鳴門海峡潮流観測報告

難波 徹,坂口澄雄:第五管区海上保安本部海洋情報部

Observation report of tidal current in Naruto strait

Toru NANBA and Sumio SAKAGUCHI : Hydrographic and Oceanographic Department,5th R.C.G Hqs.

1 はじめに

鳴門海峡は,紀伊水道から瀬戸内海に通じる最短 航路で中小型船の重要航路であるが,海峡幅が狭く 国内で最も速い潮流が存在し,船舶にとっては海難 事故が多発する難所でもある.また,強力な潮流と 水深の深さから流速計を設置して潮流観測を行うこ とが非常に困難な所である.このため過去におい て,さまざまな方法により潮流の推算を行い,潮汐 表の改正を行ってきた.(第1表参照) 鳴門海峡では,平成10年から14年の5年間におい て7件の座礁事故が発生しており,保安部等から, より正確な潮流情報の提供について要望があったこ とから,五本部海洋情報部では,平成14年度,鳴門 海峡の潮流観測を実施し,潮汐表記載の潮流推算値 の検証を行った.その結果,鳴門海峡の強流域(大 鳴門橋の北側及び南側)において潮汐表予報点(大 鳴門中央部)に比べて約1.1~1.3倍の流れが生じてい ることが成果として得られた.その結果から,平成 15年度,引き続き潮流観測を実施し,昭和59年に採

第1表 潮汐表改正の経緯 Table 1 Details of tide table amendment

年	内容	潮汐表
明治32年11月~33年2月	海峡南北側8箇所(詳細小明)において各数ヶ月間の潮汐観 測実施。	
明治33年1月1日~2月19日	浮標追跡観測(50日間)を実施。 孫埼で24日間、憩流時観測と内外水面の験潮から、潮位差が 無いときが憩流時であった。福良・阿那賀等の各水面は内外水 面と見なしても大差なく、潮位差と18回の流速値(実測)から、流 速ましてきたちる裏を示した	
大正3年12月~4年12月	阿加賀及び福良の潮汐観測(1ヶ年)から水位差定数を算出。 その水位差定数と明治33年の浮標追跡観測を比較検討した 結果、転流時で2,30分以内、最大流速は12kn以内で一致するこ とから大正11年の潮汐表より使用した。	大正11年~
昭和32年7月	浮標追跡による15昼夜連続潮流観測を実施。調和定数を算 出。この成果が水位差による予報に替わって昭和35年の潮汐表 から使用された。 また、同時期に網代及び千鳥ヶ浜における潮汐観測(1か月 間)も実施しているが、人力計算に頼る当時の状況下では少なく とも水面差による間接法よりも直接観測の方が真実に近いと考 えられたため使用されなかった。	昭和35年~
昭和52年2月~57年1月	本四公団による鳴門架橋工事施工の安全確保等の目的のため、連絡橋工事警戒船により海峡転流時刻の目視観測がほとんど毎日(昼間のみ)行われた。この観測成果と潮汐表予報値との比較によれば、大潮期には合致するが小潮期にはズレが生じ、そのズレが大幅になる時期があることが明らかになった。	
昭和58年	昭和32年の観測成果の再検討及び予報に使用する定数等の 調査の結果、昭和32年に浮標追跡観測と並行して実施した網代 及び千鳥ヶ浜における同時潮位観測成果(1か月間)を活用する ことにより、精度の良い予報値が得られることが過去の観測資 料との対比を含めて明らかとなった。 しかし、転流時に関して、13分の補正が必要であるため、網代 - 千鳥ヶ浜間の水位差から計算した調和定数のKを強制的に補 正した。[K+(13/60) × K] 昭和58年10月から1ヶ年、3箇所において潮汐観測を実施する も、潮位計の移動等により資料としては不採用としている。 、 通 色い接触の 招き 法法論社どしては不採用のに知る (本)	昭和59年~
千成 4年4月~10年5月	別里船皆戦の戸目 仮河迷司による潮流観測結果から、除数 の変更を行った。調和定数は昭和59年の潮汐表から採用してい る水位差定数を使用した。	10月~

用された水位差による調和定数(以後「水位差定数」 と表記)を使用して係数の変更を行い,平成16年10 月,潮汐表の改正が行われた.

本報告は平成14,15年度の観測を基に,鳴門海峡 における潮流推算の算出方法について試みたもので ある.

2 観測概要(第1図参照)

(1) 潮汐観測

水位差の算出を行うため,阿那賀漁港(以後「阿那 賀」と表記)に験潮器(RMD)を1年間設置して験 潮を行い,福良検潮所(兵庫県所管:LFT-V)(以 後「福良」と表記)まで水準測量を行い験潮データの 比較を行った.

(2) 転流観測

転流時刻の検証のため、大鳴門橋の橋脚に流速計 (以後「WH」と表記)を設置して平成15年10月に15 昼夜の潮流観測を実施した(写真1参照).また,昭 和52~57年の本州四国連絡橋公団の資料も使用し た.

(3) ADCP観測

平成14年4月から16年3月にかけて,大鳴門橋を 中心とする南北約1.5kmを測量船「うずしお」搭載の 超音波流速計(古野電気㈱製GI-60G,以後「ADCP」 と表記)で,潮流観測を施した.

なお、測得深度は4m、測得間隔は15秒とした.

第1図 調査海域 Fig.1 investigation sea area

写真1 流速計設置写真 Photo.1 current meter installation

3 観測結果

(1) 潮汐観測

福良及び阿那賀の各港における潮汐観測の結果を 第2表に示す.

阿那賀-福良間の高低差を第2図に示す.

観測期間中の平均水面の差は福良が阿那賀より 0.01m高い結果となったが,阿那賀-福良間の水準 測量の誤差が0.01mあることから,平均水面の差は 誤差範囲であるため,平均水面差の決定には至らな かった.このことから平均水面の高さは等しいと仮 定して以後の処理を行うこととした.

第2表 調和定数 Table 2 Harmonic constant

福良(34° 15'	N 134	° 43′	E)		阿那貧	₩(34°1	6.3′N	134°4	0.1′E)	
観測機器:LFT-V							町機器:	RMD			
観測	前期間:	H15.4.1	8~H16	5.20(3	69日間)	観	町期間:	H15.4.1	8~H16	5.20(3	69日間)
計算	┋方法:	最小自乗	法			計)	章方法:	最小自勇	き法		
	H(cm)	κ(°)		H(cm)	κ(°)		H(cm)	κ(°)		H(cm)	κ(°)
SA	19.3	158.9	M2	43.9	205.5	SA	19.4	164.0	M2	33.5	345.6
SSA	4.7	67.4	MKS2	0.1	101.2	SSA	5.0	56.1	MKS2	2.3	329.4
MM	0.6	90.0	LAM2	0.2	301.5	MM	0.9	74.3	LAM2	4.1	11.5
MSF	0.7	271.0	L2	1.6	224.4	MSF	0.9	36.4	L2	4.4	8.4
MF	1.2	162.3	T2	1.4	225.2	MF	0.6	130.7	T2	1.4	312.4
2Q1	0.5	171.9	S2	21.3	226.5	2Q1	0.2	274.6	S2	9.4	1.1
S1G1	0.6	147.6	R2	0.2	201.1	S1G1	0.7	321.4	R2	1.0	84.9
Q1	3.7	170.3	K2	5.8	221.5	Q1	3.9	205.7	K2	3.3	345.0
RHO1	0.8	175.0	MSN2	0.3	195.8	RH01	0.7	178.1	MSN2	0.8	256.8
01	17.6	181.0	KJ2	0.5	65.1	01	19.5	209.4	KJ2	0.4	30.0
MP1	0.2	279.0	2SM2	0.3	222.8	MP1	3.6	11.7	2SM2	1.4	273.5
M1	0.7	177.6	MO3	0.3	271.8	M1	0.7	249.3	MO3	1.3	0.0
CH11	0.2	183.0	M3	0.6	216.5	CH11	0.7	115.0	M3	0.6	281.0
P11	0.5	200.3	S03	0.3	290.3	P11	0.7	208.8	S03	0.8	25.1
P1	7.4	199.7	MK3	0.4	255.7	P1	8.6	236.5	MK 3	0.7	22.0
S1	0.4	66.8	SK3	0.2	39.4	S1	0.5	54.6	SK3	0.8	71.2
K1	23.1	201.9	MN4	0.1	237.0	K1	29.5	230.8	MN4	0.3	156.0
PS11	0.5	179.4	M4	0.4	243.8	PS11	0.8	162.4	M4	0.6	169.5
PH11	0.6	156.2	SN4	0.0	45.5	PH11	0.9	153.3	SN4	0.1	159.5
THE 1	0.4	211.0	MS4	0.1	248.9	THE1	0.6	231.2	MS4	0.5	190.0
J1	1.2	228.3	MK4	0.1	155.0	J1	1.5	270.5	MK4	0.1	219.4
S01	0.3	321.0	\$4	0.1	222.7	S01	1.5	21.7	S4	0.1	187.8
001	0.6	251.7	SK4	0.0	293.8	001	0.8	325.9	SK4	0.1	185.5
0.02	0.2	291.9	2MN6	0.1	171.8	002	0.5	2.94.4	2MN6	0.1	24.9
MNS2	0.7	162.5	NG	0.2	177.5	MNS2	1.5	178.7	MG	0.1	11.0
2N2	1.2	207.5	MSN6	0.0	194.2	2N2	1.3	348.4	MSNB	0.0	71.0
MU2	2.8	167.5	2MS6	0.2	205.1	MU2	6.5	175.0	2MS6	0.1	34.1
N2	8.5	200.4	2MK6	0.1	210.1	N2	6.0	340.7	2MK6	0.0	90.2
NU2	1.6	216.2	2SM6	0.1	240.3	NU2	1.3	350.6	2SM6	0.0	50.1
OP2	lôĭ	296 2	MSKR	l ñ ñ	220 1	OP2	ŝň	170 7	MSKB	lññ	86.2

- 第2図 福良・阿那賀潮位関係図
- Fig.2 Tide level-related figure between Fukura and Anaga

なお, 亀浦-八木の鼻間では, 平成14年度実施し た水準測量結果から平均水面の差は, 亀浦が八木の 鼻より0.006m(誤差0.008mm)低い結果であった. 次に,海峡の両端(福良及び阿那賀)における潮汐 の調和定数から次式で水位差定数を算出した. 水位差(h) = Σ fHcos(V₀+u+nt- κ) - Σ fH'cos(V₀ +u+nt- κ ') …①

ただし, H, κは海峡の1端における定数, H', κ'は他端における定数である. ①から求める水位 差は

$$\begin{split} \mathbf{h} &= \Sigma \, \mathbf{f} \mathbf{A} \cos \left(\mathbf{V}_{0} + \mathbf{u} + \mathbf{n} \mathbf{t} - \alpha \right) \quad \cdots @ \\ \mathbf{f}_{\mathcal{C}} \mathbf{f}_{\mathcal{C}}^{z} \mathbf{U}, \quad \mathbf{A} &= \sqrt{\mathbf{H}^{2} + \mathbf{H}^{2} - 2\mathbf{H}\mathbf{H}' \cos\left(\mathbf{K} - \mathbf{K}'\right)} \\ a &= tan^{-1} \frac{\mathbf{H} \sin \mathbf{K} - \mathbf{H}' \sin \mathbf{K}'}{\mathbf{H} \cos \mathbf{K} - \mathbf{H}' \cos \mathbf{K}'} \end{split}$$

(2) 転流観測

イ WHによる観測

WHによる観測値から調和定数を算出し,潮流の 推算を行い潮汐表の値と比較したものを第3図に示 す.

WHで測得したデータは流速が小さかったため, 流速を10倍している.WHの推算値は南流時(-) に転流していない場合がある.

これは、WHを橋脚の南側に設置していたことか ら、北側の橋脚が障害物となったことや、設置場所 は水深が浅く、橋脚の南側は南流時に潮位が下がる ため、WHで観測出来なかったためと考えられる.

ロ 目視観測

本州四国連絡橋公団による昭和52~57年の目視観

第3図 潮汐表とWHの推算値の比較

Fig.3 Comparison of tide table and the calculation value of WH

時間間隔(分)	潮汐表-実測値	水位差-実測値	WH-実測値
\sim -26	110	78	167
-25~-16	140	49	114
-15~-6	389	132	140
-5~5	741	526	178
$6{\sim}15$	381	636	139
$16 \sim 25$	175	423	141
$_{26}\sim$	159	251	801
合計	2095	2095	1680
平均(分)	0.931	9.928	27.149
標準偏差	24.518	23.541	47.576

測及び測量船「うずしお」による平成14,15年度の ADCP観測の転流時刻(以後「実測値」と表記)から, 潮汐表,福良及び阿那賀の水位差による調和定数か らの推算値(以後「水位差」と表記)及びWHの推算 値(以後「WH」と表記)の転流時刻の比較を行った (第3表参照).

「WH-実測値」の合計個数が少ないのは,第3図 にも記述したように転流していない場合があるため である.

潮汐表と水位差を比較してみると、平均について は、潮汐表で使用している調和定数は転流時刻の補 正を行っているため、潮汐表が1分以内であるのに 対し、水位差は10分近い差が見られた.標準偏差に ついては差が小さいため、ほぼ同様と考えられる. WHについては、潮汐表、水位差の2つに比べ平均 の差、標準偏差ともに大きな値となった.このこと から、本報告ではWHの観測結果については参考程 度とする.

第4表	新水位差定数
Table 4	New water level difference constant

	I H (Cm)			n(cm)	KUJ		ILCM)			I H(Cm)			H(cm)	
Sa	1.6	72.3	Ssa	1.1	177.1	Ma	0.5	230.3	MSf	1.5	236.0	Ħf	0.8	190.6
201	0.6	156.5	σ1	1.3	144.8	Q1	2.3	93.0	p1	0.1	171.3	01	9.3	94.2
MP1	3.6	194.8	M1	0.8	120.5	x1	0.7	281.8	π1	0.3	44.7	P1	5.2	115.6
S1	0.1	179.8	K1	14.5	101.2	$\phi 1$	0.4	326.4	\$1	0.3	331.6	81	0.3	78.2
J1	1.1	143.6	S01	1.3	213.4	001	0.8	185.6	002	0.3	114.8	MNS2	0.8	11.2
2N2	2.7	190.3	μ2	3.7	0.4	NZ	13.7	184.1	v2	2.6	196.0	OP2	3.0	359.1
M2	72.9	188.4	MKS2	2.4	147.6	λ2	4.0	194.5	L2	5.8	197.9	T2	2.0	178.9
S2	28.7	213.0	R2	1.1	253.3	K2	8.1	201.9	MSN2	0.7	97.5	KJ2	0.3	118.5
2SM2	1.2	106.4	MO 3	1.3	191.0	M3	0.6	164.9	S03	0.8	223.1	MK 3	1.0	222.5
SK3	0.6	260.5	MN4	0.3	305.9	M4	0.6	310.7	SN4	0.2	350.0	MS4	0.4	354.9
MK4	0.1	90.3	S4	0.1	269.4	SK4	0.1	350.2	2MN6	0.2	184.8	M6	0.3	183.8
MSNB	0.1	226.2	2¥S6	0.3	208.7	2MK6	0.1	231.7	2516	0.1	216.8	WSK6	0.0	232.7

第5表 潮汐表の調和定数(昭和59年から採用) Table 5 Harmonic constant in tide table(1984~)

	H	ĸ		H	ĸ		н	ĸ		H	ĸ		H	ĸ
M2	75.4	183.6	S2	26.6	206.3	N2	13.5	168.2	K2	7.2	206.3	22	2.6	168.2
# 2	4.6	49.7	L2	6.3	209.3	K1	17.3	105.0	01	13.8	83.2	P1	5.8	104.9
Q1	2.1	89.3	M4	0.3	275.4	MS4	0.5	52.9						

次に,水位差の平均を零に近づけるため,福良及 び阿那賀の調和定数から水位差定数を求めるとき, 転流時刻を9.9分ずらして再計算を次式③によって 行った.その結果を第4表に示す.補正を加えた水 位差の調和定数を以後「新水位差」と表記する.

また,潮汐表で使用している水位差定数を第5表 に示す.

 $h = \Sigma fAcos (V_0 + u + nt - \theta) \cdots 3$

ただし, $\theta = nX + \alpha$

X:水位差が零になってから転流するまでの時 間

第4図は9.9分の転流時刻の補正前と補正後の頻 度分布図である.第6表は水位差と新水位差の実測 値との差の平均と標準偏差を示す.新水位差の平均 は零に近づいたが,標準偏差は水位差と大差はな かった.

第6表 転流時刻補正前後の比較

Table 6 Comparison of slack time correction before and after

	水 位 差 −実 測 値	新水位差−実測値
平均	9.928	0.253
標準偏差	23.541	23.558

(3) ADCP観測

平成14年度及び平成15年度ADCP観測で測得した データから,北緯34度13.5分から北緯34度15.1分,東 経134度38.5分から東経134度39.5分で囲まれた範囲 における全てのデータを,10分の時間毎に最大値を 抽出したものを最大流として検証に使用した.

上記の範囲における最大流を水位差に合わせて水 位差毎にクラス分けしてプロットしたものを第5図 に示す.

イ 最大流と新水位差

新水位差の推算値の検証を行うため,最大流と比 較したものを第6図に示す.図のADCP値は北流 (+),南流(-)で標準偏差を計算し,標準偏差の 2倍以上を排除したものである.

新水位差の値は,水位差±0.2m以内では最大流の 方が弱く,それ以外の水位差では最大流の方が強い 傾向にある.

第5図 最大流の分布(水位差毎) Fig.5 Distribution of maximum flow (each water level difference)

- 第6図 新水位差と最大流の比較
- Fig.6 Comparison of new water level difference and maximum flow

潮汐表の値は、水位差定数から推算した値からト リチェリーの定理より次式④で算出されている.

 $V = \sqrt[c]{2gh} \quad \cdots \oplus$

V:流速

- g:重力加速度
- h:水位差(水位差定数から算出)
- c:摩擦係数 北流時 C=1.02

南流時 C=1.03

式④に使用している摩擦係数の検討を行う. ロ 新水位差と摩擦係数

摩擦係数の分布を把握するために,

$$C = \frac{ADCP}{\sqrt{2gh}} \quad \dots (5)$$

とし、新水位差との関係を表したものが第7図である.

水位差が小さい方がバラツキが多く,水位差によ

第7図 摩擦係数の分布

りバラツキに違いがあることから,水位差毎に以下 の5通りに分け,摩擦係数の算出方法について検討 することにする.

- ・南流及び北流で分けた定数(2分割)
- ・南流及び北流で分けた近似
 (2分割近似1次式)
- ・南流及び北流で分けた近似式
 (2分割近似2次式)
- ・南流及び北流の水位差±0.5mで分けた定数
 (4分割)
- ・南流及び北流の水位差±0.5mで分けた近似式
 (4分割近似1次式)
- ① 南流及び北流に分けて算出(2分割)

第7表に南流及び北流の平均,標準偏差を示す. また,南流時及び北流時の摩擦係数の分布を第8図 に示す.

第7表 平均と標準偏差(2分割)

Table 7 Average and standard deviation(2 divisions)

	平均	標準偏差
南流(一)	1.001	0.204
北流(+)	1.039	0.227

Fig.8 Distribution of friction coefficient (2 divisions)

摩擦係数の定数は南流時は1.001,北流時は1.039 とする.(第7表の平均値) 近似式は次式とする.

1次式

- 南流時 c = -0.1803h+0.8979
- 北流時 c = 0.1664h + 0.9583
- 2 次式
 - 南流時 $c = -0.4548h^2 0.6717h + 0.8036$

北流時 $c = -0.3572h^2 + 0.5246h + 0.8928$

 (2) 南流及び北流の水位差±0.5mで分けて算出(4 分割)

南流及び北流の水位差を±0.5mで分けた平均及 び標準偏差を第8表に示す.

また,同様に分けた摩擦係数の分布を第9図に示 す.

摩擦係数の定数は-0.5m以下のとき1.047, -0.49 ~ 0mのとき0.924, 0~0.49mのとき1.013, そして 0.5m以上のとき1.065とする(第8表の平均値).

近似式は次式とする.

第8表 平均と標準偏差(4分割) Table 8 Average and standard deviation(4 divisions)

水位差	平均	標準偏差
~−0.5m	1.047	0.156
-0.49 ~ 0m	0.924	0.248
0~0.49m	1.013	0.265
0.5m ~	1.065	0.175

第9図 摩擦係数の分布(4分割)

1次式

$$\begin{split} h &\leq -0.5 \quad c = 0.1297h + 1.1454 \\ 0.5 &< h \leq 0 \quad c = -0.3421h + 0.8375 \\ 0 &< h < 0.5 \quad c = 0.5778h + 0.8568 \\ h &\geq 0.5 \quad c = -0.0039h + 1.0677 \end{split}$$

ハ 摩擦係数について

第10図は水位差毎に摩擦係数を示したものである. 摩擦係数は、いずれの場合も水位差が±0.5m以上になると1.0を超えている.

1.0以上になった理由としては、以下の3点が考えられる.

- ①使用したADCP値は最大値を使用しており,海域 中心ではなく,区域として抽出した値である.
- ②鳴門海峡は起伏に富んだ海底地形をしており、流 出口が狭いため広い海域から狭い海域に導かれた 海水は、その後、開放域に達するため、ジェット 状の流れ(縮流)が発生する.この場合、ジェット 状な流れの左右に渦が生じる.流れが長時間に 及ぶとこの渦が縮流を補流するようになり、海峡 の近傍では海峡の流れより速くなる.比較してい るADCP値は渦が発生している海域も包含してい ることから、補流された流れと推算値とを比較し ていることもあると考えられる.
- ③トリチェリーの定理では、高水位側の水の運動エネルギーの初期値は0であるが、実際の海域では、海峡の手前では海水は既に潮流の運動エネルギーを持っているため。
- ニ 推算流速 第11図は算出した摩擦係数を使用して水位差毎の

第11図 流速の比較 Fig.11 Comparison of flux

流速の算出したものである.

水位差±1.2mのときに、10knを越える流速となっているものは、2分割の近似式(1次式)であり、実際の最大値をみると水位差1.1mで10knを超えている.

よって、今回は2分割の近似式(1次式)の摩擦 係数を採用することとする.

新水位差の推算値に2分割の近似式(1次式)の

第12図 新水位差と最大流の比較(係数補正後) Fig.12 Comparison of new water level difference and maximum flow (After the factor revising)

第9表	年間最大値の予測
Table 9	Estimate of annual maximum

kn	北流	南 流
2004年	11.5	10.8
(潮汐表)	(10.5)	(9.7)
2005年	11.7	10.8
(潮汐表)	(10.4)	(9.6)
2006年	11.8	11.1
(潮汐表)	(10.5)	(9.9)

第13図 推算値とADCP値の比較 Fig.13 Comparison of calculation value and ADCP value

摩擦係数を使用したものと最大流を比較したものを 第12図に示す.

近似式(1次式)の流速推算値は±0.5m以上の最 大流よりも弱い傾向にあるが,摩擦係数補正を行う 前より改善された.

近似式(1次式)を使用した推算値による年間の 最大流速を第9表に示す.

比較資料として,平成14,15年度の観測日毎に2 分割近似式(1次式)の摩擦係数による新らしく算 出した水位差定数からの推算値,潮汐表推算値及び ADCP観測値を比較したものの一部を第13図に示 す.

5 まとめ

平成14年度,鳴門海峡での事故防止の観点から潮

汐表の掲載値についての検証を行うため観測を実施 した.その結果、潮汐表予報点(大鳴門橋中央部) に比べて約1.1~1.3倍程度の流れが生じていること が判明したため、平成15年度も引き続き観測を実施 し、その結果から平成16年10月に摩擦係数のみの見 直しが行われ、従来の摩擦係数の値を北流時は0.84 から1.02、南流時は0.96から1.03として、潮汐表の改 正が行われた.

本報告は,平成14,15年度の観測から,以下のよう な手法により,推算流速を導き出す算出方法を試み た.

①海峡挟んだ南北における,阿那賀漁港臨時験潮所

及び福良検潮所潮位データの調和分解(369日)を 行い潮汐調和定数の算出.

②①の2つの調和定数から水位差定数の算出.③転流時刻の補正を行い水位差定数を再算出.

④ADCP値との比較から様々な摩擦係数の算出.

しかし,今回の試みには以下の4点が,今後の課 題として残されている.

 海峡を挟んで,瀬戸内海側と紀伊水道側との平均 水面の関係把握.

②摩擦係数算出にあたっての,データの選択方法③少ない最強流速時の観測値を使用しての推算の精

度(第14図 最強流速時の分布参照)

第14図 最強流速時の分布]

Fig.14 Distribution of maximum flow time

④潮汐の長周期分潮の算出

これらのことから、今回の算出方法には、長期間 にわたるADCP観測,潮汐観測及び転流時観測等 が、潮汐表の推算精度の向上に必要である.

参考文献

本州四国連絡橋公団:大鳴門橋工事海上警戒業務に おける転流時間調査資料,(1977-1982).

沿岸調査課:早鞆瀬戸の潮流と水位差潮流,水路業務 研修(1983).