176.51	0.36	1/6.5	0.36	1/6.5	0	0.01	0	0.01
M1	24.841 時間	1	171.83	1.07	160.98	1	171.88	-0.07	10.85	0	-0.05
CHI1	24.709 時間	0.35	176.11	0.35	176.09	0.35	176.09	0	0.02	0	0.02
PI1	24.132 時間	0.57	168.55	0.57	168.55	0.57	168.55	0	0	0	0
P1	24.066 時間	7.82	176.93	7.82	176.93	7.82	176.93	0	0	0	0
S1	24.000 時間	0.43	61.88	0.43	61.88	0.43	61.88	0	0	0	0
K1	23.934 時間	24.39	177.61	24.39	177.6	24.39	177.6	0	0.01	0	0.01
PSI1	23.869 時間	0.43	220.76	0.43	220.76	0.43	220.76	0	0	0	0
PHI1	23.804 時間	0.27	165.22	0.27	165.22	0.27	165.22	0	0	0	0
THE1	23.207 時間	0.35	209.14	0.35	209.12	0.35	209.12	0	0.02	0	0.02
J1	23.098 時間	1.34	188.82	1.34	188.8	1.34	188.8	0	0.02	0	0.02
SO1	22.420 時間	0.15	265.34	0.15	265.33	0.15	265.33	0	0.01	0	0.01
001	22.306 時間	1.06	227.71	1.06	227.67	1.06	227.67	0	0.04	0	0.04
002	13.167 時間	0.13	10.19	0.13	10.21	0.13	10.21	0	-0.02	0	-0.02
MNS2	13.127 時間	0.3	159.8	0.3	159.8	0.3	159.8	0	0	0	0
2N2	12.905 時間	0.7	156.81	0.7	156.8	0.7	156.8	0	0.01	0	0.01
MU2	12.872 時間	1.16	162.03	1.16	162.03	1.16	162.03	0	0	0	0
N2	12.658 時間	5.85	147.87	5.85	147.86	5.85	147.86	0	0.01	0	0.01
NU12	12.606 時間	1.03	140.43	1.03	140.42	1.03	140.42	0	0.01	0	0.01
0P2	12.020 時間	0.44	38.95	0.44	38.96	0.44	38.96	0	-0.01	0	-0.01
M2	12.430 时间	40.70	151.66	40.70	161.66	40.70	161.66	0	-0.01	0	-0.01
MKS2	12.421 时间	40.75	277.75	40.75	277 72	40.75	277.72	0	0.02	0	0.02
IVING2	12.300 时间	0.75	170.50	0.75	170.50	0.75	170.50	0	0.02	0	0.02
LAIVIZ	12.222 时间	0.34	172.53	0.34	172.53	0.34	172.53	0	5.07	0	
LZ To	12.192 時間	1.29	150.99	1.2	156.66	1.29	150.96	0.09	-5.67	0	0.03
12	12.016 時間	1.07	155.18	1.07	155.18	1.07	155.18	0	0	0	0
S2	12.000 時間	19.9	179.63	19.9	179.63	19.9	179.63	0	0	0	0
R2	11.984 時間	0.54	353.64	0.54	353.64	0.54	353.64	0	0	0	0
K2	11.967 時間	5.42	175.67	5.42	175.65	5.42	175.65	0	0.02	0	0.02
MSN2	11.786 時間	0.08	107.19	0.08	107.19	0.08	107.19	0	0	0	0
KJ2	11.755 時間	0.4	31.4	0.4	31.37	0.4	31.37	0	0.03	0	0.03
2SM2	11.607 時間	0.04	8.39	0.04	8.39	0.04	8.39	0	0	0	0
MO3	8.386 時間	0.39	228.88	0.39	228.89	0.39	228.89	0	-0.01	0	-0.01
M3	8.280 時間	0.81	146.81	0.81	146.81	0.81	146.81	0	0	0	0
SO3	8.192 時間	0.15	275.34	0.15	275.35	0.15	275.35	0	-0.01	0	-0.01
MK3	8.177 時間	0.22	236.64	0.22	236.63	0.22	236.63	0	0.01	0	0.01
SK3	7.993 時間	0.4	73.3	0.4	73.3	0.4	73.3	0	0	0	0
MN4	6.269 時間	0.09	251.19	0.09	251.18	0.09	251.18	0	0.01	0	0.01
M4	6.210 時間	0.44	214.72	0.44	214.72	0.44	214.72	0	0	0	0
SN4	6.160 時間	0.06	201.06	0.06	201.06	0.06	201.06	0	0	0	0
MS4	6.103 時間	0.27	289.53	0.27	289.53	0.27	289.53	0	0	0	0
MK4	6.095 時間	0.13	269.35	0.13	269.33	0.13	269.33	0	0.02	0	0.02
S4	6.000 時間	0.21	305	0.21	305	0.21	305	0	0	0	0
SK4	5.992 時間	0.18	195.54	0.18	195.52	0.18	195.52	0	0.02	0	0.02
2MN6	4.166 時間	0.02	85.39	0.02	85.32	0.02	85.38	n	0.01	0	0.01
M6	4.140 時間	0.03	80.49	0.03	80.49	0.03	80.49	n	0.01	0	0.01
MSN6	4.118 時間	0.02	129 08	0.03	129.07	0.03	129.07	0	0.01		0.01
2MS6	4.092 時間	0.02	115 /	0.02	115.07	0.02	115 20	0	0.01		0.01
211/130	4.052 时间	0.03	106.69	0.03	106.66	0.03	106.66	0	0.01		0.01
20110	4.005 时间	0.01	1 / 0 22	0.01	140.00	0.01	140.00	0	0.02		0.02
ZSIVID	4.040 时间	0.02	148.33	0.02	148.32	0.02	148.32	0	0.01		0.01
IVISKO	4.042 時間	0.02	109.63	J U.U2	109.61	0.02	109.61	0	I 0.02	I 0	1 0.02

で,沿岸海象プログラムで得られた調和定数を用いて推算した天文潮位も,実用上ほとんど問題ないといえるだろう. Python版のコードは,従来の調和定数更新用のプログラムによる調和分解と,遅角は最大で 0.05 度異なるものの,振幅は 0.01 cm の桁まで一致している.

5.2 横須賀験潮所における推算値の誤差

横須賀験潮所の観測データに10%ごとに人工 的に欠測を設定した16パターンのデータを調和 分解して調和定数を得た.それぞれのパターン で,調和定数を用いて潮位を推算し,人工的に欠 測させる前の観測値からの誤差の二乗平均の平方 根を計算した(Table 3).人工的に欠測を設定し た各ケースでは,欠測期間の観測値は,調和分解 には用いないものの,推算値との誤差の計算には 用いていることに注意しておく.

人工的な欠測のない観測値から得られた調和定 数による推算と観測値の二乗平均誤差の平方根 は,8.09 cm であった.気象庁検潮所の潮位の二 乗平均誤差の平方根は、日本沿岸で全般的に10 cm 程度と報告されているが(金澤・他,2012), これより小さい.通常,常設験潮所の調和定数 は、1年ごとの観測値を調和分解して調和定数を 計算し,得られた調和定数を10年分ベクトル平 均して求める.潮位の季節変動成分である Sa, Ssa 分潮は、起潮力の一年、半年周期変動による ものよりも、海面温度や風の季節変動による潮位 の振幅変化を大きく反映するため、年ごとに振幅 と遅角が異なる.このため、ある年の観測値と推

- Table 3. The square root of the mean-squared error values in the time sequences that have 0 to 80% missing ratio, in sporadic and continuous missing patterns respectively, at Yokosuka in 2015. Unit is in cm.
- 表3. 2015年の横須賀における間欠的な欠測,連続的 な欠測のそれぞれにおける欠測割合0-80%の 時系列の誤差の二乗平均の平方根.単位は cm.

欠測の割合	0%	10%	20%	30%	40%	50%	60%	70%	80%
間欠的な欠測	8.09	8.14	8.23	8.29	8.39	8.64	8.5	8.58	9.14
連続的な欠測	8.09	8.14	8.64	12.87	14.25	28.1	30.47	269.51	2148.27

算値の誤差は、その年1年分の調和定数を用いた ほうが、10年分平均した調和定数を用いたより も小さくなることに注意が必要である.

間欠的欠測のパターンでは、欠測が増えるにつ れて二乗平均誤差がわずかに増加し、80%の欠測 では二乗平均誤差は 9.14 cm となる. 間欠的な 80%の欠測により、9.14²-8.09²=4.25² cm²の誤 差が増加したことになる. 一方、連続的欠測のパ ターンは、二乗平均誤差の成長は相当大きい. 連 続的な 40%、50%の欠測のパターンでは、二乗 平均誤差の平方根はそれぞれ 14.25 cm、28.10 cm であり、この 10% で誤差は約3倍(28.10²-14.25²=24.22² \Rightarrow 3×14.25²)も加わる. 欠測の割 合 80%では、誤差は 2148.27 cm にもなる.

連続的欠測のパターンについては, 欠測の割合 に対する二乗平均誤差の平方根を, 欠測の割合 1%ごとに計算してプロットした (Fig. 2). 欠測 の割合に対する単調な増加ではないものの, 二乗 平均誤差は, 欠測が多いほど早く成長することが わかる.

それぞれの調和定数による 369 日間の推算値を 観測時系列に重ねて表示したものを Fig.3 に示 す. 間欠的欠測のパターンでは、80%の欠測が あっても,もとの実測値を用いた調和分解による 推算の場合とほとんど変わらないことがわかる (Fig. 3b). 連続的欠測のパターンでは、欠測期間 50%の場合に、欠測期間の推算値に現実とは異 なった季節変動がみられる (Fig. 3d). このよう なにせの季節変動は、欠測の割合が40%までは あまりはっきりしていない (Fig. 3c). 連続的欠 測のパターンで、欠測期間80%の図は、もはや 潮汐ではないことは明らかだが、観測値のある最 後の20%の部分だけ過剰に一致し,他の季節の 推算値は、プラスマイナス 1000 cm のオーダー で大きく振動している (Fig. 3e). これは、いわ ゆるオーバーフィッティングを示唆している.

5.3 横須賀験潮所における調和定数の欠測の割 合に対する感度

調和定数の欠測の割合ごとの変化を詳しく調べ

(b) Root mean square error in the continuous missing cases for 0 % - 60 % at Yokosuka

Fig. 2. The square root of the mean-squared error values in the time sequences that have 0 to 80% missing ratio in sporadic missing pattern. Unit is in centimeters (cm). The (a) shows plots that are 0-80%, whereas the (b) magnifies the missing ratios of 0-60%.

図2. 2015年の横須賀における連続的な欠測における 欠測割合0-80%の時系列の誤差の二乗平均の 平方根.単位は cm. (a) 欠測割合0-80%のプ ロット. (b) このうち,欠測割合0-60%を拡 大したもの.

た. 欠測なしの横須賀験潮所の観測データによる 調和定数(Table 2) で振幅が5 cm 以上となる9 つの分潮(Sa, Ssa, O1, P1, K1, N2, M2, S2, K2) については, 欠測の割合ごとの振幅と 遅角を Fig. 4 に示した. それら振幅の大きい9分 潮を含め, 60 分潮すべてについて, 計16 のパ ターンにおける振幅と遅角の欠測なしの時の値か らの差を, Tables 4-7 に示した. Tables 4, 5 は 間欠的な欠測のパターン, Tables 6, 7 は連続的 な欠測のパターンで, Tables 4, 6 は欠測の割合 10%-40%, Tables 5, 7 は欠測の割合 50%- 80%である. なお, 第2章で述べた通り, 連続的 欠測のパターンについては, 観測開始から 178 時 間目以降, 欠測の割合を 1%ごとに増加させた 80 パターンを作成しており, Figs. 4c, 4d ではその 結果をプロットしている.

間欠的な欠測のパターンの振幅(Fig. 4a) は, 主要四分潮(M2, S2, K1, O1)の増減は最大で も 0.4 cm 程度であり,欠測に対し殆ど変化しな い.紫色と黄土色で示された Sa と Ssa の振幅は 2 cm 程度増減する.Fig. 4b に示した遅角は, Ssa が 10°程度小さくなるが,そのほかは最大でも 5° しか変化しない.Tables 3,4 をみると,複数の 分潮で遅角が大きく変化しているが,それらはも ともと振幅が弱いことが確認できる.

連続的な欠測のパターンの振幅(Fig. 4c)は、 O1, N2, M2にはほとんど変化がないものの, それ以外のプロットした分潮には大きな変化がみ られる.2 cm 以上の振幅の増減がみられるのは, Sa と Ssa は欠測の割合 20% 程度から、P1 と K1 は40%程度から,S2とK2は60%程度からで, それよりも欠測の割合が増えると、激しい増減を 繰り返しながら、急速に振幅が増加する.Saは 20%程度から一度振幅が減少したあと、35%あた りに振幅の極小をみて、その後増加している、遅 角も、振幅の変化にあわせて激しい増減がみられ る. Sa から Ssa 及び P1 と K1 を含む PI1 – PHI1 並びに S2 と K2 を含む T2-K2 は、周波数の差 が (365.25 日)⁻¹である (Table 6). 分解可能な 二つの周波数の差 $|\sigma_i - \sigma_i|$ は、時系列の長さTに より $|\sigma_i - \sigma_j| > T^{-1}$ と規定される(レイリーの条 件). 解析対象の時系列の観測開始から終了まで が369日間の場合、調和分解可能な最も細かい周 波数間隔は (369 日)⁻¹である. 調和定数が欠測 の割合に対し敏感に変化する分潮は、時系列の長 さにより規定される周波数分解能の上限に近い分 潮に対応している.

5.4 海上保安庁所管 20 験潮所における推算値の 誤差

念のため、他の海上保安庁所管の20の験潮所

Chikara TSUCHIYA

At Yokosuka (a) Observed and predicted tidal data

Fig. 3. Observed (blue) and predicted (red) values at Yokosuka in 2015 above zero of gauge. (a) Estimated values calculated with the harmonic constants taken from original observed values with missing values disregarded.
(b) Sporadic missing pattern with 80% missing ratio. (c) Continuous missing pattern with 40% missing ratio.
(d) Continuous missing pattern with 50% missing ratio. (e) Continuous missing pattern with 80% missing ratio. Unit is in cm.

図 3. 2015 年の横須賀における実測値(青)と推算値(赤). (a) 欠測を設定しないもとの実測値を用いた調和定 数による推算. (b) 間欠的な 80%の欠測のパターン. (c) 連続的な 40%の欠測のパターン. (d) 連続的な 50%の欠測のパターン. (e) 連続的な 80%の欠測のパターン. 単位は cm. ゼロ位は観測基準面.

のすべてについて,2015年1月1日から2016年 1月4日の369日間のデータを用いて,間欠的な 欠測,連続的な欠測のそれぞれについて,欠測の 割合に対する調和定数の応答を調べた.元の時系 列に欠測があった場合でも,連続的な欠測のパ ターンは,観測開始から178時間目以降,欠測を 設定し,欠測の割合を1%(88.6時間)ごとに増 加させた.Fig.5は,人工的な欠測に対する二乗 平均誤差の変化を示したものである.南方諸島の 三宅島,神津島,八丈島では,黒潮の影響で,人 工的な欠測がなくても二乗平均誤差が大きく,欠 測の増加に伴う誤差の増加も非常に大きいため, 縦軸のスケールをわけている. 厳原及び名瀬で は, 欠測なしの時の二乗平均誤差が6 cm を下 回っているが (Fig. 5b), 今回は,通常の10年分 の調和定数の平均ではなく,1年間の調和定数を 用いて,調和分解に用いた年の観測時系列と比較 しているため,二乗平均誤差がかなり小さくなっ たと考えられる. 間欠的な欠測の場合,多くの地 点で,欠測の割合にかかわらず二乗平均誤差はほ ぽ一定となっている (Figs. 5a-5d). それに対し て,連続的な欠測の場合には,二乗平均誤差の成

- Table 4. The frequency difference of each tidal constituent and the differences of harmonic constants in the 10 40% sporadic missing cases observed at Yokosuka in 2015, shown in comparison to the case with no missing data. Unit of amplitude is in cm, and phase lag is in degree. Frequency difference under (365 days)⁻¹ is indicated with yellow characters over yellow background. Differences of amplitude over 2 cm and of phase over 15 degrees are indicated as red characters over red background.
- 表4. 分潮間の周波数差と,間欠的な欠測10%-40%のパターンにおける2015年の横須賀験潮所の調和定数を, 欠測なしの時からの差で示した.振幅の単位は cm,遅角の単位は度.分潮間の周波数差(365日)⁻¹以下は 黄背景黄文字で,振幅差2 cm,遅角差15度以上は赤背景赤文字で示した.

6	分潮	欠測なし		間欠的な欠測10%		間欠的な欠測20%		6 間欠的な欠測30%		間欠的な欠測40%	
分潮名	周波数差	振幅	遅角	振幅差	遅角差	振幅差	遅角差	振幅差	遅角差	振幅差	遅角差
Sa	1//265.2453	12.44	175.65	-0.37	2.15	-0.09	-0.50	0.12	0.87	1.17	5.46
Ssa	1/(303.24 [])	5.20	255.52	0.60	-0.39	1.55	-3.44	2.00	-2.43	-0.64	-4.60
Mm	1/(32.45日)	1.59	102.19	0.25	-2.19	-0.29	-3.50	-0.33	3.19	-0.31	37.01
MSf	1/(31.611)	2.30	326.12	0.39	-0.56	0.41	-0.43	0.24	-1.72	0.16	-1.78
Mf	1/(102.031)	1.36	178.32	0.35	16.58	0.45	14.63	0.72	23.11	0.60	26.21
2Q1	1/(205 89 日)	0.49	127.90	0.00	0.74	0.01	4.39	0.00	2.34	0.04	1.54
SIG1	1/(205.051)	0.69	154.09	-0.01	0.76	0.01	-2.25	0.01	-3.40	0.05	-1.63
Q1	1/(205 80 日)	3.91	151.11	0.03	-1.01	-0.02	-0.71	-0.03	-1.17	-0.14	-0.72
RH01	1/(31.81日)	0.83	141.45	-0.06	-2.00	-0.05	1.63	-0.04	1.16	-0.12	-5.59
01	1/(182.62 E)	18.86	159.25	-0.08	-0.35	0.02	-0.56	0.04	-0.63	0.00	-0.12
MP1	1/(32.13日)	0.36	176.51	0.04	-11.78	0.12	-2.86	0.12	-2.92	0.24	-4.47
M1	1/(193.56日)	1.00	171.83	-0.01	-1.12	0.02	-4.55	0.01	-5.68	-0.05	-5.42
CHI1	1/(43.06日)	0.35	176.11	-0.04	1.21	-0.18	-3.88	-0.11	-6.37	-0.11	-23.72
PI1	1/(365.26日)	0.57	168.55	0.05	1.01	-0.02	2.00	-0.05	1.24	-0.03	-4.32
P1	1/(365.24日)	7.82	176.93	0.05	0.17	0.12	0.16	0.16	-0.05	0.14	-0.34
S1	1/(365.24日)	0.43	61.88	0.06	-1.08	-0.02	6.56	0.01	8.40	0.03	11.03
K1	1/(365.26日)	24.39	177.61	0.00	0.18	0.02	0.42	-0.01	0.35	-0.04	0.42
PSI1	1/(365.22日)	0.43	220.76	0.03	7.52	-0.05	-2.92	0.00	-11.22	0.07	-7.45
PHI1	1/(38.52日)	0.27	165.22	0.06	-2.71	0.17	-4.74	0.24	-9.30	0.21	-17.43
THE1	1/(205.89日)	0.35	209.14	-0.02	0.27	-0.09	-19.54	-0.03	-15,99	-0.05	-21.11
J1	1/(31.81日)	1.34	188.82	0.01	0.16	-0.11	3.55	-0.17	4.34	-0.12	2.70
S01	1/(182.62日)	0.15	265.34	0.04	28.10	-0.05	24.36	-0.05	6.83	-0.04	52.04
001	1/(1.34日)	1.06	227.71	0.15	1.54	0.01	4.60	0.06	5.09	0.01	0.81
OQ2	1/(182.62日)	0.13	10.19	0.01	-3.48	-0.07	-25.69	-0.10	-55.59	-0.08	-162.70
MNS2	1/(31.81日)	0.30	159.80	0.00	1.47	-0.04	9.94	-0.05	8.32	-0.04	0.43
2N2	1/(205.89日)	0.70	156.81	0.01	1.41	0.04	2.54	0.00	6.56	0.00	12.05
MU2	1/(31.81日)	1.16	162.03	0.03	-0.33	0.05	-1.49	0.03	-2.90	-0.02	-2.12
N2	1/(205.89日)	5.85	147.87	-0.07	0.12	-0.19	-0.42	-0.24	0.70	-0.24	0.11
NU2	1/(38.52日)	1.03	140.43	0.01	2.55	-0.05	9.85	-0.10	6.82	-0.05	1.88
OP2	1/(182.62日)	0.44	38.95	-0.06	37.46	0.05	2.93	0.45	-19.31	0.25	5.64
M2	1/(182.62日)	40.79	151.66	0.03	0.29	0.11	-0.01	0.08	0.26	0.04	0.06
MKS2	1/(38.52日)	0.75	277.75	-0.20	-9.75	-0.11	16.50	0.32	29.72	-0.02	33.59
LAM2	1/(205.89日)	0.34	172.53	-0.10	3.68	-0.08	-36.66	-0.16	-40.36	-0.10	-52.34
L2	1/(34.85日)	1.29	150.99	-0.08	4.56	-0.25	4.02	-0.21	-1.94	-0.12	-1.80
12	1/(365.26日)	1.07	155.18	-0.11	80.0	-0.07	2.14	-0.14	-5.03	-0.13	-4.74
SZ	1/(365.26日)	19.90	179.63	-0.12	0.02	-0.14	0.03	-0.01	-0.23	-0.01	-0.19
RZ	1/(365.22日)	0,54	353.64	-0.10	-0.15	-0.08	-0.45	-0.05	17.53	-0.09	17.51
RZ MCN2	1/(32.45日)	5.42	107.10	0.05	1.41	0.04	1.30	0.16	2.04	0.14	2.28
IVISINZ	1/(182.62日)	0.08	21.40	-0.01	10.94	0.06	40.00	0.09	44.00	0.04	16.04
20142	1/(38.52日)	0.40	9.20	-0.01	-3,19	-0.06	-10.79	-0.04	-10.20	-0.10	-10.04
2311/2	1/(1.26日)	0.04	0.39	-0.03	-10.10	-0.01	10.62	0.01	20.02	0.00	32.49
M3	1/(27.32日)	0.33	146.81	-0.03	-2.33	0.01	-10,03	0.01	-0.90	0.01	0.43
503	1/(32.13日)	0.01	275 34	-0.01	-5.31	0.01	-10.62	-0.03	-20.40	0.03	-18.42
MK3	1/(182.62日)	0.22	236.64	0.02	-1.15	0.00	0.11	0.01	-3.88	0.02	-12.56
SK3	1/(14.77日)	0.40	73 30	-0.08	-6.42	-0.03	-12.52	0.01	-17.25	0.02	0.55
MN4	1/(1.21日)	0.00	251 19	-0.04	28.27	-0.02	54.80	-0.05	67.10	0.01	62.78
M4	1/(27.55日)	0.44	214.72	0.04	2.40	-0.01	-1.56	0.03	-4.52	0.01	-0.98
SN4	1/(31.81日)	0.06	201.06	0.00	11.78	0.01	14.55	0.01	-2.37	0.01	20.78
MS4	1/(27.55日)	0.27	289.53	0.01	5.13	0.02	4.96	0.00	9.45	0.01	0.63
MK4	1/(182.62日)	0.13	269.35	0.04	-12.57	0.03	-18.55	0.03	-30.65	0.05	-16.06
S4	1/(16.06日)	0.21	305.00	-0.04	-8.27	-0.05	-9.00	0.01	-5.20	-0.04	-12.09
SK4	1/(182.62日)	0.18	195.54	-0.07	-5.35	-0.07	-12.01	-0.13	-36.36	-0.08	-12.11
2MN6	1/(0.57日)	0.02	85.39	0.00	-5.42	0.00	1.72	0.00	11.78	-0.01	2.68
M6	1/(27.55日)	0.03	80.49	-0.01	5.74	0.00	13.98	0.00	22.84	0.00	29.70
MSN6	1/(31.81日)	0.02	129.08	0.00	9.49	0.00	5.67	0.00	17.94	0.00	25.22
2MS6	1/(27.55日)	0.03	115.40	0.00	-1.87	0.00	-1.68	0.00	5.03	-0.01	5.78
2MK6	1/(182.62日)	0.01	196.68	0.00	16.52	0.00	14.51	0.00	56.93	0.00	163.37
2SM6	1/(16.06日)	0.02	148.33	0.00	3.56	-0.01	12.80	0.00	22.97	0.00	19.98
MSK6	1/(182.62日)	0.02	109.63	0.00	5.57	0.00	30.35	0.00	59.39	-0.01	83.35

Chikara TSUCHIYA

- Table 5. The frequency difference of each tidal constituent and the differences of harmonic constants in the 50 80% sporadic missing cases observed at Yokosuka in 2015, shown in comparison to the case with no missing data. Unit of amplitude is in cm, and phase is in degree. Frequency difference under (365 days)⁻¹ is indicated with yellow characters over yellow background. Differences of amplitude over 2 cm and of phase over 15 degrees are indicated with red characters over red background.
- 表 5. 分潮間の周波数差と,間欠的な欠測 50% 80%のパターンにおける 2015 年の横須賀験潮所の調和定数を, 欠測なしの時からの差で示した.振幅の単位は cm,遅角の単位は度.分潮間の周波数差 (365 日)⁻¹以下は 黄背景黄文字で,振幅差 2 cm,遅角差 15 度以上は赤背景赤文字で示した.

	分潮	欠測なし		間欠的な欠測50%		間欠的な	r欠測60%	間欠的な	:欠測70%	間欠的な欠測80%		
分潮名	周波数差	振幅	遅角	振幅差	遅角差	振幅差	遅角差	振幅差	遅角差	振幅差	遅角差	
Sa	1//265.24(1)	12.44	175.65	0.78	6.04	0.45	8.14	1.43	7.38	2.06	2.35	
Ssa	1/(300.24日)	5.20	255.52	-0.02	-1.52	-0.90	-10.65	0.64	-5.74	0.27	-13.23	
Mm	1/(32.45日)	1.59	102.19	-0.11	54.65	-0.27	71.14	-0.02	34.60	2.81	58.64	
MSf	1/(31.61日)	2.30	326.12	0.57	-29.27	0.31	3.95	0.78	24.53	1.63	2.50	
Mf	1/(128日)	1.36	178.32	2.91	36.83	0.27	41.20	0.98	28.13	0.55	-8.33	
2Q1	1/(205.89日)	0.49	127.90	-0.03	3.09	-0.08	-17.97	0.00	-34.26	-0.11	-8.28	
SIG1	1/(203.851)	0.69	154.09	-0.02	1.94	-0.17	0.98	-0.09	12.00	-0.31	-0.85	
Q1	1/(31.814)	3.91	151.11	-0.17	-0.42	-0.11	-0.49	-0.27	1.17	-0.13	3.27	
RH01	1/(31.81日)	0.83	141.45	-0.15	-3.03	-0.10	-4.47	0.05	0.42	-0.31	-14.95	
01	1/(182.62 日)	18.86	159.25	0.05	-0.42	0.28	-0.25	0.27	-0.44	0.34	1.13	
MP1	1/(32 13日)	0.36	176.51	0.28	0.88	0.18	9.75	0.27	0.12	0.21	-3.65	
M1	1/(193.56日)	1.00	171.83	-0.06	-8.21	-0.15	-9.28	-0.12	-11.14	0.00	-15.52	
CHI1	1/(43.06日)	0.35	176.11	-0.08	-41.93	-0.18	-71.26	-0.24	-70.84	-0.04	96.88	
PI1	1/(365.26日)	0.57	168.55	0.01	-3.95	0.19	1.50	0.19	3.29	-0.55	-32.94	
P1	1/(365.24日)	7.82	176.93	0.16	-0.02	0.11	-0.90	0.08	-1.44	0.17	-2.29	
S1	1/(365.24日)	0.43	61.88	0.02	17.73	0.19	37.18	0.27	26.07	0.06	13.76	
K1	1/(365.26日)	24.39	177.61	-0.02	0.33	0.11	0.63	0.02	0.55	0.07	0.37	
PSI1	1/(365.22日)	0.43	220.76	0.12	-7.20	0.01	-20.38	0.04	-29.14	0.28	-20.09	
PHI1	1/(38.52日)	0.27	165.22	0.27	-16.61	0.30	-12.57	0.40	-12.65	0.47	-6.05	
THEI	1/(205.89日)	0.35	209.14	-0.12	-22.38	0.01	-42.12	0.05	-25,86	0.07	-31.02	
11	1/(31.81日)	1.34	188.82	-0.18	3.44	-0.09	-2.86	-0.13	-4.70	-0.53	13.17	
001	1/(182.62日)	1.06	205.34	0.06	0.92	-0.07	115.00	-0.07	-120.42	0.21	03.18	
001	1/(1.34日)	0.12	10.10	0.04	9.02	-0.18	-0.85	-0.09	104.62	-0.09	-1.99	
MNS2	1/(182.62日)	0.15	159.90	-0.04	-16.39	0.00	-114.02	-0.09	-26.12	-0.13	-11 59	
2N2	1/(31.81日)	0.30	156.81	0.02	7 34	0.11	0.86	0.18	8.87	0.00	35.68	
MU2	1/(205.89日)	1.16	162.03	0.00	-6.33	0.08	-12.58	0.15	-18.44	0.23	-29.92	
N2	1/(31.81日)	5.85	147.87	-0.15	1.66	-0.02	0.09	-0.09	-0.70	0.11	3.14	
NU2	1/(205.89日)	1.03	140.43	-0.04	6.55	0.04	-0.88	-0.05	-2.67	0.04	-13.88	
OP2	1/(38.52日)	0.44	38.95	0.48	30.96	0.35	8.70	0.47	-22.84	0.31	33.99	
M2	1/(182.62日)	40.79	151.66	-0.15	0.81	0.20	0.19	0.10	0.55	0.31	-0.48	
MKS2	1/(182.62日)	0.75	277.75	0.24	3.40	-0.25	25.60	0.05	72.29	0.75	-5.20	
LAM2	1/(38.52H)	0.34	172.53	-0.12	-50.77	-0.07	-27.31	0.02	-49.60	0.06	-128.98	
L2	1/(205.89日)	1.29	150.99	-0.04	-2.63	0.04	1.32	-0.20	2.11	0.49	15.38	
T2	1/(34.85日)	1.07	155.18	-0.35	-24.18	-0.33	-5.57	-0.65	-20.66	0.25	4,21	
S2	1/(365.26日)	19.90	179.63	-0.07	-0.99	-0.01	-0.84	0.30	-1.58	-0.01	-1.85	
R2	1/(365.22日)	0.54	353.64	0.12	-1.69	-0.08	-8.33	0.00	51.53	0.54	-14.86	
K2	1/(32,45日)	5.42	175.67	-0.03	-0.38	0.10	-0.03	-0.01	4.39	0.27	5.29	
MSN2	1/(182.62日)	0.08	107.19	0.08	68.66	0.00	76.95	0.14	110.97	0.09	100.97	
KJ2	1/(38.52日)	0.40	31.40	0.06	-10.32	-0.05	-12.32	0.21	-26.56	-0.04	161.69	
2SM2	1/(1.26日)	0.04	8.39	0.03	-22.93	0.01	-105.58	0.15	-2.78	0.59	-97.45	
MO3	1/(27.32日)	0.39	228.88	0.03	-4.69	0.00	-4.65	0.03	-10.51	0.10	-8.59	
M3	1/(32.13日)	0.81	146.81	0.05	1.78	0.05	3.46	0.09	5.87	0.03	1.61	
503 MK2	1/(182.62日)	0.15	215.34	0.02	-8.8/	0.14	0.08	0.09	9.59	0.02	5.20	
SK3	1/(14.77日)	0.40	230.04	0.03	-10.85	0.01	-41.43	0.03	-04.50	0.03	-07.01	
MNM	1/(1.21日)	0.40	251 10	0.04	- 3.30	0.19	-0.03	0.25	124.52	0.10	142 72	
101194	1/(27.55日)	0.03	214 72	0.03	-1.02	-0.03	-11 44	-0.06	-0.78	0.01	0.31	
SN4	1/(31.81日)	0.06	201.06	0.00	27.89	-0.02	126.50	0.01	-170.09	-0.02	113.92	
MS4	1/(27.55日)	0.27	289.53	-0.04	-3.60	-0.03	-2.41	-0.06	5.50	-0.10	-8.33	
MK4	1/(182.62日)	0.13	269.35	0.01	-36.02	0.01	-39.63	0.06	-49.76	0.07	-6.04	
S4	1/(16.06日)	0.21	305.00	0.07	-9.09	0.07	-6.63	0.13	6.54	0.03	1.50	
SK4	1/(182.62日)	0.18	195.54	-0.04	42.77	-0.05	44.34	-0.03	12.03	-0.04	54.12	
2MN6	1/(0.57日)	0.02	85.39	-0.01	3.69	-0.01	-21.26	-0.02	-148.65	0.00	17.20	
M6	1/(27.55日)	0.03	80.49	0.00	35.49	-0.01	26.28	0.00	57.10	0.02	35.51	
MSN6	1/(31.81日)	0.02	129.08	0.01	27.46	0.00	49.63	0.01	93.39	0.01	68.99	
2MS6	1/(27.55日)	0.03	115.40	-0.02	22.99	0.00	-23.03	-0.01	-21.33	0.01	-11.96	
2MK6	1/(182.62日)	0.01	196.68	0.00	102.82	0.02	-163.04	0.02	161.99	0.01	116.99	
2SM6	1/(16.06日)	0.02	148.33	0.00	9.35	0.00	-65.65	-0.01	-120.32	-0.01	144.62	
MSK6	1/(182.62日)	0.02	109.63	-0.01	73.93	0.00	-115.13	0.02	-92.40	0.04	-52.05	

- Table 6. The frequency difference of each tidal constituent and the differences of harmonic constants in the 10 40 % continuous missing cases observed at Yokosuka in 2015, shown in comparison to the case with no missing data. Unit of amplitude is in cm, and phase is in degree. Frequency difference under (365 days)⁻¹ is indicated with yellow characters over yellow background. Differences of amplitude over 2 cm of phase over 15 degrees are indicated with red characters over red background.
- 表 6. 分潮間の周波数差と,連続的な欠測 10% 40%のパターンにおける 2015 年の横須賀験潮所の調和定数を, 欠測なしの時からの差で示した.振幅の単位は cm,遅角の単位は度.分潮間の周波数差 (365 日)⁻¹以下は 黄背景黄文字で,振幅差 2 cm,遅角差 15 度以上は赤背景赤文字で示した.

<u> </u>	分潮	朝 欠測なし		連続的な欠測10%		連続的な欠測20%		6 連続的な欠測30%		連続的な欠測40%	
分潮名	周波数差	振幅	遅角	振幅差	遅角差	振幅差	遅角差	振幅差	遅角差	振幅差	遅角差
Sa	1//201 01/23	12.44	175.65	-0.37	2.15	-2.00	7.54	-8.55	36.91	-8.08	56.65
Ssa	1/(365.24日)	5.20	255.52	0.60	-0.39	1.97	8.43	4.58	37.38	6.22	39.23
Mm	1/(32.45日)	1.59	102.19	0.25	-2.19	-0.01	-1.97	-0.07	0.16	-0.52	-24.26
MSf	1/(31.81日)	2.30	326.12	0.39	-0.56	0.69	-14.11	0.62	-24.02	0.52	-26.44
Mf	1/(182.63 H)	1.36	178.32	0.35	16.58	1.46	27.50	2.12	35.56	2.36	44.09
2Q1	1/(1.28日)	0.49	127.90	0.00	0.74	-0.08	-1.29	-0.07	-8.86	-0.04	-13.96
SIG1	1/(205.89日)	0.69	154.09	-0.01	0.76	-0.11	3.30	-0.08	-7.03	-0.04	-3.28
Q1	1/(31.81H)	3.91	151.11	0.03	-1.01	-0.01	-1.17	-0.01	-1.35	-0.01	-0.90
RH01	1/(205.89日)	0.83	141.45	-0.06	-2.00	-0.09	-1.39	-0.04	1.54	-0.07	1.56
01	1/(31.81日)	18.86	159.25	-0.08	-0.35	-0.09	-0.56	-0.07	-0.63	-0.04	-0.72
MP1	1/(182.62日)	0.36	176.51	0.04	-11.78	0.09	-9.30	0.09	-5.30	0.04	-5.97
M1	1/(32.13日)	1.00	171.83	-0.01	-1.12	-0.02	0.49	-0.01	-0.82	-0.02	-3.23
CHI1	1/(193.56日)	0.35	176.11	-0.04	1.21	-0.01	7.42	0.02	-0.19	0.13	-2.03
PI1	1/(43.06日)	0.57	168.55	0.05	1.01	0.19	-7.77	0.20	-12.71	-0.49	65.96
P1	1/(365.26日)	7.82	176.93	0.05	0.17	0.29	0.01	0.35	-0.56	-0.55	-11.65
S1	1/(365.24日)	0.43	61.88	0.06	-1.08	0.33	-5.71	0.43	-11.81	2.28	-80.87
K1	1/(305.24日)	24.39	177.61	0.00	0.18	-0.09	0.89	-0.07	1.25	1.62	6.74
PSI1	1/(305.20日)	0.43	220.76	0.03	7.52	0.06	38.46	0.13	49.01	1.87	85.38
PHI1	1/(365.22日)	0.27	165.22	0.06	-2.71	0.20	18.74	0.27	24.90	0.97	59.19
THE1	1/(38.52日)	0.35	209.14	-0.02	0.27	-0.03	13.23	-0.01	4.11	0.08	21.66
J1	1/(205.89日)	1.34	188.82	0.01	0.16	0.01	4.20	0.03	5.10	-0.03	1.44
S01	1/(31.81日)	0.15	265.34	0.04	28.10	0.15	34.34	0.18	34.18	0.13	19.07
001	1/(182.02日)	1.06	227.71	0.15	1.54	0.29	6.97	0.29	7.82	0.40	9.11
OQ2	1/(1.34日)	0.13	10.19	0.01	-3.48	0.01	-8.98	0.03	15.00	0.06	2.60
MNS2	1/(182.62日)	0.30	159.80	0.00	1.47	-0.03	1.18	-0.05	5.21	-0.06	5,18
2N2	1/(31.81日)	0.70	156.81	0.01	1.41	-0.02	4.73	-0.02	3.57	-0.04	0.88
MU2	1/(205.89日)	1.16	162.03	0.03	-0.33	0.01	2.11	0.02	1.43	0.04	2.62
N2	1/(31.81日)	5.85	147.87	-0.07	0.12	-0.13	1.23	-0.04	1.84	-0.11	1.97
NU2	1/(205.69日)	1.03	140.43	0.01	2.55	0.01	7.48	0.00	10.69	0.01	6.56
OP2	1/(30.520)	0.44	38.95	-0.06	37.46	0.29	63.96	0.65	44.13	0.63	23.26
M2	1/(182.02日)	40.79	151.66	0.03	0.29	-0.08	0.83	-0.18	1.44	-0.23	1.85
MKS2	1/(102.02 [])	0.75	277.75	-0.20	-9.75	0.15	-34.52	0.62	-21.25	0.67	-3.93
LAM2	1/(30.520)	0.34	172.53	-0.10	3.68	-0.12	-2.78	-0.12	9.95	-0.11	9.75
L2	1/(203.091)	1.29	150.99	-0.08	4.56	-0.09	0.26	-0.04	3.66	-0.08	4.22
T2	1/(34.8511)	1.07	155.18	-0.11	0.08	-0.20	1.20	-0,42	10.68	-0.26	3.64
S2	1/(365.26日)	19.90	179.63	-0.12	0.02	-0.22	-0.02	-0.53	-0.34	-0.32	0.20
R2	1/(365.20日)	0.54	353.64	-0.10	-6.15	-0.14	-20.50	0.06	-50.82	-0.20	-51.93
K2	1/(32.45日)	5.42	175.67	0.05	1.41	-0.05	2.56	-0.37	2.64	-0.25	4.54
MSN2	1/(182.62日)	0.08	107.19	-0.01	10.94	-0.07	76.26	-0.03	119.14	-0.02	101.64
KJ2	1/(38.52日)	0.40	31.40	-0.01	-3.19	0.05	3.06	0.13	5.41	0.12	9.00
2SM2	1/(1.26日)	0.04	8.39	-0.03	-18.10	-0.01	-25.76	0.02	-26.10	0.03	-28.49
MO3	1/(27.32日)	0.39	228.88	-0.03	-2.33	-0.04	-3.29	-0.02	-0.45	-0.01	4.07
M3	1/(32.13日)	0.81	146.81	-0.01	-0.31	-0.01	-0.67	0.01	0.39	0.00	1.26
S03	1/(182.62 日)	0.15	275.34	-0.02	-5.31	-0.02	-10.64	-0.01	1.71	-0.05	-14.87
MK3	1/(14.77日)	0.22	236.64	0.01	-1.15	0.02	2.29	0.02	-1.48	-0.03	2.10
SK3	1/(1,21日)	0.40	73.30	-0.08	-6.42	-0.09	-19.02	-0.04	-17.68	-0.05	-28.04
MN4	1/(27.55日)	0.09	251.19	-0.04	28.27	-0.04	70.82	-0.03	98.52	-0.06	-143.90
M4	1/(31.81日)	0.44	214.72	0.01	2.40	0.01	1.27	0.01	5.32	0.02	7.12
SN4	1/(27.55日)	0.06	201.06	0.00	11.78	0.02	25.11	0.00	25.82	-0.02	-3.92
MS4	1/(182.62 日)	0.27	289.53	0.01	5.13	0.01	2.49	-0.02	2.60	-0.02	14.45
MK4	1/(16.06円)	0.13	269.35	0.04	-12.57	0.02	-17.76	0.00	-24.30	-0.02	-53.55
S4	1/(182.62 円)	0.21	305.00	-0.04	-8.27	0.00	-11.45	0.05	-2.34	0.13	2.25
SK4	1/(0.57日)	0.18	195.54	-0.07	-5.35	-0.04	10.84	-0.10	47.23	-0.16	155.54
2MN6	1/(27.558)	0.02	85.39	0.00	-5.42	0.00	-4.41	0.00	-2.41	0.01	7.89
M6	1/(31.81日)	0.03	80.49	-0.01	5.74	-0.01	0.73	0.00	-0.38	0.00	2.92
MSN6	1/(27.55日)	0.02	129.08	0.00	9.49	0.00	15.96	0.02	4:48	0.00	30.19
2MS6	1/(182.62 円)	0.03	115.40	0.00	-1.87	0.00	2.02	0.00	3.79	0.00	11.92
2MK6	1/(16.06円)	0.01	196.68	0.00	16.52	0.00	15.08	0.00	18.05	0.00	25.24
2SM6	1/(182.62 日)	0.02	148.33	0.00	3.56	0.00	-17.45	0.01	-0.47	0.02	-3.42
MSK6	27 (102102 H)	0.02	109.63	0.00	5.57	0.01	-19.91	0.01	4.47	0.01	10.88

Chikara TSUCHIYA

- Table 7. The frequency difference of each tidal constituent and the differences of harmonic constants in the 50 80 % continuous missing cases observed at Yokosuka in 2015, shown in comparison to the case with no missing data. Unit of amplitude is in cm, and phase is degree. Frequency difference under (365 days)⁻¹ is indicated with yellow characters over yellow background. Differences of amplitude over 2 cm and of phase over 15 degrees are indicated with red characters over red background.
- 表7. 分潮間の周波数差と,連続的な欠測50%-80%のパターンにおける2015年の横須賀験潮所の調和定数を, 欠測なしの時からの差で示した.振幅の単位は cm,遅角の単位は度.分潮間の周波数差(365日)⁻¹以下は 黄背景黄文字で,振幅差2 cm,遅角差15度以上は赤背景赤文字で示した.

<u>61</u>	分潮 欠測なし		連続的な欠測50%		連続的な欠測60%		連続的な欠測70%		連続的な欠測80%		
分潮名	周波数差	振幅	遅角	振幅差	遅角差	振幅差	遅角差	振幅差	遅角差	振幅差	遅角差
Sa	1//201 01/20	12.44	175.65	24.13	28.83	22.17	24.53	248.96	56.12	177.41	-95.99
Ssa	1/(365.24日)	5.20	255.52	15.23	-0.43	15.24	-5.11	81.17	27.86	49.11	-89.48
Mm	1/(32.45日)	1.59	102.19	0.29	-9.25	-0.67	-56.33	0.45	-89.29	2.37	-101.72
MSf	1/(31.81日)	2.30	326.12	0.62	-18.40	0.93	-16.07	2.48	9.79	1.89	70.96
Mf	1/(182.63 H)	1.36	178.32	2.87	41.77	3.60	44.19	4.61	84.11	0.13	-131.45
2Q1	1/(1.28H)	0.49	127.90	-0.01	-23.90	0.02	-32.56	0.00	-86.25	0.19	-86.56
SIG1	1/(205.89日)	0.69	154.09	-0.04	4.79	-0.05	10.61	0.03	41.08	-0.23	67.82
Q1	1/(31.81H)	3.91	151.11	-0.10	-1.48	-0.24	-2.19	0.05	1.55	-0.32	5.75
RH01	1/(205.89日)	0.83	141.45	0.04	5.90	0.02	16.02	0.32	1.12	0.33	13.35
01	1/(31.81H)	18.86	159.25	-0.09	-1.05	0.13	-1.66	0.47	-2.23	0.31	-0.95
MP1	1/(182.62日)	0.36	176.51	0.00	-18.78	0.19	-2.66	0.33	20.25	0.03	3.30
M1	1/(32.13H)	1.00	171.83	0.00	-2.60	0.02	-7.37	0.02	1.30	-0.33	-18.78
CHI1	1/(193.56日)	0.35	176.11	0.12	-6.95	-0.02	-7.85	0.27	4.11	0.67	167.04
PI1	1/(43.06日)	0.57	168.55	-0.14	26.91	1.98	-17.04	8.98	78.14	246.13	96.09
P1	1/(365.26日)	7.82	176.93	-1.30	-3.05	2.61	44.54	24.87	-142.70	1054.59	-123.78
S1	1/(365.24日)	0.43	61.88	2.50	-127.26	12.64	161.22	69.14	-64.95	1936.48	-28.47
К1	1/(365.24日)	24.39	177.61	4.28	5.41	16.86	-0.90	29.48	137.20	2043.26	-162.84
PSI1	1/(365.26日)	0.43	220.76	3.33	71.80	9.52	65.51	31.68	-112.66	924.31	-60.27
PHI1	1/(365.22日)	0.27	165.22	1.52	59.55	3.01	72.21	7.05	-60.61	196.38	-12.21
THE1	1/(38.52日)	0.35	209.14	0.19	29.32	0.04	24.66	0.36	29.57	1.17	-16.01
J1	1/(205.89日)	1.34	188.82	0.01	-2.90	-0.15	3.35	0.14	-1.84	0.48	-29.20
S01	1/(31.81日)	0.15	265.34	0.11	5.47	-0.06	-20.15	0.11	-101.06	0.25	-110.55
001	1/(182.62日)	1.06	227.71	0.37	10.68	0.18	18.08	-0.16	12.48	-0.18	19.74
002	1/(1.34日)	0.13	10.19	0.11	-9.48	0.03	-54.76	0.28	-34.49	0.17	132.33
MNS2	1/(182.62日)	0.30	159.80	-0.09	7.55	-0.16	38.59	-0.08	-12.66	-0.13	126.62
2N2	1/(31.81日)	0.70	156.81	-0.06	7.79	-0.04	8.80	-0.05	-11.92	-0.03	7.42
MU2	1/(205.89日)	1.16	162.03	0.09	-0.46	0.12	-0.21	-0.11	-1.80	0.11	2.57
N2	1/(31.81日)	5.85	147.87	-0.15	2.95	-0.39	2.88	-0.51	4.63	-0.41	8.60
NU2	1/(205.89日)	1.03	140.43	0.05	3.89	0.09	15.59	0.16	24.16	0.48	23.36
OP2	1/(38.52日)	0.44	38.95	0.33	13.23	0.03	-2.12	0.80	-22.69	0.40	-5.17
M2	1/(182.62日)	40.79	151.66	-0.35	2 20	-0.39	212	0.00	1.73	-0.14	1 79
MKS2	1/(182.62日)	0.75	277.75	0.34	-3.77	0.30	0.68	-0.12	10.03	-0.35	66.43
LAM2	1/(38.52日)	0.15	172.53	0.00	23.56	0.01	-20.14	0.12	14.28	0.96	-36.20
12	1/(205.89日)	1.04	150.99	-0.04	.4.27	-0.30	-8.51	0.10	-6.48	0.56	-39.25
T2	1/(34.85日)	1.07	155.18	-0.39	26.17	0.02	50.79	2.50	63.92	3.24	-25.16
52	1/(365.26日)	10.00	179.63	-0.33	-0.65	-1 79	-1 20	-8 20	0.38	2.40	30.13
R2	1/(365.26日)	0.54	353.64	0.02	-44.81	1.13	-39.04	7.71	-43.72	10.54	-111 72
K2	1/(365.22日)	5.42	175.67	-0.25	1 /8	0.02	-1 30	232	-26.20	-0.36	-54.20
MSN2	1/(32.45日)	0.08	107.19	-0.05	123.43	0.10	93.23	0.16	125.79	0.12	147.30
K12	1/(182.62日)	0.00	21.40	0.17	10.01	0.09	.9.77	0.24	-9.21	0.14	2.42
25M2	1/(38.52日)	0.40	8 30	0.05	0.09	0.00	18.14	0.04	46.62	0.14	144 20
MOS	1/(1.26日)	0.04	228.88	-0.03	0.62	-0.01	-7.12	-0.07	-7.79	-0.00	21 14
M3	1/(27.32日)	0.03	146.81	0.01	5.02	0.06	3.61	0.07	3.40	0.03	6.38
SO3	1/(32.13日)	0.01	275 34	-0.10	-41.16	-0.10	-44.91	-0.05	-99.24	0.13	-19.85
MK3	1/(182.62日)	0.22	236.64	-0.10	-8 77	-0.10	-11.00	0.03	-2.58	-0.02	-38.13
SK3	1/(14.77日)	0.40	72 20	0.01	20.71	0.10	46.61	0.03	44.75	0.67	-50.15
MNIA	1/(1.21日)	0.40	251.10	-0.01	107.64	0.10	161.69	0.42	160.02	0.07	-35.75
1011144	1/(27.55日)	0.03	231.13	0.03	12 21	-0.04	0.11	-0.02	0.90	0.07	9.40
CNI4	1/(31.81日)	0.44	201.06	0.02	12.51 EE 63	-0.02	10.00	-0.13	0.03	0.04	105 51
DIV4	1/(27.55日)	0.00	201.00	0.00	-00.00	0.03	-42.03	-0.02	-03.49	0.04	-105.51
MIS4	1/(182.62日)	0.12	209.53	-0.05	40.15	-0.04	19.50	-0.07	-3.11	-0.16	101.70
NIN4	1/(16.06日)	0.13	209.35	0.02	-40.10	0.01	-50.04	0.07	-90.07	0.14	11.05
54	1/(182.62日)	0.21	105.54	0.21	9.07	0.20	11.89	0.42	62.00	0.47	11.85
SR4	1/(0.57日)	0.02	195.54	-0.10	-29.02	-0.04	-3.35	0.07	03.29	0.25	49.32
ZMING	1/(27.55日)	0.02	85.39	0.00	0.54	0.00	1.13	0.01	11.42	0.00	10.26
MONIC	1/(31.81日)	0.03	80.49	-0.01	27.40	0.00	30.94	-0.01	18.42	-0.01	-24.48
MSN6	1/(27.55日)	0.02	129.08	0.00	25.16	0.00	32.80	0.00	87.71	0.00	81.13
21/156	1/(182.62日)	0.03	115.40	-0.01	-2.50	-0.01	24.38	0.01	47.89	0.02	38.93
ZIVIKO	1/(16.06日)	0.01	140.00	0.02	0.58	0.03	-10.92	0.05	-44.23	0.06	-53.13
25106	1/(182.62日)	0.02	148.33	0.01	3.87	0.01	3.85	0.02	-3.42	0.04	-23.40
MSK6		0.02	109.63	0.01	3.53	0.01	10.84	0.02	-1.87	0.05	-20.17

Fig. 4. Variation of harmonic constants for (a, b) sporadic or (c, d) continuous missing cases in Yokosuka. (a, c) is Amplitude and (b, d) phase.

図 4. 横須賀における (a, b) 間欠的な欠測, (c, d) 連続的な欠測のそれぞれにおける調和定数の変化. (a, c) 振幅, (b, d) 遅角.

長が大きく、欠測の割合 80%では数千 cm のオーダーになる(Figs. 5e-5h). 八丈島を除き、欠測の割合 30%までは、誤差はほとんど成長しないこともわかる(Figs. 5i-5l). 連続的な欠測の場合について、欠測の割合に対する Sa, Ssa, M2, S2, O1, K1, P1, N2, K2の振幅と遅角の変化を全験潮所で確認したが、横須賀の場合と同様

に, 1) O1, N2, M2にはほとんど変化がないこ と, 2) Sa と Ssa は欠測の割合 20%程度から振幅 が増減すること, 3) P1 と K1 は欠測の割合 40% 程度から振幅が増加すること, 4) S2 と K2 は 60%程度から振幅が増加すること, 5) 遅角は, 振幅の変化にあわせて激しい増減がみられること が共通してみられ, 全体的な傾向は変わらなかっ

- Fig. 5. The square root of the mean-squared error values between the original observed time series and the values estimated from harmonic constants derived from the sporadic (top row, a to d) and continuous (middle and bottom rows, e to l) missing patterns respectively, and were observed at 20 different gauges under the jurisdiction of Japan Coast Guard. For a, e and i: Chiba (blue), Yokosuka (black), Yokohama (red), Kamaishi (green), Tappi (purple), Awashima (yellow). For b, fand j: Kure (blue), Hiroshima (black), Tokuyama (red), Ooita (green). For c, g and k: Hakata (blue), Sasebo (black), Oodomari (red), Izuhara (green), Nishinoomote (purple), Naze (yellow), Nakanoshima (cyan), (d, h, l) Kozushima (blue), Miyakeshima (black), Hachijoshima (red). For e to h: In the middle rows, the maximum value of y-axis is set in such way so that all data of root mean-squared error can be shown. For i to l: In the bottom rows, the maximum of y-axis is enlarged to 100 cm in order to show the detailed changes of root mean-squared error for the missing ratios up to approximately 60%.
- 図 5. 海上保安庁所管の 20 験潮所における(上段:a-d)間欠的な欠測のパターン及び(中段と下段:e-l)連続的な欠測のパターンで得られた調和定数による推算と元の観測時系列の誤差の二乗平均の平方根.(a, e, i)千葉(青),横須賀(黒),横浜(赤),釜石(緑),竜飛(紫),粟島(黄),(b, f, j)呉(青),広島(黒),徳山(赤),大分(緑),(c,g,k)博多(青),佐世保(黒),大泊(赤),厳原(緑),西之表(紫),名瀬(黄),中之島(青緑),(d,h,l)神津島(青),三宅島(黒),八丈島(赤).(e-h)中段では誤差の二乗平均の平方根の最大値が図に収まるように縦軸を設定したが,(i-l)下段では欠測の割合 60%程度までの変化がわかるように縦軸を0 cm から 100 cm に拡大した.

た.

なお, Figs. 5i-5l で二乗平均誤差の変化を細かく見ると, ほぼすべての地点で, 欠測の割合 30%を超えると誤差が拡大し, 40%あたりで誤差 が一度小さくなる. ただし, 釜石ではこの誤差の 低下がほとんど見られず, 名瀬と大泊と中之島で は極小が 50% あたりに見られ,神津島,三宅島, 八丈島では,55% あたりに極小があるものの誤差 はかなり大きい.このような誤差の極小は,Sa の振幅と遅角の特徴的な変化に起因しているよう である.多くの地点で,Figs.4c,4d に示した横 須賀と同様に,Sa の振幅は 35% 程度で極小,遅 角も極値となり、40%程度でもとの振幅と遅角に 近い値になる傾向がみられる.いずれもここでは 示さないが、釜石、名瀬、大泊、中之島、神津 島、三宅島、八丈島では、この傾向が若干異な る.釜石では、Saの振幅の傾向は似ているもの の、遅角は、30%程度で約120度変化してからも とに戻らないようである.名瀬と大泊と中之島で は、このSaが元の振幅と遅角に戻ってくるのが 50%あたりにみられ、神津島、三宅島、八丈島で は、Saの振幅のはじめの減少がみられないもの の、55%あたりに振幅の極小がみられる.このよ うな違いは、観測地の水位の季節変動の特徴に依 存しているのかもしれないが、本稿ではこれ以上 深く立ち入らないことにする.

6 考察

間欠的欠測のパターンにおいても,ひとつの欠 測の期間はおよそ37日間という相当長い時間で ある.この場合であっても,調和定数や,観測値 と推算値の誤差はほとんど変わらなかったことか ら,欠測がほぼランダムに起こった場合は,調和 定数にはほぼ影響がないことが容易に想像され る.

連続的欠測のパターンでは、周波数の差が (365.25 日)⁻¹であるような複数の分潮をもつ K1 と S2 の振幅が非常に大きくなること、季節的な 変化を示す長期成分の振幅が大きくなることがわ かった.一部の季節のデータだけによる季節変化 は、Sa や Ssa、Mm などの長期成分をゆがめる だろうことは、直感的に理解できる.

では、欠測の期間の振動が巨大になるのはなぜ か. K1 や S2 の振幅の季節的な変化は、K1 や S2 と周波数の近い複数の分潮のうなりとして表現さ れている.一部の季節の K1 や S2 の振幅変化を、 K1 や S2 と周波数の近い複数の分潮の調和定数の セットで過剰に説明しようとすると、他の季節の K1 や S2 の振幅が過剰に大きくなる.これが、 オーバーフィッティングの本質であろう.

それならば,オーバーフィッティングが起こら ないようにするには,どうしたらよいか.Saや Ssa といった季節成分や,周波数の間隔が短い分 潮を調和分解しないようにする.これは短期調和 分解の考え方と同じである.

AOV は、1年間以上の観測を行うよう計画さ れるが、そもそも観測の開始から終了までが1年 間より短くなることもある.このため、Python で開発している調和分解プログラムでは、観測開 始から終了までの日数で、使用する分潮数を場合 分けしている.観測期間の長さが365.25日以上 あれば、(365.25日)⁻¹の隣り合う分潮も分解で きるが、それより短い場合、短期調和分解とし て、それらの分潮はわけず、通常振幅が大きくな る分潮を選択して、調和分解に用いる分潮数を減 らしている.この考え方ならば、周波数の間隔が 短い分潮のうち片方のみを調和分解に用いること で、今回のようなオーバーフィッティングが起こ らないようにすることができる.

その場合は,観測期間の実質的な長さとして, まとまりのある欠測期間を,観測開始から終了ま での長さから引き算して定義し,実質的な観測期 間の長さに応じて分潮を選択することとなろう. 全期間の20-30%までのまとまった欠測ならば 調和定数に変化がなかったことを考慮して,実質 的な観測期間を下記のように定義することとし た.

観測開始日時から観測終了日時までの長さを T_{all} , 観測期間中最も長い欠測期間を T_m とする. 係数 $C \approx 0.2 - 0.3$ と設定し,実質的な観測期間 T_{eff} を次のようにして求める.

$$\begin{split} & \text{if } T_{\text{m}} > C \cdot T_{\text{all}} \\ & T_{\text{eff}} = T_{\text{all}} - (T_{\text{m}} - C \cdot T_{\text{all}}) = (1 + C) \, T_{\text{all}} - T_{\text{m}} \\ & \text{if } T_{\text{m}} \leq C \cdot T_{\text{all}} \\ & T_{\text{eff}} = T_{\text{all}} \end{split}$$

60 分潮を調和分解する長期調和分解は, *T*_{eff} が 365.25 日を超える時行えばよい. 実質的な観測期 間が 365.25 日より短いときは, 実質的な観測期 間の長さに応じた分潮を選択して短期調和分解を 行えばよい.

実質的な観測期間を計算するにあたり,最も長 い欠測期間の長さの許容範囲は,観測期間に比例

している. AOVの観測期間は1年より長いこと も考えられるが、この場合、観測期間に比例する 最も長い欠測期間の長さの許容範囲も長くなるこ とになる. 仮に、1年半の観測ならば、9か月の 欠測があっても、実質的な観測期間は1年を超え るので、長期調和分解を行えることになるが、特 定の季節の観測値を用いないため、一年、半年周 期成分は現実的でなくなる可能性がある.しか し、AOVに限らず、もともと、SaとSsaは、数 年分の調和分解が行えない場合、近隣の常設験潮 所の Sa と Ssa を引用して用いることがあるため. Sa と Ssa の欠測割合への感度が仮に上がったと しても、AOVの解析結果を使わなければよい. また、K1、S2など、周囲の分潮との周波数差が 近い分潮を分解できるかどうかは、観測開始から 終了までの長さに依存する. 従って、調和分解す る分潮数の目安として実質的な観測期間を用いる ことの妥当性は失われないだろう.

今回の結果からは、欠測が観測期間の20-30%程度ならば、もとの観測期間と同じ調和定数 のセットを使用してもよいということが示唆され る.この程度の欠測の割合ならば、今回の解析の 範囲では、周波数の近い分潮の調和定数も、大き な振幅にはならない.SaとSsaは若干変動が大 きいが、前述の通り、解析されたSa、Ssaではな く、近隣の常設験潮所のSaとSsaで代えればよ いだろう.

最後に,間欠的な欠測がほとんど調和定数に影響がないことを拡大解釈しないように次の点を強調しておく.今回の実験は,常設験潮所で観測された,品質管理された潮位データを用いて人工的に欠測を設定して行っている.従来と変わらず, 32 昼夜などの短い潮汐観測の毎時値に,間欠的な欠測が発生する場合,まずは測器の不具合を,次に測器から記録媒体へのデータ転送の不通を疑い,観測データの品質管理を徹底するべきであろう.

7 結論

AOV による潮位観測データを模して, 験潮所

の潮位観測データから人工的に欠測させた時系列 データを調和分解し、 欠測の割合に対する調和定 数と二乗平均観測誤差の感度を調べた. 欠測が間 欠的に発生する場合、観測期間の80%が欠測で あっても、調和定数にはほとんど変化がないこと がわかった. 欠測が継続する場合, 欠測の割合が 観測期間の50%を超えると、長期成分、K1、S2 のそれぞれの振幅と遅角の変化が大きくなり、誤 差が無視できなくなるが、欠測の割合が20-30%程度であれば、もとの調和定数とほとんど同 じ値となった、連続的に欠測が起こると、一部の 時期の季節変化に対してオーバーフィッティング が起こり、調和定数が信頼できなくなる.これを 避けるには、AOV による観測の欠測が連続する 期間は、最大でも全観測期間の20-30%程度に 抑えるべきであるといえる.より長い欠測があっ た場合は、欠測期間を除いた実質的な観測期間に 対応した短期調和分解を行うことを検討すべきで ある.

謝 辞

本研究は、本庁 AOV 担当の山﨑主任環境調査 官(平成 30 年度)、杉山主任環境調査官(令和元 年度)からの、AOV で取得する潮位データの欠 測がどこまで許されるかという問いを端緒に行わ れました.宗田上席研究官には、既存の調和分解 コードとの比較に関し指摘を頂きました.また、 匿名の査読者には、本研究がより効果的に AOV 業務に資するようなコメントを頂きました.ここ に感謝の意を表します.

文 献

近澤昌寿・橋口祥治・大久保沙貴(2012)日本沿 岸における潮位偏差の地域性及び季節性につ

いて, 測候時報, 79, S1-S24.

- 彦坂繁雄・赤木登・矢野雄幸(1966)最小自乗法 による潮汐調和分解とその精度について,水 路部研究報告,1,27-32.
- 海上保安庁(1992)日本沿岸潮汐調和定数表,書 誌 742.

- 松永智也・山崎哲也・糸井洋人・加藤弘紀・増田 貴仁・西村一星・土屋主税・佐藤勝彦・田中 友規・野坂琢磨・石田雄三・下田力・楠本仁 麦(2018)自律型海洋観測装置(AOV)の 運用,海洋情報部研究報告,56,68-78.
- 宗田幸次・福島繁樹(1995)沿岸海象データ処理 プログラム,水路部技報,13,31-42.
- 西村一星・増田貴仁・糸井洋人・土屋主税・加藤 弘紀・松坂真衣・佐藤勝彦・田中友規・野坂 琢磨・石田雄三(2017)自律型海洋観測装置 (AOV)の運用に向けて,海洋情報部研究報 告,54,74-83.
- 小田巻実(1981) 最小自乗法による潮汐・潮流の 短期調和分解の一つの試み,水路部研究報 告,16,71-82.
- 土屋主税・林王弘道・松永智也・小林研太・久米 奈緒子・山崎哲也・加藤弘紀・鈴木英一・宗 田幸次・横田裕輔(2019)自律型海洋観測装 置による潮位解析の方向性,海洋情報部研究 成果発表会,東京,2019年1月17日.

要 旨

最小二乗法による調和分解は, 欠測期間が長い 潮位データでも, 観測期間が1年間あれば, 原理 的には 60 分潮を分解することができる. 潮位観 測データを用いて, 欠測期間の長さに対する調和 定数の応答を調べた. 間欠的に欠測する場合は観 測期間の 80%が欠測しても調和定数には変化が ほとんどないこと, まとまった欠測が起こる場合 でも, 観測期間の 30%を超えない期間の欠測で あれば, 調和定数には変化がほとんどないことが わかった.