位置時刻測定装置の開発

小野房吉：海洋研究室

Development of Position and Standard Time measurement System

Fusakichi Ono：Marine Research Laboratory

1. 開発の目的

水路部は、（財）日本水路協会と共同で「音響による海洋構造調査手法の研究」の一環として音響トモグラフィシステムの基礎研究に着手しました。このシステムは海中の適当な位置に適当な間隔をおいて配置した音波の送受波器間の伝播時間を測定し、音速分布を求めます。音速は、伝播経路の媒質に流れがあれば、ドップラー効果により見掛け上変化し、また水圧や温度が高ければ速くなる性質があるので、音速分布を海流や水温分布と対応させ、トモグラフィとして図示できるはずです。勿論広範な海域の海洋構造の図化には単一経路の音波伝播測定では、不可能で実用化には多数の送受波器の組み合わせによる複数の経路の測定が必要です。さらに、トモグラフィシステムのモデルを考える場合、海底や海面での反射があると複雑になったり、音速を変える要素が複数になると、その分解の問題があります。このように、このシステムの実用化には、今後解決すべき種々の課題がある他、最も基本的な海洋における音速度測定技術を実用的方法を確立されておりません。この基礎研究では、こうした新しい海洋調査手法の実用化に必要な要素技術の確立を通じて展望を開こうとしています。都度の装置は、こうした要素技術の一つとして開発されました。

音速を正確に測定するためには、送受波器の設置位置、パルス音波の送受信時刻が正確に測定される必要があります。音波送受波器間隔が数メートル以内ならば、音波送信時刻測定基準パルス系は、送受両点で共通のものが使用できる標準時を参照する必要はありませんが、送受間隔が遠距離なければ基準パルス系は両点に独立に必要となり、正確な同期運用が要求されます。この場合、遠隔な2地点に設置された基準パルス系の同期の確立と維持のために標準時を参照が不可欠です。本装置では測位装置として、誤差評価が可能で、局の選択ならび初期設定が不要の新方式ロランC受信機を採用し、時刻装置としては、マイクロ秒まで微調整が可能な時計と、短波の標準電波及びロランC電波を利用した時計比較装置を採用して、所期の性能を得ています。

2. 要求性能

(1) 測位精度 ±10m以内（相対位置）
(2) 時刻測定 ±1/10000 秒以内

遠洋海域で、この精度を容易に達成できる測位システムは在来品ではありませんが、水路部で先に開発した新しい原理に基づくロランC受信機では、この精度を達成しています。この受信機は局の選択も必要なく使い勝手のよいのでこれを採用し、時刻装置としては、やはり先年水路部で人工衛星レーザ測距のために開発した精密時刻装置を基本に、本研究向きに新しく設計しました。

時刻装置設計の考え方は、任意地点で容易にUTC（協定世界時）が確立でき、実験期間中時刻装置が正
常に動作したとの証拠として，UTCとの連続時計比較データが取得できることでした。

3. 構 成

本装置は，標準時計，ローランC受信，標準電波受信，時間間隔測定，データ処理，記録の各部で構成され，それぞれ次の機能を有しています。

(1) 標準時計部

表示機能 日時分秒（日付は通日）

図－1 位置時刻測定装置のブロック図

写真－1 位置時刻測定装置
時刻の設定：リセット、スタート、ストップ、早送り
基準秒信号：パルス幅2 msの正パルス、音声モニタ 1000 Hz 10 ms
同期方式：トリガーパルスによる自動同期
遅延秒信号：0.1 μs ～ 1 sec 近 6桁デジタルスイッチによる連続スティップ遅延、パルス幅2 ms
10秒マーク：1000 Hz 100 msの音声モニタ
基準発信機：10 MHz 水晶、安定度 5 × 10⁻⁹/day
音声モニタは、1000 Hzの10秒及び1秒マークがテープレコーダに時刻基準として録音できます。
(2) ロランC受信部
測定できる LOP W , X , Y , Z の全従局
主局同期パルス 主局パルス到来時の立ち上がりに同期した10μs GRI パルス
アンテナ：2 m ホイップ
データ出力：RS 232C 準拠
(3) 標準電波受信部（時刻の初期値設定用）
受信周波数：150 kHz ～ 30 MHz, 118 MHz ～ 174 MHz
受信モード：AM, SSB, CW, FM
同期秒信号：標準電波 JJY に含まれる1600 Hz をフィルタで抽出し波形成したJJY同期パルス
(4) 時間隔測定部
基準秒パルス、遅延秒パルス、ロランC同期パルス、JJY同期パルス相互間の時間差を測定します。
測定分解能：± 0.1 μs
(5) データ処理部
測位計算、ロランC主局と受信点までの電波伝播時間、対地速度、時計比較等の処理計算をオンラインで行う電子計算機です。
(6) 記録部
データ処理部での処理結果を格納するフロッピーディスク及びプリンターより構成されます。
以上の各部より成る装置のブロック図を第1図に示しました。

4. 測定精度
開発した装置について種々の条件でテストを行ったところ、下記の性能が示され目標の精度を十分達成していることが証明されました。
(1) 測位（緯度、経度） ± 0.003°
(2) 時刻設定 ± 0.1 μs
(3) 時間差測定 ± 0.03 μs（平均値）

5. 使用例
本装置は、これまで海域における音響伝播実験に3回使用され、何れも所期の性能を発揮し、安定度、精度共に良好な成績をしめしました。第1表に昭和61年10月に相模湾で測量船「天洋」を用いて実施した音響の海中伝播試験における位置時刻測定データの一例を掲げました。この表でHEDは船の対地進行方向SPDは対地速度、SPERはその誤差、Propagation ErrorはロランC各従局の測定誤差（単位μs）、rは主局か
<table>
<thead>
<tr>
<th>時刻</th>
<th>緯度</th>
<th>経度</th>
<th>速度</th>
<th>波長</th>
<th>補正</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>139.58</td>
<td>43.12</td>
<td>0.9</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>01h</td>
<td>139.59</td>
<td>43.12</td>
<td>1.1</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>02h</td>
<td>139.60</td>
<td>43.12</td>
<td>1.3</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>03h</td>
<td>139.61</td>
<td>43.12</td>
<td>1.5</td>
<td>0.7</td>
<td>0.3</td>
</tr>
</tbody>
</table>

6. あとがき

本装置は、開発過程において、多くの実験を経て作成されたものです。今後もさらなる改良が期待されています。
報告者 総 介

Fusakichi Ono
小 野 房 吉 昭和62年3月現在、本庁水路部企画課海洋研究室研究官