南鳥島周辺海域における精密地殻構造調査 ~2007年度第6-8次大陸棚調査(MTr11, MTr12, MTr13, MTr14)~

田中喜年,道順茂,深江邦一,音成陽二郎:大陸棚調査室 笹原昇,山下貴博:航法測地室 木場辰人:水路通報室

Seismic exploration in the vicinity of Minami-Tori Shima 2007 6-8th Continental Shelf Survey (Profile MTr 11, MTr 12, MTr 13 and MTr 14)

Kitoshi TANAKA, Shigeru DOJUN, Kunikazu FUKAE, Yojiro OTONARI : Continental Shelf Surveys Office Noboru SASAHARA, Takahiro YAMASHITA : Geodesy and Geophysics Office Tatsuhito KOBA : Notices to Mariners Office

1 序論

大陸棚調査室では2007年7月から9月にかけ、大 型測量船「昭洋」及び「拓洋」により、南鳥島周辺 海域(第1図参照)で、シングルチャンネル及びマ ルチチャンネル反射法地震探査と海底地震計 (OBS: Ocean Bottom Seismograph)を用いた屈折 法地震探査を実施した.

南島島は、太平洋プレート西部上を西北西一東南 東方向に帯状に延びるマーカス・ウェイク海山群に 属する島である.これまで、当海域では、海山群か ら海盆底への地殻構造の変遷及び海山群の全体の構 造的特徴を把握するため、2004年度にMTr4(金田 ・他[2005])、MTr2(金田・他[2006])及びMTr 3(小山・他[2006])、2005年度にMTr6(野田・他 [2007])、MTr5及びMTr7(松本・他[2007])、 2006年度にMTr8、MTr9及びMTr10(道順・他 [2008])の各測線において、反射法地震探査及び OBSを用いた屈折法地震探査を実施してきた.これ らの調査により、南島島周辺の海山の形成過程が明 らかになってきた.

今回は、南鳥島の南東方に分布する比高100~500 m程度の海山群に着目し、それらの地殻構造を調べ るため、南鳥島付近の海山群とBatiz海山付近を繋 ぐような北西―南東方向にMTr 11測線(屈折法及 び反射法)を設定した.また,南鳥島から拓洋第5 海山までの地殻構造を調べるためMTr 12, MTr 13 及びMTr 14の3測線(反射法のみ)を設定した.

2 調査概要

本調査においては地震探査の他に海底地形,海上 重力及び海上磁力調査も実施したが,ここでは地震 探査の概要についてのみ報告する.

2.1 調査海域

海域名:南鳥島周辺(第1図参照)

2.2 調査期間

第6次大陸棚調査(「拓洋」2007/7/26-8/16) 第7次大陸棚調査(「昭洋」2007/8/12-8/30) 第8次大陸棚調査(「拓洋|2007/8/29-9/20)

2.3 調査測線(第2図参照)

- 測線名:MTr 11
 - 両端座標:北緯 21.42° 東経 157.80° 北緯 24.45° 東経 153.18° 測線長:約580 km (約313 n. m.)

往路にて屈折法地震探査及びシングルチャンネル 反射法地震探査,復路にてマルチチャンネル反射法 地震探査を実施した.

MTr 11は,南鳥島西方から同島南側を通過する北 西~南東方向の測線である.北緯24°付近でMTr 3 (小山・他 [2005]),北緯23.75°付近でMTr 10(道 順・他 [2007]),北緯22°付近でMTr 5 (松本・他 [2006])と交差する.

Fig. 1 Submarine topographic features in the Northwest Pacific Ocean. Rectangle indicates experimental area.

測線名:MTr12

両端座標:	北緯	23.68°	東経	154.	15°
	北緯	24.25°	東経	154.	08°
測線長:約	60 kn	n(約32 n	n. m.)		

測線名:MTr 13

両端座標:北緯 23.72°	東経	153 . 57°
北緯 23.73°	東経	154 . 13°
測線長:約60 km(約32 r	n. m.)	

測線名:MTr14

両端座標:北緯 23.15° 東経 153.28° 北緯 23.73° 東経 153.63° 測線長:約70 km (約38 n. m.) 上記3測線は、南鳥島から拓洋第5海山まで繋い だ測線であり、マルチチャンネル反射法地震探査の み実施し、屈折法地震探査は実施していない.

なお, MTr 11と MTr 12は南鳥島南方で交差する.

第2図 調査海域図.点は海底地震計設置点を示 す.

Fig. 2 Map of experimental area. Solid circles indicate OBS positions.

2.4 シングルチャンネル反射法地震探査

発震船:測量船「昭洋」 測位:単独測位 GPS 震源:BOLT社製1500 LL non-tuned エアガンアレイ 震源容量:6,000 inch³ (98.3ℓ) 内部圧力:120 kg/cm² (11.8 MPa) 曳航深度:10m 発震間隔:200 m GPSアンテナ~エアガン距離:75m ストリーマケーブル:SIG 社製シングルチャン ネルストリーマケーブル チャンネル数:1ch 曳航深度:12~15 m 曳航距離:190 m GPSアンテナ~ケーブル距離:237 m 収録装置:IXSEA社製 Delph Seismic +Plus サンプリングレート:0.999 msec 記録長:10 sec (with delay)

収録フォーマット:SEG-Y

本調査は屈折法地震探査と共有しており、人工 震源として4台のBOLT社製1500 long life airgun (1,500 inch³:24.6ℓ) で構成される non-tunedエア ガンアレイ(総容量6,000 inch³:98.3ℓ)を用いた.

2.5 マルチチャンネル反射法地震探査

- 発震船:測量船「昭洋」
- 測位:単独測位 GPS
- 震源:BOLT社製1500 LL non-tunedエアガンアレイ 震源容量:3,000 inch³ (49.2ℓ) (MTr 11)

1, 500 inch³ (24. 6 ℓ) (MTr 11,

MTr 12, MTr 13, MTr 14)

- 内部圧力:120 kg/cm² (11.8 MPa)
- 曳航深度:10 m
- 発震間隔:50 m

GPSアンテナ~エアガン距離:88m

- ストリーマケーブル:Sercel 社 製 マ ル チ チ ャ ン ネルストリーマケーブル
 - チャンネル数:240 ch
 - 曳航深度:12 m
 - GPSアンテナ~テールブイ距離:3,277 m
- 収録装置:Sercel社製SEAL
 - サンプリングレート: 2 msec
 - 記録長:12 sec (with delay)
 - 収録フォーマット:SEG-D

反射法地震探査の人工震源として,2台のBOLT 社製1,500 long life airgun (1,500 inch³:24.6 ℓ)で 構成される non-tuned エアガンアレイ (総容量3,000 inch³:49.2 ℓ)を用いたが,途中,コンプレッサー 故障のため,1台減らし,1台のエアガンで実施し た.コンプレッサー故障については,「3.2 エアガ ン発震作業」に記載した.

ストリーマケーブルは,全長3,460 mで,20のア クティブアクションにハイドロフォンセンサーが12 chずつ配置されている.ガンコントローラーとして Real Time System社製のHOT SHOTを用いた発震 システムを採用しており,発震時刻の精度は2 msec である.発震時刻はGPS受信機内臓マスタークロッ ク (クローバテック社製MC-1450 C) により1 msec 単位で記録される.この際,発震位置座標も同時に 記録される.

取得されたアナログデータは24 bitにA/D変換さ れ、収録装置によりSEG-Dフォーマットで、3590 テープに収録される.記録長は12秒に設定し、水深 の変化に合わせてディレイタイムを適宜変更(1~ 6 sec)した.

発震船は, 測線上を50 m(約90-100 sec)航行す る毎に発震した.エアガンは後部甲板から単体ごと に2台(途中から1台)曳航し,各エアガンには曳 航深度を約10 mに保つためのフロートが取り付け られている.

ストリーマケーブルの構成及びエアガンの曳航方 式については渡邊・他[2007]のとおりである.

2.6 屈折法地震探查

発震船:測量船「昭洋」

測位:単独測位 GPS

- 震源:BOLT社製1500 LL non-tunedエアガンアレイ 震源容量:6,000 inch³ (98.3ℓ) 内部圧力:120 kg/cm² (11.8 MPa) 曳航深度:10 m 発震間隔:200 m
 - GPSアンテナ~エアガン距離:75m

OBS設置:測量船「拓洋」

OBS 揚収:測量船「昭洋」「拓洋」
 OBS:東京測振社製TOBS-24 N
 使用台数:80台(MTr 11のみ)
 設置間隔:約7km
 サンプリングレート:200 Hz
 プリアンプゲイン:40 dbB

屈折波地震探査の人工震源として、4台のBOLT 社製1500 long life airgun (1,500 inch³: 24.6 ℓ) で 構成される non-tuned エアガンアレイ (総容量 6,000 inch³: 98.3 ℓ)を用いた.本調査では、80台 のOBSを使用し、屈折波の記録を取得した.なお、 同時にシングルチャンネルストリーマケーブルを曳 航し、反射波の記録も取得した. OBSの詳細については,林田・他 [2005] および 野田・他 [2006] のとおりである.

3 調査経過概要

各次の大陸棚調査の日程・行動は表1に示すとお りである.

第1表	2007年度第6-8次大陸棚調査行動表.									
Table 1	Ship operations in the $6-8^{\text{th}}$ Continental									
	Shelf Survey 2007.									

<u>日付</u>	行動
第6次大陸棚調査	「拓洋」 2007/ 7/26 - 2007/ 8/16
7/30	OBS 投入(St.1 – St.17)
7/31	OBS 投入(St.18 – St.35)
8/1	OBS 投入(St.36 – St.53)
8/2	OBS 投入(St.54 – St.71)
8/3	OBS 投入 (St.72 – St.80)
8/4	OBS 位置測定(St.80 – St.54)
8/5	OBS 位置測定(St.53 – St.27)
8/6	OBS 位置測定(St.26 – St.4)
8/7	OBS 位置測定(St.1 – St.3)
第7次大陸棚調査	「昭洋」 2007/ 8/12 - 2007/ 8/30
8/15	エアガン(1,500*4)・シングルイール投人、MTr11(屈折)人線(NE→SW)
8/16-8/1	7 MTr11(屈折)
8/18	MTr11(屈折)出線、エアガン(1,500*4)・シンヴルイール揚収
8/19	エアガン(1,500*3)・マルチイール投入、MTr11(反射)入線(SW→NE)
8/20-8/2	1 MTr11(反射)
8/22	MTr11(反射)出線
8/23	MTr12(反射)入線(N→S)・出線、MTr13(反射)入線(W→E)
8/24	MTr13(反射)出線、MTr14(反射)入線(NW→SE)
8/25	MTr14(反射)出線、エアカ*ン(1,500*3)・マルチイール揚収、
	OBS 揚収 (St.1 – St.2)
8/26	OBS 揚収 (St.3 – St.8)
8/27	OBS 揚収 (St.9 – St.11)
第8次大陸棚調査	「拓洋」 2007/ 8/29 - 2007/ 9/20
9/3	OBS 揚収 (St.12 – St.17)
9/4	OBS 揚収 (St.18 – St.24)
9/5	OBS 揚収 (St.25 – St.31)
9/6	OBS 揚収(St.32 – St.38)
9/7	OBS 揚収 (St.39 – St.45)
9/8	OBS 揚収(St.46 – St.51)
9/9	OBS 揚収 (St.52 – St.57)
9/10	OBS 揚収 (St.58 – St.63)
9/11	OBS 揚収(St.64 – St.70)
9/12	OBS 揚収(St.71 – St.77)
9/13	OBS 揚収 (St.78 – St.80)

3.1 海底地震計投入および距離測定作業

OBS 80台の投入作業は、測量船「拓洋」により、 7月30日から8月3日の5日間で実施され、うち2 台予備器を投入した.予備器を投入した理由は、 ハードハットのひび割れと切離装置の不良によるも のであった.

投入計画位置,投入位置及び着底算出位置は第2 表に掲げる.投入位置欄の「ずれ」は,投入位置か らの水平方向のずれの距離を意味し,平均は51 m であった.また,着底算出位置欄の「ずれ」は,投 入位置からの水平方向のずれの距離を意味し,平均 は273 mであった. MTr 11-032においては,ずれが 1,000 mを超え,1,711 mに達した.OBS沈降時に 海流等の影響を受けて流され,投入位置と着底算出 位置に大きなずれが生じたと思われる.

OBS 80台の距離測定は,測量船「拓洋」により, 8月4日から7日の4日間で実施された.

測定方法については飯塚・他[2007]に記載され ているとおりである.

3.2 エアガン発震作業

発震作業は、測量船「昭洋」により、屈折法地震 探査(MTr11)が8月15日から18日の4日間、反射 法地震探査(MTr11, MTr12, MTr13, MTr14) が8月19日から25日の7日間で実施された.

収録装置(SEAL)に8月20日,「LCI#1 Error」が 発生,ストリーマケーブル及びPWMCの電源の OFF/ONにより復旧したが,数ショットの欠測と なった.また,テープ収録におけるテープドライブ の交換時に「Tape Write Error」が発生したが,テー プ収録をリスタートすることで復旧した.

8月21日, MTr 11測線発震中(反射法)の見回り において,コンプレッサー1号機の冷却清水管から の水漏れを発見.ゴムチューブ等で応急的な補修を 試みたが水漏れは止まらなかった.このまま発震す ることは危険であるため,やむなく1号機の運転を 停止し,エアガン1台のみの発震とした.この故障 により,MTr 11測線の一部(北緯23°より以北), MTr 12, MTr 13及びMTr 14測線は1,500 inch³で発 震された.コンプレッサーは入港後,業者により修 理・調整され,現在は正常に運転されている.

8月24日,バードシステム用のPCが突然ハング アップしたが,再起動後,復旧した.しかし,その 後もハングアップが数回発生し,再起動で復旧する 状態と復旧しない状態が起こった.入港後,業者に よる調整が行われ,現在は正常に作動している.

エアガン本体は、大きなトラブルもなく発震した.

3.3 海底地震計揚収作業

OBSの揚収は,測量船「昭洋」「拓洋」の2隻で 実施し,「昭洋」は8月25日から27日の3日間で11 台,「拓洋」は9月3日から13日の11日間で69台を 揚収し,投入した80台すべてを揚収した.

4 取得データ

4.1 反射法地震探查

反射法地震探査は全部で4測線実施された.各測 線のタイムマイグレーション断面図を第4図に示す.

MTr 11の断面図を見ると、モホ面が断続的に見え る.特に水深5,000m台の平らな海盆底付近では、 はっきりと見えている.しかし、海山群付近では、 ほとんど見えない.そのほかの3測線では、全海域 において、モホ面は、ほとんど見えない.途中、コ ンプレッサーの故障により、やむなくエアガンの総 容量を3,000 inch³から1,500 inch³に落とし、実施し た影響がでているようにも思われる.

4.2 屈折法地震探查

揚収した80台のOBSのうち,1台(MTr11-043) にはデータが収録されていなかった.この観測点に 使用されたOBS(6-036)について,これまでの使用 実績を調べたところ,これまでも同じようにデータ が収録されないことがあった.前回,業者による動 作確認が行われたが,特に問題なかったため,人為 的ミスと考えられていた.しかし,今回は設定等に 問題ないにも関わらず,前回同様,データ未収録と いうエラーが発生した.これらの点から,OBS(6-036)自体に問題があると考えられるが,まだ原因箇 所がつかめていない.今後,エラーの原因が解消さ れるまで,このOBS(6-036)は使用しない.ほかの 79台については,良好なデータを取得することがで きた.

OBSで取得された記録例として,MTr 11測線の レコードセクション図を示す.

Batiz海山の北方にあるOBS (MTr 11-059,水深 5,286 m)のレコードセクション図を第3図 (A) (上下動記録, Ch 1)及び第3図 (B) (ハイドロ フォン記録, Ch 4) に示す. これらの記録では, OBS の両側においてトリプリケーションが明瞭に見られ ることが特徴的である. さらに北西側オフセット 250-280 kmにやや大きな振幅の信号が見える. た だし, 初動かどうかは不明である.

Batiz海山の東方にあるOBS(MTr 11-074,水深 5,249 m)のレコードセクション図を第3図(C) (上下動記録, Ch 1)及び第3図(D)(ハイドロ フォン記録, Ch 4)に示す.このOBSについても, OBSの両側において明瞭なトリプリケーションが 観測された.オフセット10 km以内では,見かけ速 度の遅い地殻浅部からの屈折あるいは反射が後続波 として見えている.遠方では北西側260-290 km付 近に大きな振幅の信号が検出できる.

5 まとめ

現場作業において, エアガン発震では, いくつか のトラブルが発生したが, OBSについては, 1台の 亡失もなく, 効率的に作業を遂行することができた.

また、本調査は、当海域における大陸棚調査とし ての最後の地震探査となった.

6 謝辞

本調査の実施にあたり多大な御援助・御支援をし て下さった測量船「昭洋」・「拓洋」の船長及び乗組員 の方々に深く感謝の意を表します.また,本調査の 計画から本報告の作成に至るまで,技術的指導や資 料提供に携われた技術・国際課地震調査官,大陸棚 調査室及び海洋研究室の方々に御礼申し上げます.

参考文献

道順茂・西下厚志・片桐康孝・泉紀明・野田直樹・ 松本正純・倉持幸志,2008,南鳥島周辺海域 における精密地殻構造探査,海洋情報部報, 26,100-108.

林田政和・浜本文孝・田中喜年・松本正純,2005,大 東海嶺群における精密地殻構造調査,海洋情 報部技報,23,33-45.

飯塚正城・音成陽二郎・木場辰人・田中喜年・道順

茂・福山一郎,2008,沖ノ鳥島南方の九州・ パラオ海嶺における地殻構造探査概要,海洋 情報部技報,26,109-118.

- 金田謙太郎・下村広樹・志岐俊郎・小山あずさ・伊藤清寿・林田政和・池田耕作・瀬田英憲・佐伯充敏・谷口克伸,2005,南鳥島周辺海域屈折法地震探査,海洋情報部技報,23,8-22.
- 金田謙太郎・林田政和・小澤誠志・小山あずさ・阿部 則幸・平井康仁,2006,小笠原海台東方海域 屈折法地震探査,海洋情報部技報,24,6-16.
- 松本正純・野田直樹・西下厚志・河原木一・小澤誠 志・田中喜年・飯塚正城・金田謙太郎・斉藤 昭則・熊川浩一・加藤正治・泉紀明,2007, 南鳥島周辺海域(MTr7,MTr5),九州・パ ラオ海嶺(SPr11,KPr6),及び大東海嶺 (ODr9)における精密地殻構造探査概要,海 洋情報部技報,25,67-80.

- 野田直樹・松本正純・小澤誠志・田中喜年・及川光 弘・阿部則幸・丸山章子・杉村哲也・小山あ ずさ,2007,南鳥島北西方海域における精密地 殻構造探査,海洋情報部技報,25,23-32.
- 小山あずさ・松本正純・小澤誠志・阿部則幸・金敬 洋,伊藤清寿,下村広樹,平井康仁,村上大 樹,2006,南鳥島周辺海域屈折法地震探査, 海洋情報部技報,24,17-27.
- 渡邊奈保子・田賀傑・西下厚志・河原木一・及川光 弘・倉持幸志・泉紀明,2007,第1 鹿島海山 および襟裳海山周辺海域における精密地殻構 造探査,海洋情報部技報,25,40-50.

- 第3図 MTr 11測線に設置した海底地震計の記録. 横軸は海底地震計からのオフセット距離. 縦軸はreduced travel time を示す(reduction velocity 8.0 km/s).(A)海底地震計MTr 11-059の上下動成分.(B) MTr 11-059のハイドロフォン記録.(C) MTr 11-074の上下動成分.(D) MTr 11-074のハイドロフォン記録. Fig. 3 Record sections for OBSs on the MTr 11. Horizontal and vertical axes indicate offsets from OBS and re-
- Fig. 3 Record sections for OBSs on the MTr11. Horizontal and vertical axes indicate offsets from OBS and reduced travel time (a reduction velocity of 8.0 km/s), respectively. (A) Vertical geophone of OBS MTr11-059. (B) Hydrophone of MTr11-059. (C) Vertical geophone of MTr11-074. (D) Hydrophone of MTr11-074.

第2表 2007年度第6-8次大陸棚調查海底地震計位置座標.

Table 2 Information of OBS deployment locations and calculated settlement locations in the 6–8th Continental Shelf Survey 2007.

		投入計画位置				投入位置				着底算出位置								
観測点番号	OBS	統	‡度(N)	糸	圣度(E)	水深	繑] [] [] [] [] [] [] [] [] [] [] [] [] []	紹	と 度(E)	ずれ	緯	[度(N)	紀	隆度(E)	水深	ずれ	回収
		度	分	度	分	(m)	度	分	度	分	(m)	度	分	度	分	(m)	(m)	
MTr11-1	6-057	24	25 002	153	13 020	5465	24	24 955	153	12 972	118	24	25.062	153	13.038	5424	115	0
MT-11-2	6-060	24	22 704	153	16 500	5447	24	22,800	153	16.510	20	24	22.002	153	16.530	5414	67	ŏ
MT 11 0	7 010	24	22.794	150	10.300	5447	24	22.000	150	10.510	20	24	22.010	150	10.000	5414	105	$-\frac{1}{2}$
	7-010	24	20.592	103	20.040	5408	24	20.390	103	20.030	17	24	20.640	155	19.960	5410	130	<u> </u>
MIrl1-4	7-019	24	18.384	153	23.520	5376	24	18.337	153	23.532	89	24	18.372	153	23.502	5394	38	0
MTr11-5	3-001	24	16.176	153	27.060	5397	24	16.152	153	27.055	45	24	16.224	153	27.006	5395	127	0
MTr11-6	3-002	24	13.968	153	30.540	5402	24	13.908	153	30.583	133	24	13.962	153	30.570	5420	52	0
MTr11-7	5-039	24	11.454	153	34.560	5392	24	11.473	153	34.537	53	24	11.484	153	34.518	5410	90	0
MTr11-8	4-004	24	8 934	153	38 520	4406	24	8 955	153	38 512	42	24	8 862	153	38 406	4486	234	Õ
MT#11-0	2_006	24	7.026	152	41 520	5170	24	6.007	152	41 524	50	24	7.056	162	41.442	5154	142	Ň
	3-000	24	7.020	100	41.520	5172	24	0.997	100	41.534	09	24	7.000	100	41.442	5154	143	<u> </u>
MIRII-10	3-009	24	5.118	153	44.580	51/8	24	5.102	153	44.580	30	24	5.184	153	44.472	51/4	220	0
MTr11-11	4-011	24	2.904	153	48.060	5198	24	2.890	153	48.061	27	24	2.934	153	47.958	5198	181	0
MTr11-12	4-014	24	0.684	153	51.540	5149	24	0.671	153	51.554	34	24	0.726	153	51.498	5146	105	0
MTr11-13	4-015	23	58.470	153	55.020	5021	23	58,459	153	55.050	54	23	58,554	153	54.876	5045	289	0
MTr11-14	1-017	23	56 250	153	58 500	5225	23	56 279	153	58 495	54	23	56 346	153	58 386	5174	262	Õ
MT-11-15	2_062	22	54.020	154	2.040	5224	22	54.044	154	1 092	102	22	54 1 20	154	1 924	5221	417	ŏ
MT 11 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20	51.004	154	2.040	5234	20	51.000	154	5.502	102	20	51.000	154	F 000	5221	074	~~~
	3-072	23	31.604	104	5.520	5112	23	51.600	154	5.500	30	23	51.900	104	0.000	5091	3/4	<u> </u>
MIRI-17	1-028	23	49.578	154	9.000	5134	23	49.594	154	8.983	42	23	49.728	154	8.892	5120	333	0
MTr11-18	1-058	23	47.358	154	12.480	5171	23	47.392	154	12.455	76	23	47.466	154	12.474	5178	200	0
MTr11-19	1-070	23	45.132	154	15.960	5235	23	45.126	154	15.972	23	23	45.264	154	15.864	5223	294	0
MTr11-20	1-077	23	42.900	154	19.440	5274	23	42.910	154	19.409	56	23	43.038	154	19.524	5275	293	0
MTr11-21	1-078	23	40.674	154	22.920	5307	23	40.663	154	22.889	56	23	40.794	154	23.028	5310	288	0
MTr11-22	1-080	23	38 442	154	26 400	5395	23	38 4 29	154	26.367	61	23	38 532	154	26.502	5388	240	ň
MTr11-22	2-035	20	26 210	154	20.000	5/51	22	36.215	154	20.940	10	22	36 250	154	20.050	5422	250	-ř-
MT-11.04	2 000	20	00.210	154	23.020	5451	20	22.000	154	20.040	40	20	24.000	154	20.000	5400	2.00	-
WITT1-24	2-013	23	33.978	104	33.300	0409	23	33.982	104	33.313	23	23	34.008	104	33.438	0430	241	2
Mir11-25	3-051	23	31./46	154	36.780	5234	23	31./46	154	36.772	13	23	31.824	154	36.948	5269	320	0
MTr11-26	3-062	23	29.508	154	40.260	5354	23	29.523	154	40.250	33	23	29.544	154	40.380	5368	214	0
MTr11-27	3-064	23	27.270	154	43.740	5263	23	27.250	154	43.703	73	23	27.282	154	43.800	5301	104	0
MTr11-28	3-074	23	25.032	154	47.160	5239	23	25.056	154	47.158	45	23	25.038	154	47.208	5268	82	0
MTr11-29	3-076	23	22.794	154	50.640	5410	23	22.811	154	50.624	42	23	22.866	154	50.688	5411	156	0
MTr11-30	4-022	23	20 556	154	54 120	5465	23	20 534	154	54 134	48	23	20.472	154	54 108	5466	157	Õ
MT#11-21	4-022	20	10 212	154	57.540	5400	20	10 216	154	57 549	16	20	10 400	154	57 559	5400	107	ŏ
WIFT-31	4-024	23	10.312	104	07.040	5499	23	10.310	104	07.046	10	23	10.400	104	07.006	5469	100	<u> </u>
MITTI-32	4-029	23	10.008	100	1.020	5337	23	16.084	155	1.008	35	23	10.200	155	2.004	5484	1/11	<u> </u>
MTr11-33	4-050	23	13.824	155	4.440	5509	23	13.843	155	4.460	49	23	13.872	155	4.518	5496	160	0
MTr11-34	4-075	23	11.580	155	7.920	5520	23	11.573	155	7.916	14	23	11.628	155	7.980	5503	135	0
MTr11-35	5-008	23	9.330	155	11.340	5427	23	9.313	155	11.363	50	23	9.330	155	11.400	5399	102	0
MTr11-36	5-033	23	7.080	155	14.820	5279	23	7.086	155	14.810	21	23	6.966	155	15.024	5259	407	0
MTr11-37	5-040	23	4.830	155	18.240	4962	23	4.820	155	18.268	52	23	4.782	155	18.492	5118	438	0
MTr11-38	5-062	23	2.580	155	21.720	4664	23	2.558	155	21.739	52	23	2.466	155	21.738	4644	213	0
MTr11-39	5-069	23	0.330	155	25.140	3603	23	0.321	155	25.143	17	23	0.324	155	25.206	3599	113	0
MTr11-40	5-088	22	58 074	155	28 560	3624	22	58.070	155	28 580	35	22	58.014	155	28 692	3640	251	Õ
MTr11-41	5-094	22	55.824	155	31.980	4036	22	55.827	155	32,005	13	22	55 764	155	32 184	4036	365	ŏ
MT#11-42	5 004	22	52.569	155	25.460	5520	22	52.527	155	25.426	40	22	52 520	155	25.514	2071	120	ŏ
MT-11 42	0000	22	51.000	155	30,400	3120	22	51.000	155	30.430	40	~~~		- 133 	55.514		コズキザ	- X
WI111-43	0-030	22	51.306	100	38.880	3132	22	51.322	155	38.880	29	回収し	/こ/パ、北野	7-9			- 659	<u> </u>
M1r11-44	6-038	22	49.050	155	42.300	1907	22	49.044	155	42.340	69	22	46./58	155	45.//4	1938	661	0
MTr11-45	6-052	22	46.788	155	45.720	3821	22	46.757	155	45.742	68	22	44.484	155	49.152	3921	108	0
MTr11-46	6-053	22	44.532	155	49.140	5380	22	44.515	155	49.188	88	22	42.138	155	52.656	5369	91	0
MTr11-47	6-055	22	42.270	155	52.620	5458	22	42.269	155	52.587	56	22	39.930	155	56.082	5441	252	0
MTr11-48	6-056	22	40.002	155	56.040	5357	22	40.014	155	56.028	30	22	37.722	155	59.514	5356	151	0
MTr11-49	6-059	22	37 740	155	59 460	4014	22	37 761	155	59 442	50	22	35 784	156	2 4 4 2	3933	98	Ō
MTr11-50	6-061	22	35 790	156	2 400	3211	22	35.806	156	2 386	28	22	33 576	156	6312	3263	73	Õ
MT-11-51	6-064	22	22 201	156	6 200	52/1	22	33 333	150	£.000	25	22	30.010	156	0.012	51/1	600	- č
MT 11 50	0-004	22	33.204	150	0.300	5247	22	33.223	150	0.290		22	30.010	150	9.620	5141	009	\sim
WIIT1-52	0-005	22	30.936	100	9.720	0045	22	30.953	100	9./13	33	22	28./10	100	13.212	0000	298	<u> </u>
MIr11-53	0-066	22	28.668	156	13.140	5546	22	28.678	156	13.122	37	22	26.592	156	16.908	5540	146	Ú Ú
MTr11-54	6-067	22	26.400	156	16.500	5552	22	26.408	156	16.553	91	22	24.348	156	20.208	5515	784	Ō
MTr11-55	6-070	22	24.126	156	19.920	5534	22	24.144	156	19.962	79	22	22.008	156	23.616	5535	642	0
MTr11-56	6-071	22	21.852	156	23.340	5473	22	21.873	156	23.358	50	22	19.686	156	26.352	5479	554	0
MTr11-57	6-087	22	19.578	156	26,760	5422	22	19.578	156	26.759	2	22	17.442	156	30.468	5428	727	0
MTr11-58	6-090	22	17.304	156	30 180	5422	22	17 340	156	30 178		22	15.090	156	33 846	5401	556	Õ
MTr11-50	6-100	22	15 020	156	33 540	5205	22	15.042	156	33 520	27	22	13 116	156	36 720	5296	526	ŏ
MT-11 60	7_010	22	12.000	150	26 400	44070	22	12.043	150	26 500	67	22	11 154	150	20 500	4070	401	<u> </u>
	7 012	22	13.008	100	30.480	4427.8	22	13.097	100	30.000	03	22	0.07	100	39.388	4272	421	2
MIr11-61	7-027	22	11.106	156	39.420	2585.9	22	11.111	156	39.449	50	22	8.274	156	43.884	2535	302	0
MTr11-62	7-030	22	8.190	156	43.740	4582.5	22	8.224	156	43.749	64	22	5.874	156	47.256	4611	292	0
MTr11-63	7-048	22	5.910	156	47.160	4946.2	22	5.890	156	47.153	39	22	3.576	156	50.634	4942	178	0
MTr11-64	7-060	22	3.624	156	50.580	5023.8	22	3.613	156	50.542	69	22	1.290	156	54.048	4995	128	0
MTr11-65	6-088	22	1.344	156	53.940	5050.4	22	1.344	156	53.967	46	21	58.992	156	57.408	5044	211	Ó
MTr11-66	7-079	21	59.058	156	57 360	5108.1	21	59 054	156	57 350	19	21	56 652	157	0.810	5090	147	õ
MTr11-67	7-096	21	56 772	157	0.790	5334 7	21	56 766	157	0.756	62	21	54 409	157	4 218	5281	271	ň
MTe11_60	2_005	21	5/ /00	157	0.720 A 140	5/5/7	01	54 400	157	4 100	20	01	50 100	157	7 50/	5405	107	- ĕ
MT-11 00	0 010	21	50 107	107	4.140	5404.7	21	50 100	157	7.400	30	21	50.004	107	10 500	5440	19/	~~~
WITTI-09	0-010		0Z.194	107	7.500	5480	21	92.189	10/	1.493	15	21	50.064	157	10.506	0448	189	<u> </u>
Mir11-70	8-013	21	50.226	157	10.440	5337.6	21	50.219	157	10.408	58	21	47.904	157	13.794	5255	321	0
MTr11-71	8-018	21	47.934	157	13.800	4576.8	21	47.914	157	13.790	40	21	45.654	157	17.100	4576	57	0
MTr11-72	8-020	21	45.642	157	17.160	4884	21	45.637	157	17.134	46	21	43.278	157	20.520	4898	106	0
MTr11-73	8-021	21	43.350	157	20.580	5166.2	21	43.468	157	20.713	316	21	41.004	157	23.838	5148	169	0
MTr11-74	8-023	21	41.052	157	23.940	5244.5	21	41.068	157	23.909	60	21	38.502	157	27.618	5249	197	0
MTr11-75	8-026	21	38.532	157	27.660	5316.3	21	38.509	157	27.657	42	21	36.162	157	31.362	5302	91	Ō
MTr11-76	8-031	21	36 144	157	31 140	5340	21	36 141	157	31 1 20	.2	21	33 744	157	34 614	5344	384	ň
MT-11-77	8-033	21	22 750	157	24 600	5261 6	21	22 725	157	31 655	E1	21	21 200	157	20110	5261	11/	$-\tilde{\leftarrow}$
MT-11 70	0 002	21	01.000	107	34.060	5301.0	21	00./00	107	04.000	00	21	01.290	107	30.140	5000	114	<u> </u>
WIIT1-78	0-034	21	31.350	15/	38.160	5348.5	21	31.344	15/	38.104	23		29.088	15/	41.142	3338	113	Š
Mir11-79	8-039	21	28.956	157	41.700	5327.4	21	28.957	157	41.664	62	21	26.526	157	45.216	5334	992	Ū
MTr11-80	8-054	21	26.562	157	45.180	5360.2	21	26.548	157	45.184	27	21	26.526	157	45.216	5322	91	0

87000

90000

36000

33000

39000

SE

84000 81000

12

NW

60000 57000 56000 53000 50000 47000 44000 42001

MTr11(CMP 42001 ~ 94616) 78000 75000 72000 70000 67000 63000

11000

8000

5000

2000

NW

MTr11(CMP 1 ~ 42000) 30000 28000 24000 21000 19000 16000 14000

時間マイグレーション処理済反射法地震探査記録断面図. 第4図 Fig. 4 Time migrated seismic reflection profiles.