海域火山の地磁気異常について

小野寺健英:航法測地課 熊川 浩一:八丈水路観測所 久保田隆二:川崎地質㈱

Magnetic Anomalies of Volcanoes in the Sea Area

Ken-ei Onodera : Geodesy and Geophysics Division Koichi Kumagawa : Hachijo Hydrographic Observatory Ryuji Kubota : Kawasaki Geological Engineering Co., Ltd

1. はじめに

火山(海底火山)は一般に強磁性(強い磁気を帯 びやすい性質)の鉱物を含む岩石により構成され, そのため、火山の地磁気は周辺の地磁気とかなり異 なった分布を示す.船舶や航空機では、広範囲に効 率よく火山等の地磁気を測定でき、これにより得ら れた地磁気異常分布を解析することにより、地下の 構造を推定することができる.

水路部では、これまで日本周辺の海上磁気測量, 航空磁気測量を実施してきている。また、一昨年か らは本州南方諸島の海域火山についての基礎データ をデータベース化する「海域火山基礎調査」が進め られており、この一環として当該域の海上磁気測量 を行っている。

ここでは、特に火山島、海底火山の地磁気異常分 布から地下の磁気的構造を推定し、さらにその変化 から地下の熱的構造の変化を捉えるための一手法に ついて紹介する.

2. 地下構造(磁化強度分布)の推定

海山等における地磁気の解析法としては、磁気異 常が磁気基盤の起伏に起因すると考えて扱うのが一 般的である。この場合、磁化が一様であると仮定し て、基盤を多数の四角柱あるいは多角柱の集合体で 近似し、計算磁気異常が実際の異常値にほぼ一致す るまでモデルの修正を繰り返す方法(Bhattacharyya, 1964) や,表層と基盤の二層構造モデルを仮定 し,重力で使われるようなフーリエ変換を用いた下 方接続を利用する方法等がある(Ueda, 1994).

しかし今回は、海底火山の磁化の変化をとらえる という観点から、磁気基盤の形状を先駆的な情報、 すなわち音波探査データがある場合は音響基盤深度 情報を、そうでない場合には地形を用い、磁気異常 は磁化強度分布の不均一性に起因すると考えて解析 することとした、方法は、2次元高速フーリエ変換 による方法(久保田,2000)を用いた。

3. 地下構造の変化 - 熱的構造の変化

磁性を帯びた物体は熱せられるとその磁気を失 う.強い残留磁気を持つ火山岩で構成されている山 体がマグマの上昇により,内部が熱せられれば,い わゆる熱消磁の状態となり,観測される磁気が小さ くなる.同一の火山,海底火山を一定の期間をおい て測量し,地磁気異常分布を前項で述べた基盤形状 データを用いて,それぞれの磁化強度の分布を求め ると,大きな地殻変動がなければ基盤構造は変化し ないので,磁化強度の差(変化分)は山体内部の熱 的構造の変化による可能性が高いと考えることがで きる.

近年, GPS システムの出現により,船舶・航空機 の測位精度が上がり,測量の再現性が確保されてき た.本稿ではまだ繰り返し測量による実際の磁化強 度の差について言及できないが,現在,いくつかの 火山・海底火山について,解析を行っているところ であり,その比較結果については別の機会にゆずる こととしたい.

4. 明神礁付近の地磁気異常

明神礁付近(第1図)の調査は1998年測量船「昭 洋」によって行われた.また、1997年にこの海域の 航空磁気測量が羽田基地所属航空機「LA701」に よって実施されており、第2図はこれらを取りまと めた地磁気異常図である。第3図は音波探査により 得られた音響基盤深度分布図,第4図は音響基盤を 磁気基盤として求めた磁化強度分布(カラー表示、 コンターは海底地形)である。明神礁は典型的なダ イポール型の異常を示し、その西側にあるべヨネー ス列岩はかなり大きな正の異常を示している.磁化 強度分布は,明神礁の北西に高磁化強度域(寒色系), 南西側に低磁化強度域(暖色系、東及び南東は水深 の影響による)を示し、これらは数度の噴火による 岩体の形成史を反映している可能性があるが、今後 の調査による解析結果との比較により地下構造ある いは地下の熱的構造の変化が捉えられることが期待 される.参考までにフリーエア重力異常図を第5図 に示す.

5. 薩摩硫黄島付近の地磁気異常

第6図は1998年に「LA701」によって実施された 薩摩硫黄島付近の地磁気異常図(高度:1370m),第 7図は基盤モデルとした海底地形,第8図は磁化強 度分布である.薩摩硫黄島,竹島はトカラ列島と呼 ばれる火山島群の最北端に位置し,鬼界カルデラ北 端の陸上部分である(第7図参照).磁気的な特徴と して,標高750mの硫黄岳では磁化が弱く,竹島の東 に顕著な磁気異常に対応した磁化の強い部分がみら れる.また,カルデラの南には,正の異常があり, 強磁性岩体の存在を示唆している.この海域は2000 年10月に航空磁気測量を行っており,現在データ処 理中である.

6. 今後の検討方法

地磁気の解析では,磁気異常分布をその基盤の起

伏によるものとして扱うか,あるいは基盤の磁化強 度の面的な変化として扱うのが一般的である.すな わち,磁気異常の大きな部分は,基盤が凸状になっ ているか,あるいはその部分の磁化強度が高いと考 える.

このような解析方法は,火山島を含む周辺地域の 磁気的構造を把握するのに有効であるが,活動性の 高い火山本体を対象とする場合には,3次元的な磁 気構造を知ることが,マグマ溜まり等の存在につい て議論するのに重要となってくる.先にも述べたよ うに,火山体内部の熱的変化は,磁性鉱物の熱消磁 を引き起こし,したがって周辺磁場にその影響が現 れる.このような3次元磁気構造の解析手法につい ては,植田ら(2001)により,三宅島の例について 報告される予定である.

7. 謝辞

明神礁及び薩摩硫黄島の調査に従事された測量船 「昭洋」乗組員,第三管区羽田航空基地職員の方々 及び助言をいただいた植田義夫海洋研究室長に,こ の場をお借りしてお礼申し上げます.

参考文献

- Bhattacharyya, B. K. : Magnetic Anomalies due to prism-Shaped Bodies with Arbitrary Polarization, *Geophysics*, 29, 517-531, (1964)
- 久保田隆二:2次元高速フーリエ変換による重力・ 磁力分布の解析(その3),第11回海洋調査技 術学会講演予稿集,(2000)
- Ueda, Y. : Study on crustal structure of Japanese island arcs as revealed from magnetic and gravity field analysis, *Rept. Hydrogr Res.*, 30, 61–174, (1994)
- 植田義夫,中川久穂,小野寺健英,鈴木晃,熊川浩 一,久保田隆二:2000年噴火以前の三宅島の 3次元磁気構造一地磁気トモグラフィーの試 み一,水路部研究報告,37,19-36,(2001)

140

Fig. 3 Acoustic basement in and around Myojin-sho.

第3図 明神礁付近音響基盤深度(m)

140°10'

139°50'

第2図 明神礁付近地磁気全磁力異常 (nT)

Fig. 2 Total-Intensity magnetic anomalies in and around Myojin-sho.

102 —

Vol. 19. 2001

Vol.

19.

2001

- 103 ---