測量船「明洋」への海底地殻変動観測用送受波器の船底装備について

川井仁一,浅倉宜矢:航法測地室 松本良浩:元海洋研究室

Permanent installation of the acoustic transducer for GPS/Acoustic seafloor geodetic observation under hull of Survey Vessel "Meiyo"

Jin-ichi KAWAI, Takaya ASAKURA: Geodesy and Geodetic Office Yoshihiro MATSUMOTO: Formerly belonged to Ocean Research Laboratory

1 はじめに

海底地殻変動観測は2000年の開始以来,観測機材 や解析手法の改良を行ってきている.

観測は,主に船体の位置を正確に求めるためのキ ネマティックGPS (KGPS)観測,船と海底基準局と の距離を計測するための音響測距観測,音速度補正 のためのCTD,XCTD,XBT観測,そしてKGPSア ンテナの位置から海底地殻変動観測用送受波器(以 下,「トランスデューサ」という.)の位置を求める ために動揺観測を行っている.海底地殻変動観測及 び観測機器の詳細については,畝見(2004),成田 (2005)が紹介している.

これまでの観測では、1本の支柱にKGPSアンテ ナ、動揺観測装置(Applanix社製POS/MV用慣性航 法装置IMU及びGPSアンテナ2基)、トランスデュ ーサを取り付け、支柱を船尾に設置して観測を行っ ていたが、今般、「明洋」のナローマルチビーム測深 機の代替に併せてトランスデューサの船底装備を 行ったので、他の関連機器の設置も含め、その装備 状況について報告する.

2 観測機器

「明洋」への海底地殻変動観測機器の取付け状況 は以下のとおりである.

IMUを重力計室, KGPSアンテナをマスト, POS /MV用GPSアンテナを上部船橋甲板右舷側, トラ ンスデューサを船底にそれぞれ設置し観測室まで配 線した.観測室には、GPS受信機,音響受信波形記

第1図 「明洋」への海底地殻変動観測機器取付け状況 Fig. 1 Situation of installation of GPS/Acoustic seafloor geodetic observation system on "Meiyo".

写真 1 「明洋」観測室 Photo. 1 Observation room of "Meiyo".

録解析装置,音響基準局動揺データ収録器などを設 置し,ここで海底地殻変動観測の殆どの作業が実施 できるようになった(第1図,写真1).

主要機器のうち2004年以降に更新された機器は, GPS受信機(Trimble社製NetRS)で,音響受信波形 記録解析装置や音響基準局動揺データ収録器と同様 にマスター時計(周波数標準器)から基準信号を入 力している.これで課題の一つであった受信機内の 発振子によるGPSデータの収録タイミングのずれ をなくすことができ,さらにすべての観測機器の時 刻の同期を取ることが可能となった.

また、本ドック中(2008年3月)に慣性航法装置 (IXSEA社製光ファイバージャイロPHINS)を重力 計室に取り付けたので、このデータも海底地殻変動 観測に利用している.海底地殻変動観測ではNMEA 0183に準拠(IXSEA社ではTECHSASフォーマット と称する)したフォーマット(ヘディングは時計回 りがプラス、ローリングは左舷Upがプラス、ピッチ ングは船首Upがプラス)で出力している.

重力計室にはPOS/MV用IMU, PHINSの他に, 主にマルチビーム測深機と共に用いられるSeatex 社製Seapath 200用MRUと併せて3台の慣性航法装 置が設置されることとなった.これらの相対位置関 係を第2図に示す.なお,PHINSの座標軸の中心は 底面から81.5 mm,左面から79.8 mm,前面から 91.4 mmにあり,IMUは上面の中心にある. 3 船底装備

3-1 概要

ナローマルチビーム測深機換装工事に伴い船底に 取り付けるドームの一部に空間的余裕があったの で、そこにトランスデューサを取り付けた.トラン スデューサの取付け位置は、マスト直下より約30 cm船首方向、約80 cm左舷寄りとなった(写真2). KGPSアンテナは、マストの方探アンテナが受信に 影響しないように、マストから船尾方向にL字鋼を 約1.6 m出して設置した(写真3).

- 写真2 「明洋」船底へのトランスデューサ取付け 状況
- Photo. 2 Installation of the acoustic transducer under hull of "Meiyo".

写真3 KGPSアンテナ取付け状況 Photo.3 Installation of the antenna on mast for Kinematic GPS observation.

海底地殻変動観測において必要な「KGPSアンテ ナとトランスデューサとの位置関係」の計測を実施 したので,測量の計画から結果までの経過を次節に 示す.

3-2 測量

(1) 計画

「明洋」が大型のドックに入渠することとなり, ドック内及び周辺でGPSを用いて計測する方法を とることにした.

手順としては、マストに取り付けるKGPSアンテ ナと「明洋」の周り(ドックの底)にGPS観測点を 設けGPS同時観測を行い各点の位置を求める.GPS 観測点から船底のトランスデューサまでの方向・距 離・高度を計測してトランスデューサの座標を求め る.このときドック外縁上にもGPS観測点を設け て、目標(当てもの)とする.

(2) 現地調査

実際に深さ13.5mのドックの底でGPSの電波が 正常に受信できるかどうかのテスト観測を行った (写真4). 測点は,トランスデューサ方向が見通せ て,かつ4衛星以上を捉えることのできそうな場所 として,「明洋」の右舷前方,左舷前方及び後方左舷 寄りの3点を選定した.各測点でのGPSデータを解析した結果,問題がなかったのでこの3点をGPS 観測点とすることにした.

しかし, その後, ドックの補修工事に伴い「明洋」 後方にネットが張られたため, これが障害となり当 初予定した「明洋」後方左舷寄りでのGPS観測は不 可能となった. そのため,「明洋」前方の左右の GPS観測点(G1, G2)からのみトランスデューサ (直下の測点をG3とした)を求めることとした.ま た,測定精度を上げるため2点からの夾角が広くな るようにGPS衛星の捕捉状況を考慮しつつ,G1, G2の位置を「明洋」に近づけ, ドック外縁上の目標 (T1)を含めた3点で同時観測のテストを行った. しかし, まだKGPSアンテナの「明洋」マストへの 取付けが行われていないため, KGPSアンテナとの 同時観測はできない状況であった.

(3) 測量

T1,G1,G2,G3(第3図)の測量を実施した
(写真5).測量はトータルステーション(TOPCON 社製GTS-603 AF)を用いて測距・測角を,また,ト
ランスデューサの底面の高さを求めるためG1,G
2からレベリング(電子レベル:SOKKIA社製SDL
30)を行った.成果は第1表のとおりである.

写真 4 ドック中の「明洋」 Photo. 4 "Meiyo" in dock.

写真 5 レベリング(トランスデューサ底面) Photo. 5 Leveling.

第3図 測点配置

- 第1表 トータルステーション及び水準儀による測 量結果
- Table 1
 Results of surveying by Total Station and Level.

測 角	調整角	測距	水平距離	レベリング	高低差
∠G1-T1-G3	5°49′29″	G1-G3	30.062m	G1→TD	+1.103m
∠T1-G1-G3	154°27′44″	G2-G3	26.743m	G2→TD	+1.137m
∠G1-G3-T1	19°42′47″	T1-G1	99.914m		
∠G2-T1-G3	2°53′54″	T1-G2	101.587m		
∠T1-G3-G2	11° 4′ 31″	T1-G3	127.700m		
∠T1-G2-G3	166° 1′ 35″				

後日, KGPSアンテナが「明洋」マストに取り付 けられたので, T1 (Trimble 社製 4700), G1 (同 5700), G2 (同5700), KGPSアンテナ (同 NetRS) の4点でGPS同時観測 (30秒収録)を実施した (写 真6).その時の「明洋」の姿勢は, POS/MVのGPS アンテナがまだ取り付けられていなかったため, 慣 性航法装置 (PHINS) で測定した.測定はスタ

写真6 G1及びG2におけるGPS測量 Photo.6 GPS observation at G1 and G2.

ティックアライメントを行い,それぞれの標準偏差 はヘディング0.037°,ロール・ピッチ0.007°であっ た.

(4) 結果

G1, G2におけるGPS観測については, 上空に索 が張られたこともあって,約1日のデータのうち1 時間しかフィックスしなかったが,T1は良好で あった.GPS観測によって求められた各点の測地曲 線座標値を第2表に示す.ここで,KGPSアンテナ の位置は単独測位値を使用し,そこからG1,G2, T1の位置を求めた.解析にはGPSurvey Ver 2.35 a を使用した.

第2表 スタティックGPS観測成果(KGPSアンテ ナ、G1、G2及びT1)

Table 2 Positions of antenna on mast, G1, G2 and T1.

測点名	緯 度	経度	楕円体高
KGPSアンテナ	35°25′6.116	27″ 139° 40′ 54. 37973″	45.152m
G1	35°25′5.423	79″ 139° 40′ 53. 45452″	22.773m
G2	35°25′5.231	49″ 139° 40′ 54. 01771″	22.749m
T1	35°25′2.474	22" 139° 40' 51.81111"	36.020m

第1,2表からKGPSアンテナを原点として求め たトランスデューサ底面(G3の鉛直上)の局所測 地座標値は,X=-2.031m,Y=-0.304m,Z=-21.271mとなった.ここで,Xは南北方向(北方が プラス),Yは東西方向(東方がプラス),Zは上下 方向(上方がプラス)である.なお,Z方向の座標値 の計算にはG1,G2からのレベリングの値を使用 した.

一方, G1, G2それぞれから求めた解には ΔX = 0.019 m, ΔY =0.020 m, ΔZ =0.010 mの差があっ た.1 cm以内の精度で求めるには差が大きかった ので,対処方法を検討し,「明洋」出渠後にT1及び G3でGPS観測を行うこととした.

写真 7 出渠後のGPS測量(G3からT1方向) Photo. 7 GPS observation at G3.

(5) 再測量結果

T1及びG3(いずれもTrimble社製5700,30秒収 録)にて約5時間のGPS同時観測を行った(写真 7).この結果とKGPSアンテナ及びT1でのGPS 観測結果から、G3の座標値はX=-2.032 m,Y= -0.303 m,Z=-22.473 mと求まった.これにG3 からトランスデューサ底面までの高さ1.194 m(実 測値)を加えて、トランスデューサ底面のZ=-21.279 mを得た.最終的に採用することとした値 (KGPSアンテナ→トランスデューサ)を第3表に示 す.再測量前との差は、 Δ X=-0.001 m, Δ Y=+ 0.001 m, Δ Z=-0.008 mである.

- 第3表 再測量の結果(KGPSアンテナ→トランス デューサ)
- Table 3 Results of resurvey. (From the antenna on mast to the acoustic transducer.)
 (X means the axis of N-S (N:+). Y means the axis of E-W (E:+). Z means the axis of Vertical (Up:+).)

局所測地座標	X (N)	Y (E)	Z (U)
KGPSアンテナ→T1	-112.245 m	-64.802 m	-9.133 m
T1→G3	110.213 m	64.499 m	-13.340 m
G3→トランスデューサ	0.000 m	0.000 m	1.1 94 m
KGPSアンテナ→トランスデューサ	-2.032 m	-0.303 m	-21.279 m

GPS観測によるG1,G2の標準偏差は、それぞ れ ΔX =1.6,1.4 mm, ΔY =1.7,1.4 mm, ΔZ = 5.3,4.2 mm,T1,G3はそれぞれ ΔX =0.1,0.4 mm, ΔY =0.1,0.3 mm, ΔZ =0.8,3.2 mmであ る.ドックの中でのGPS観測は、障害物があったが G3で5時間のスタティック解析ができたこと、 GPS受信機の固定誤差が水平5 mm+0.5 ppm,高 さ5~10 mm+0.5~1 ppmであることから必要な 精度を確保できたと考えられる.

(6) 座標変換

GPS観測時の慣性航法装置 (PHINS) の計測値 (第4表)を用いて, 慣性航法装置 (PHINS)の座標 (船上座標系)によるトランスデューサの位置を KGPSアンテナを原点として座標変換し, X=+ 1.889 m, Y=-0.765 m, Z=+21.281 mと求まっ た.ここでは, 船首尾方向がX (船首方向がプラ ス),右左舷方向がY (右舷方向がプラス),上下方 向がZ (船底方向がプラス)である.求めた座標値を 第5表に示す.

- 第4表 GPS観測時の慣性航法装置の計測値(ヘ ディング、ロール、ピッチ)
- Table 4 Observed values of heading, rolling and pitching by PHINS while GPS observation.

Heading(゜) 時計回りが (+)	Roll(゜) 左舷Upが (+)	Pitch(゜) 船首Downが (+)	Heading std. dev.	Roll std. dev.	Pitch std. dev.
209.582	-0.069	0.074	0.037	0.007	0.007

第5表 慣性航法装置の座標

Table 5 Coordinates of PHINS.

(X means the axis of Heading direction (bow:+). Y means the axis of Swaying direction (starboard:+). Z means the axis of Heaving direction (Down:+).)

慣性航法装置(PHINS)の座標 (船上座標系)	х	Y	Z
KGPSアンテナ→トランスデューサ	1.889 m	-0.765 m	21.281 m

動揺観測時間内(1時間4分)での1秒収録デー タのゆらぎは、ヘディング0.013°、ローリング、 ピッチング共に0.002°であり、距離に換算すると最 大2mm以内、第4表に示した標準偏差の値で計算 しても5mm以内のずれとしかならない.

いずれ観測データが十分に蓄積されれば,バイア ス値の解析からも,今回の値の妥当性が示されるこ こととなろう.

4 終わりに

海底地殻変動観測機器の明洋への船体取付けによ り、航走しながらの観測が可能となった.また、 KGPSアンテナをマストに取り付けたことにより、 支柱観測において上空からのGPS電波を遮断して しまうため観測中の使用を制限していたギャロス (CTD 観測に使用)がいつでも使用可能となった.

今後の課題として、今回ドック中(静止状態)に 実施できなかった慣性航法装置PHINSとPOS/MV の座標軸の比較があげられる.

謝 辞

今回の船底装備に関する測定に当たっては,三菱 重工業株式会社横浜製作所に協力をいただいた.ま た,計測について日本海洋(株)に協力をいただい た.さらに,測量船「明洋」の乗組員の方々のご協 力をいただいた.記して感謝いたします.

参考文献

成田誉孝,望月将志:海底地殻変動観測における機 器の現状とその運用について,海洋情報部技 報,23,53-60,(2005) 畝見潤一郎:海底地殻変動観測の現状と諸問題につ

いて,海洋情報部技報,22,33-41,(2004)