REPORT OF HYDROGRAPHIC RESEARCHES, No. 13, March, 1978.

二百海里測地線の計算精度

進士 晃*

CALCULATION ACCURACY OF THE 200-MILE GEODESICS

Akira M. Sinzi*

Received 1977 October 12

Abstract

With the enforcement of the Law on Provisional Measures relating to the Fishery Zone on 1 July 1977, Hydrographic Department has been charged to prepare charts showing the outer boundary of the zone, which, in general, extends 200 miles (370.4km) from the coast of Japan, or to the median line with neighbouring country for the part of the 200-mile boundary lying beyond the median line. For this work, it was decided to employ Schreiber's method to calculate the positions of terminals of the 200-mile geodesics, because the method had been widely used in geodetic surveying on land and had been rewritten in a concise scheme by K. Harada. Although the accuracy of Schreiber's method, which is substantially to be applied for short length, decreases rapidly for longer length, the method may be regarded as applicable to the calculation of the 200-mile geodesics, because of the inferior accuracies of position fixing methods at sea comparing with those on land. Calculation was made at Astronomical Division of the department using the programme prepared by A. Senda of the division. He further calculated reversely the geodesic lengths by applying Gauss' median latitude method and obtained them to be 370.4000 km exactly in all cases for latitudes between $+20^{\circ}$ and 50° .

In the present paper, the accuracy of the Schreiber's method is evaluated through (a) investigation of error sources in the Schreiber, and (b) comparison of the calculation data concretely with those by two other methods which are based on entirely different principles with each other; they are Legendre's method for short distance and Helmert's method for long distance. It is remarked that the principle of the Legendre's method is quite simple without any assumption or approximation which may cause ambiguous calculation errors, although the methods has a defect of slow convergence which becomes serious for longer distance and higher latitude.

Main error sources of the Schreiber's method are (i) approximation by the spherical excess to calculate the Soldner's coordinates of the geodesic terminal, and (ii) omission of higher terms in applying the Legendre's expansions. Formulae for calculating the Soldner's coordinates on the spheroidal surface are presented (eqs. (16), (17), (18)), together with

formulae for estimating the Schreiber's error due to the spherical excess approximation, (eqs. (19), (20)). Correction formulae for the omitted higher terms are also derived (eqs. (21), (22), (23))by making use of Tables 1 and 2. Then, the error of the Schreiber's method are estimated for the 200-mile geodesics (Figs. 2 and 3).

Maclaulin expansions (eqs. (8) to (13)) in the Legendre's method are extended to the 6th order completely and down to terms of h^2 in the 7th order both for latitude and longitude. (Symbols in the text are those commonly used in geodesy, except for the 2nd eccentricity for which, instead of e', h is used in order to avoid confusion with e.) They are presented in Table 1, in which terms are arranged by functions of latitude φ , rather than by those of azimuth α as adopted in the textbook of Jordan-Eggert-Kneissl (e.g. 10th ed., 1959, abbreviated JEK), so that the character of the Legendre's method can be perceived clearer. Individual contributions of the respective terms in Table 1 to the evaluation of latitude and longitude of the geodesic terminal are illustrated by example in Table 2. The Helmert's formulae have been modified slightly for convenience of practical use.

Programmes of the Legendre's and the Helmert's methods were prepared by Y. Harada of Astronomical Division. In his programme of the Schreiber, Senda replaced the calculation scheme of the Soldner's coordinates by eqs. (16), (17), (18) and added the corrections given by eqs. (21), (22), (23). Thereupon Harada made calculation of the First Problem by the methods of Legendre, Schreiber, modified Schreiber and Helmert. At first the Standard Examples in JEK were tested to obtain reasonable results. Positions of terminals of the 200-mile geodesics have been calculated for the initial latitudes between + 10° and 70. Discrepancies among the calculation results are partly presented in Table 3. The Legendre and the Helmert agree well with each other except for higher latitudes. Whence discrepancies between the Schreiber and the Legendre agree well with those between the Schreiber and the Helmert except for higher latitudes. In Fig. 4 the former discrepancies are shown. The estimation method of the Schreiber's error through eqs. (19), (20), (21), (22), (23) is verified by the fact that the sums of the error in Figs. 2 and 3 are very close to the errors shown in Fig. 4. Even at $\varphi = +50^{\circ}$ the error in position by the Schreiber does not exceeds ± 20 cm. Since Japan lies between the latitudes of $\pm 20^{\circ}6$ at Oki-no-Tori Sima (Parece Vela, Douglas Reef) and $+46.^{\circ}6$ at the northern extreme of Etorohu Sima, the Schreiber's method can be safely applicable to the calculation of the 200-mile boundary with too much accuracy for practical use in Japan.

Contents

Section 1. Introduction.

- 2. Calculation schema.
 - (1) Symbols,
 - (2) Legendre's method,
 - (3) Schreiber's method,
 - (4) Helmert's method.
- 3. Comparison of calculation data.
 - (1) Standard examples in JEK,
 - (2) Boundary of the 200-mile zone.

Annex 1. Differential operation of $\frac{d^n\varphi}{ds^n}$ and $\frac{d^n\lambda}{ds^n}$

- 2. Relations between geodesic and loxodrome for 200 miles.
- 3. Median line on chart sheet disregarding the scale.

1. 序

地球上の任意の2点について、第1点の緯度・経度およびそこから第2点を見る方位、さらに2点間の距離を 与えて、第2点の緯度・経度およびそこから第1点を見る方位を求めることを、測地学の第一課題と言い、両点 の緯度・経度を与えて、2点間の距離および相互の方位を求めることを、測地学の第一課題という.この両課題 の解法については、ルジャンドル・ベッセル以来、多くの数学者・測地学者によって詳しく追求されており、こ れらはヨルダン・エッゲルトの教科書「測量術教程」に解説・紹介されている.ここでは特にクナイスル(1959) によるその第10版をJEKと略記する.坪川・大森(1969)による「測地学序説」(以下、「序説」と略記)の 179-195ページ、および日本測地学会編(1974)の「測地学の概観」(以下、「概観」と略記)15-19ページにあ る測地線の計算に関する記述は、おおむねJEKに基いている.以下の記述では、結果に重点をおき、中間の過 程を省略することが多いから、不分明のことがあれば、JEKまたは序説、概観を参照されたい.

本年7月,わが国では漁業水域に関する暫定措置法,いわゆる二百海里法が施行されたが,これに伴い,当然 200 海里水域の外縁の位置を知っておく必要がある. これを計算することは測地学の第一課題にほかならない. 通常,陸上の三角測量に採られている測地線の計算法は近距離用であり,その精度は±0.002 以内であるが,距 離が大きくなると精度は急激に悪くなる. しかし海上では位置の測定精度が陸上に比べて著しく劣るから,測地 線の計算も,陸上の三角測量におけるような高い精度を要求しない. したがって 200 海里の計算にも,三角測量 用の既存の諸公式が充分に適用できると考えられる. この近距離用の解法には,ルジャンドルの展開,シュライ バーの公式,ガウスの中分緯度公式,ヨルダンの公式等,多数があり,その中でもシュライバーの方法は,わが 国でも古くから用いられ,また原田健久氏が書き直した簡明な式があるので,これを 200 海里(370.4km)の計 算に採用することとした.

この報告は、シュライバーの方法による 200 海里測地線の計算の精度についての検討を主な目的とする.まず シュライバーの式の誘導過程における誤差の要因を摘出し、これらを総合して最終結果、つまり緯度・経度の計 算値の誤差を推定する.つぎに、この推定を確めるために、他のより厳密な方法による計算値と比較する.この 厳密な解法としては、全く別個の原理に基いた二つの方法を用いることとし、近距離用のルジャンドルの展開お よび遠距離用のヘルメルトの方法を使う.

2. 計算式

(1) 記号

原則として、測地計算に常用されている記号を用いる.

地球楕円体

a:長半径,

b: 短半径,

 $c = \frac{a^2}{b}$:極における曲率半径,

$$f = \frac{a-b}{a-b}$$
 : 第1 扁率,

$$n = \frac{a-b}{a+b} = \frac{f}{2-f} : \text{ $\widehat{\#}$ 3 $\widehat{\#}$ $\widehat{\#}$,}$$

$$e:$$
第一離心率, $e^2 = \frac{a^2 - b^2}{a^2} = \frac{4n}{(1+n)^2}$

h:第二離心率, $h^2 = \frac{a^2 - b^2}{b^2}$

(この第二離心率の記号には,通常 e'を用いるが,

まぎらわしいので, 敢えて h とする.)

測地線(第1図)

起点 P_1 :緯度 φ_1 , 経度 λ_1 , 方位角 α_1 , 終点 P_2 :緯度 φ_2 , 経度 λ_2 , 方位角 α_2 , 測地線の長さ: $\widehat{P_1P_2} = s$.

(2) ルジャンドルの方法

説明の都合から、まずルジャンドルの方法について述べる.

この方法は JEK 945—954 ページ,序説 179—183ページ,

概観15—16ページに記述してあるように, $\varphi_2-\varphi_1$, $\lambda_2-\lambda_1$, $\alpha_2-\alpha_1$ をsの関数としてマクローリンの展開を施したものである. すなわち

$$\varphi_2 - \varphi_1 = \sum \frac{s^n}{n!} \left(\frac{d^n \varphi}{ds^n} \right)_{s=0} \tag{1}$$

$$\lambda_2 - \lambda_1 = \sum_{n=1}^{\infty} \frac{s^n}{n!} \left(\frac{d^n \lambda}{ds^n} \right)_{s=0}$$
⁽²⁾

$$\alpha_2 - \alpha_1 = \sum \frac{s^n}{n!} \left(\frac{d^n \alpha}{ds^n} \right)_{s=0} \tag{3}$$

ててで

$$V = \sqrt{1 + h^2 \cos^2 \varphi} \tag{4}$$

とおけば、 φ , λ , α の s に 関する 1 次の 微係 数 は

$$\frac{d\varphi}{ds} = \frac{V^3}{c} \cos \alpha \tag{5}$$
$$\frac{d\lambda}{ds} = \frac{V}{c} \frac{\sin \alpha}{\cos \varphi} \tag{6}$$

$$\frac{d\alpha}{ds} = \frac{V}{c} \sin \alpha \tan \varphi \tag{7}$$

であり、これから高次の微係数が次々に計算できる. このようにルジャンドルの方法の原理はきわめて単純で あり、何等の仮定を用いてないので、誤差の生ずる要因はなく、所要の計算精度に応じて高次項まで採れば厳 密な値が得られる. しかし、(5)、(6)、(7)の形から推定されるように、(1)、(2)、(3)の展開の第 n 次項 は $(c/s)^n$ を含む. したがって s が c (約6,400km)に比べて充分小さくない限り、級数の収束は悪く、実用に 適さない.

JEK には φ , λ , α の微係数を, 第4次項までは厳密に与え, 第5次項は h を含まない, つまり地球を球とした項(以下, これを「主項」と呼ぶ)だけを掲げており, 序説も同様である. JEK の前身である JE の第3版 (1890)には, 5次までのすべての項と6次の主項を掲げていたが, 通常の三角測量では JEK の与える項だけで充分である.

しかし s=200 海里=370.4 km としたときの計算精度を検討するには、 さらに高次の項まで必要であるか ら、 φ と λ について 6 次まではすべての項、7 次では h^2 の項まで展開した. これを第1表に示す. この表の 見かたは次のとおりである.

Figure 1

92

Table 1 Legendre's expansion for the First Problem

a. Latitude

.

No.	n	2m	$A(\alpha)$	$B(\varphi)$	$Max(\alpha)$
101	1	0	$+ 1 \cos \varphi$	1	2″1E+5
201	2	0	$-1\sin^2\alpha$	$\tan \varphi$	1.0E + 5
221		2	$-3\cos^2\alpha$	$\sin \varphi \cos \varphi$	2.1 + 5
301 302		0 0	$\begin{array}{l} -3\sin^2\alpha\cos\alpha \\ -1 \end{array}$	$\tan^2 \varphi$ 1	$\begin{array}{r} 4.0\mathrm{E}+4 \\ 1.3 +4 \end{array}$
321 322	3	$\frac{2}{2}$	$+10 + 6 \cos^3 \alpha$ - 1 - 3	$\sin^2 \varphi = 1$	$\begin{array}{rrrr} 1.4 & +3 \\ 6.9 & +2 \end{array}$
$\begin{array}{c} 341\\ 342 \end{array}$		4 4	$^{+15}_{-18}$	$\cos^2 \varphi \ \cos^4 \varphi$	$\begin{array}{cccc} 2.3 & +1 \\ 2.8 & +1 \end{array}$
401 402		0	$\begin{array}{ccc} + 3 \sin^4 \alpha & -12 \sin^2 \alpha \cos^2 \alpha \\ + 1 & - 8 \end{array}$	$\tan^3\varphi$ $\tan\varphi$	2.6E+4 1.5+4
$\frac{421}{422}$		$\frac{2}{2}$	-9 +18 +10 + 8 +12 cos ⁴ c	$\tan \varphi$	5.2 + 2
441	4	4	-124 -114	$\sin \varphi \cos \varphi$ $\sin^3 \varphi \cos \varphi$	4.4 +1
442		4 6	+ 54 + 69 -162	$\sin \varphi \cos \varphi$ $\sin^3 \varphi \cos^3 \varphi$	2.7 + 1 4.2 - 1
462		6	+ 57	$\sin \varphi \cos^3 \varphi$	1.5 -1
501 502 503		0 0 0	$\begin{array}{ccc} +45 \sin^4 \alpha \cos \alpha & -60 \sin^2 \alpha \cos^3 \alpha \\ +30 & -60 \\ +1 & -8 \end{array}$	tan⁴φ tan²φ 1	$\begin{array}{ccc} 1.7\mathrm{E}{+}4\\ 1.4&{+}4\\ 2.4&{+}3\end{array}$
521 522 523		$\begin{array}{c} 2\\ 2\\ 2 \end{array}$	$egin{array}{ccccc} -90 & +90 \ +16 & -72 & -24\cos^5lpha \ +2 & +18 & +12 \end{array}$	$ an^2 arphi \ \sin^2 \! arphi \ 1$	2.4 +2 2.8 +2 1.4 +2
541 542 543	5	4 4 4	+328 $+768$ $+552-104$ -828 $-588+1$ $+60$ $+81$	$\sin^4 \varphi \ \sin^2 \varphi \ 1$	$\begin{array}{ccc} 4.3 & +1 \\ 4.6 & +1 \\ 6.3 & 0 \end{array}$
561 562 563		6 6	$\begin{array}{cccc} +1888 & +2112 \\ -872 & -1608 \\ +34 & +196 \end{array}$	$ \frac{\sin^4\varphi \ \cos^2\varphi}{\sin^2\varphi \ \cos^2\varphi} $	$\begin{array}{cccc} 1.1 & 0 \\ 8.4 & -1 \\ 6.6 & -2 \end{array}$
581 582 583	-	8 8 8	+1944 -1056 +57	$\frac{\sin^4\varphi\cos^4\varphi}{\sin^2\varphi\cos^4\varphi}$	$\begin{array}{cccc} 6.8 & -3 \\ 3.7 & -3 \\ 2.0 & -4 \end{array}$
601		0	$-45 \sin^6 \alpha + 540 \sin^4 \alpha \cos^2 \alpha - 360 \sin^2 \alpha \cos^4 \alpha$	tan ⁵ (0	1912-1
602 603		Ŭ 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.3 + 4 1.3 + 4 4.3 + 3
621 622 623		$\begin{array}{c} 2\\ 2\\ 2\\ 2\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{rrrr} 1.7 & +2 \\ 5.5 & +1 \\ 1.1 & +2 \end{array}$
$\begin{array}{c} 641 \\ 642 \\ 643 \end{array}$		$\begin{array}{c} 4\\ 4\\ 4\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccc} 2.9 & 0 \\ 3.1 & +1 \\ 1.7 & +1 \end{array}$
$\begin{array}{c} 661 \\ 662 \\ 663 \end{array}$	6	$\begin{array}{c} 6\\ 6\\ 6\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
681 682 683	•••	8 8 8	$\begin{array}{cccc} -34264 & -43008 \\ +22424 & +40248 \\ +2335 & -6600 \end{array}$	$ \begin{array}{c} \sin^5\varphi \cos^3\varphi \\ \sin^3\varphi \cos^3\varphi \\ \sin\varphi \cos^3\varphi $	2.5 -2 2.4 -2 3.9 -2
6X1 6X2 6X3		10 10 10	$\begin{array}{c} -2950 \\ -291504 \\ -2730 \end{array}$	$ \begin{array}{c} \sin^5\varphi \cos^5\varphi \\ \sin^3\varphi \cos^5\varphi \\ \sin\varphi \cos^5\varphi \\ \sin^2\varphi \cos^5\varphi \$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
		1 10	2100	στη φ του φ	т.т О

No.	n	2m		$A(\alpha)$		B(arphi)	$Max(\alpha)$
$701 \\ 702 \\ 703 \\ 704 \\ 721 \\ 722 \\ 723 \\ 723 \\$	7	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 2 \\ 2 \\ 2 \end{array} $	$\begin{array}{rrrr} -1575 \sin^6 \alpha \cos \alpha + 6300 \sin^4 \alpha \\ -1575 & +8400 \\ -273 & +2604 \\ -1 & +88 \\ +2835 & -10395 \\ -4272 & -168 \\ +4680 & -1168 \end{array}$	$ \begin{array}{r} \alpha \cos^3 \alpha - 2520 \sin^2 \alpha c \\ -4200 \\ -1848 \\ -136 \\ +3780 \\ +1176 \\ + 624 \end{array} $	$+96\cos^{5}\alpha$	$\begin{array}{c} \tan^6\varphi\\ \tan^4\varphi\\ \tan^2\varphi\\ 1\\ \tan^4\varphi\\ \tan^2\varphi\\ \sin^2\varphi\\ \sin^2\varphi\end{array}$	9.9E + 3 1.2 + 4 5.8 + 3 5.4 + 2 1.2 + 2 2.8 + 2 3.0 + 2
724		$\overline{2}$	-0 -53	-188	-48	1	1.3 +1

Table 1 Legendre's expansion for the First Problem (continued) a. Latitude (continued)

b. Longitude

No.	n	2m	$A(\alpha)$	$\cos \varphi \cdot B(\varphi)$	$Max(\alpha)$
101	1	0	$+ 1 \sin \alpha$	1	2″1E+5
201	2	0	$+ 2 \sin \alpha \cos \alpha$	$\tan \varphi$	1.0E+5
301 302 321	3	0 0 2	$\begin{array}{ccc} -2\sin^3\alpha & + \ 6\ \sin\alpha\ \cos^2\alpha \\ + \ 2 \\ + \ 2 \end{array}$	$ an^2 arphi \ 1 \ \cos^2 \! arphi$	$\begin{array}{c} 6.9\mathrm{E}+4\\ 2.6 +4\\ 1.8 +2 \end{array}$
401 402 421 441	4	0 0 2 4	$\begin{array}{cccc} -24\sin^3\alpha\cos\alpha & +24\sin\alpha\cos^3\alpha \\ -8 & +16 \\ -8 & +8 \\ & -8 \\ & -8 \end{array}$	$ \begin{array}{l} \tan^3\varphi \\ \tan \ \varphi \\ \sin \ \varphi \\ \cos \ \varphi \\ \sin \ \varphi \\ \cos^3\varphi \end{array} $	5.2E + 43.9 + 41.2 + 21.0 0
$501 \\ 502 \\ 503 \\ 521 \\ 522 \\ 541 \\ 542 \\ 561 \\ 562$	5	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 2 \\ 4 \\ 4 \\ 6 \\ 6 \end{array} $	$\begin{array}{cccccc} +24\sin^5\alpha & & -240\sin^3\alpha\cos^2\alpha + 120\sin\alpha\cos^4\alpha \\ +&8 & & -160 & +120 \\ && & & +16 \\ +&8 & & -88 & +24 \\ && & -16 & +24 \\ && & -64 & +24 \\ && & +56 & -24 \\ && & & -56 \\ && & & +48 \end{array}$	$ an^4 \varphi \ an^2 \varphi \ 1 \ \sin^2 \varphi \ 1 \ \cos^4 \varphi \ \cos^2 \varphi \ \cos^4 \varphi \ \cos^4 \varphi \ \cos^4 \varphi \ \cos^4 \varphi$	$\begin{array}{c} 4.1E+4\\ 4.5\\ +4\\ 7.0\\ +3\\ 1.3\\ +2\\ 6.8\\ +1\\ 7.3\\ -1\\ 6.2\\ -1\\ 8.4\\ -3\\ 7.2\\ -3\\ \end{array}$
$\begin{array}{c} 601 \\ 602 \\ 603 \\ 621 \\ 622 \\ 641 \\ 642 \\ 661 \\ 662 \\ 681 \\ 682 \end{array}$	6	$ \begin{array}{c c} 0 \\ 0 \\ 2 \\ 2 \\ 4 \\ 4 \\ 6 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{l} \tan^5\varphi\\ \tan^3\varphi\\ \tan\varphi\\ \sin\varphi\\ \sin\varphi\\ \sin^3\varphi\cos\varphi\\ \sin^3\varphi\cos\varphi\\ \sin^3\varphi\cos\varphi\\ \sin^3\varphi\cos^3\varphi\\ \sin^3\varphi\cos^3\varphi\\ \sin^3\varphi\cos^5\varphi\\ \sin\varphi\cos^5\varphi\\ \sin\varphi\cos^5\varphi\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
701 702 703 704 721 722 723	7	0 0 0 2 2 2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ an^6 arphi \ an^4 arphi \ an^2 arphi \ an^$	$\begin{array}{c} 2.9 \pm +4 \\ 5.3 \\ +4 \\ 2.5 \\ +4 \\ 2.1 \\ +3 \\ 1.4 \\ +2 \\ 7.7 \\ +1 \\ 2.8 \\ +1 \end{array}$

Explanation of Tables 1 and 2.

Given quantities: φ_1 , λ_1 , α_1 , s. Quantities to be obtained: φ_2 , λ_2 (See Fig. 1) Maclaulin expansions by s at φ_1 , λ_1 are:

$$\varphi_{2}-\varphi_{1}=\sum \frac{1}{n!} \left(\frac{s}{c}\right)^{n} V^{n+2} F_{n}, \qquad (i)$$

$$F_{n}=\sum h^{2m} A(\varphi) \cdot B(\varphi), \qquad (i)$$

$$\lambda_{2}-\lambda_{1}=\sum \frac{1}{n!} \left(\frac{s}{c}\right)^{n} V^{n} G_{n}, \qquad (ii)$$

 $G_n = \sum h^{2m} A(\alpha) \cdot B(\varphi)$

wher m is 0 or positive integers.

Table 1 presents each term of F_n and G_n . First figure of column 1 (term no.) stands for n, and the second figure for the power (2m) of h. 3rd to 5th columns are components of F_n or G_n . E.g., term no. 643 for latitude should be read as:

 $h^{4}(224 \sin^{6}\alpha - 1896 \sin^{4}\alpha \cos^{2}\alpha - 1356 \sin^{2}\alpha \cos^{4}\alpha - 1308 \cos^{6}\alpha) \sin \varphi \cos \varphi$

The last column lists possible maximum values of A multiplied by $h^{2m}/n!$ in the unit of arc second. Individual contributions of respective terms to the evaluations of φ_2 and λ_2 can be estimated through $\left[\frac{h^{2m}}{n!}A_{max}\right]\left[\left(\frac{s}{c}\right)^nB\right]$.

Table 2 gives examples of this estimation. V^{n+2} for latitude and V^n for longitude have been multiplied to the above product respectively, although we may regard as V=1 practically for the present purpose. From the table, it is found that, for example, when we want to calculate φ_2 and λ_2 with an accuracy of $\pm 1''$ in a case of s=200 miles and $\varphi_1=+50^\circ$, we may take terms Nos. 101, 201, 221, 301, 302, 321, 401 and 402 for latitude and terms Nos. 101, 201, 301, 302, 401 and 402 for longitude. In a case of s=1000 km and $\varphi_1=+70^\circ$, we cannot expect accuracies of ± 0.1 in latitude and ± 0.1 in longitude, even if we take terms down to 7th order.

Table 2 Maximum values of each term in Legendre's expansions (unit: second of arc)

		S	=370.4km			s = 1000 km	
	No.	φ :+20°	+50°	+70°	φ : +-20°	+50°	+70°
	101	1,2 E + 4	1.2 E + 4	1,2 E + 4	3.3 E + 4	3,2 E + 4	3,2 E + 4
	201 221	1.3 E + 2 2.3 0	4.1 E + 2 3.4 0	9.5 E + 2 2.2 0	9.3 E + 2 1.7 + 1	3.0 E + 3 2.5 + 1	6.9 E + 3 1.6 + 1
Latitude	301 302 321 322 341 342	$\begin{array}{cccc} 1.0 & E & 0 \\ 2.6 & 0 \\ 3.2 & -2 \\ 1.4 & -1 \\ 4.0 & -3 \\ 4.3 & -3 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5.8 E + 1 2.6 0 2.4 - 1 1.3 - 1 5.3 - 4 7.4 - 5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 2.2 E + 2 \\ 5.1 + 1 \\ 3.2 0 \\ 2.7 0 \\ 3.7 - 2 \\ 1.8 - 2 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	401 402 421 422 441 442	1.4 E - 26.4 - 22.2 - 32.5 - 31.9 - 59.8 - 5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccc} 6.0 & E & 0 \\ 4.7 & -1 \\ 1.6 & -2 \\ 2.5 & -3 \\ 1.4 & -4 \\ 9.7 & -5 \end{array}$	7.5 = -1 $3.4 = 0$ $1.1 = -1$ $1.4 = -1$ $1.0 = -3$ $5.2 = -3$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Table 2	Maximum	values of	each	term	in	Legendre's	expansions.	(continued)	
---------	---------	-----------	------	------	----	------------	-------------	-------------	--

<u></u>		S	=370.4km			s=1000km	
	No.	$arphi:+20^{\circ}$	+50°	+70°	φ :+20°	+50°	+70°
d)	501 502 521 522 523 541 542 543	$\begin{array}{c} " E - 4 \\ 1.3 - 3 \\ 1.6 - 3 \\ 2.1 - 5 \\ 2.2 - 5 \\ 9.2 - 5 \\ 3.9 - 7 \\ 3.5 - 6 \\ 4.2 - 6 \\ \end{array}$	2.2 E - 2 $1.3 - 2$ $1.5 - 3$ $2.3 - 4$ $1.1 - 4$ $9.1 - 5$ $9.7 - 6$ $1.8 - 5$ $4.1 - 6$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Latitude (continu	601 602 621 622 623 641 642 643	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7.6 E - 2 1.0 - 2 4.5 - 4 1.4 - 4 5.7 - 6 1.4 - 6 3.0 - 7 3.4 - 7 2.1 - 7	1.2 E - 3 9.1 - 3 2.3 - 2 1.2 - 4 3.0 - 4 5.3 - 4 1.6 - 5 1.8 - 5 8.1 - 5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	701 702 703 704 721 722 723 724	5.1 E - 8 4.7 - 7 1.7 - 6 1.2 - 6 4.8 - 9 8.3 - 8 7.7 - 8 3.0 - 8	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5.4 E - 5 4.9 - 4 1.8 - 3 1.3 - 3 5.0 - 6 8.7 - 5 8.1 - 5 3.1 - 5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	101	1.3 E + 4	1.9 E + 4	3.5 E + 4	3.4 E + 4	5.0 E + 4	9.4 E + 4
	201	1.3 E + 2	6.4 E + 2	2.8 E + 3	9.8 E + 2	4.7 E + 3	2.0 E + 4
	301 302 321	1.9 E 0 5.5 0 3.3 - 2	3.0 E + 1 8.0 0 2.2 - 2	2.9 E + 2 1.5 + 1 1.2 - 2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5.8 E + 2 1.6 + 2 4.4 - 1	5.8 E + 3 3.0 + 2 2.3 - 1
	401 402 421 441	3.0 E - 2 1.7 - 1 4.5 - 4 3.5 - 6	1.5 E 0 8.1 - 1 1.0 - 3 3.6 - 6	3.5 E + 1 3.5 0 1.2 - 3 1.2 - 6	1.6 E 0 9.0 0 2.4 - 2 1.8 - 4	8.1 E + 1 4.3 + 1 5.3 - 2 1.9 - 4	1.9 E + 3 1.9 + 2 6.5 - 2 6.6 - 5
Longitude	501 502 521 522 541 542	5.1 E - 4 4.2 - 3 4.9 - 3 1.1 - 5 4.8 - 5 4.0 - 7 3.9 - 7	8.5 E - 2 6.6 - 2 7.1 - 3 7.7 - 5 7.0 - 5 1.3 - 7 2.6 - 7	$\begin{array}{rrrrr} 4.5 & \mathrm{E} & 0 \\ 6.5 & -1 \\ 1.3 & -2 \\ 2.2 & -4 \\ 1.3 & -4 \\ 1.9 & -8 \\ 1.4 & -7 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 1.2 \ \mathrm{E} + 1 \\ 9.4 & 0 \\ 1.0 & 0 \\ 1.1 & -2 \\ 1.0 & -2 \\ 1.8 & -5 \\ 3.8 & -5 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	601 602 603 621 622	$\begin{array}{r} 8.9 & \text{E} - 6 \\ 9.8 & -5 \\ 2.3 & -4 \\ 2.1 & -6 \\ 1.3 & -6 \end{array}$	4.9 E - 3 5.0 - 3 1.1 - 3 9.7 - 6 2.8 - 6	5.9 E - 1 1.1 - 1 4.8 - 3 4.2 - 5 3.4 - 6	3.5 E - 3 3.8 - 2 9.0 - 2 8.0 - 4 4.9 - 4	1.9 E 0 1.9 0 4.3 - 1 3.8 - 3 1.1 - 3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	701 702 703 704 721 722 723	1.6 E - 7 $2.2 - 6$ $7.9 - 6$ $4.3 - 8$ $2.1 - 8$ $6.5 - 8$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.7 E - 4 2.3 - 3 8.3 - 3 5.3 - 3 4.5 - 5 2.2 - 5 6.8 - 5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	8.5 E + 1 2.0 + 1 1.3 0 1.4 - 2 6.9 - 3 4.6 - 4 1.8 - 4

まず緯度について

$$F_n = \frac{c^n}{V^{n+2}} \left(\frac{d^n \varphi}{ds^n} \right) \tag{8}$$

とおけば(1)は

$$\varphi_2 - \varphi_1 = \sum \frac{1}{n!} \left(\frac{s}{c} \right) V^{n+2} F_n \tag{9}$$

となる. $\frac{d^n \varphi}{ds^n}$ をn=1 つまり(5)から出発して,次々に微分してゆけば,(8)は

$$F_n = \sum h^{2m} A(\alpha) \cdot B(\varphi) \tag{10}$$

の形で表わされる. ここに m は 0 または正の整数, A は sin α , cos α だけの関数, B は φ だけの関数である. 同様に経度についても

$$G_n = \left(\frac{c}{V}\right)^n \left(\frac{d^n \lambda}{ds^n}\right) \tag{11}$$

とおけば(2)は

$$\lambda_2 - \lambda_1 = \sec \varphi \sum \frac{1}{n!} \left(\frac{s}{c} \right)^n V^n \cos \varphi \, G_n \tag{12}$$

となり、 $\frac{d^n\lambda}{ds^n}$ の計算を実行すれば(11)は

$$F_n = \sum h^{2m} A(\alpha) \cdot B(\varphi) \tag{13}$$

の形を採る. $\frac{d^n\varphi}{ds^n}$ および $\frac{d^n\lambda}{ds^n}$ の計算法については,文末の付記1を参照されたい.

第1表は、(10)および(13)の各項、つまり $h^{2m}A(\alpha) \cdot B(\varphi)$ を掲げている. これらを(9)、(12)に代入すれば ルジャンドルの展開が得られる. 表の最左欄は仮につけた各項の指定番号であって、最初のけたは次数 n、次 のけたは h のべき、 つまり 2m を示す(主項ではこれが 0 になる). 最右欄に掲げた数値は、A の最大値に $h^{2m}/n!$ および $\rho''=206\ 265''$ を乗じたものである.

JEK ではルジャンドルの展開式を sin^j α ・cos^{n-j} α によってまとめている. つまり第1表を各 n ごとにたて に加え合わせた形で表示している. しかし第1表のように表示すれば, ルジャンドルの展開の性質がよくわか る. すなわち $A(\alpha)$ における sin^{j α}・cos^{n-j α} の各係数値は n が大きくなるに従って大きくなり, また主項は tan^{n-1 φ} を含んでいる. 一方, 高次項の数値を確実に小さくする要因は (*s*/*c*)ⁿ/*n*! しかない. したがって長距 離・高緯度になるほど級数の収束は急激に悪くなる.

 φ と s の値を指定すれば、第1表最右欄の数値から各項それぞれについて (s/c)ⁿ(h^{2m}/n!)A_{max}·B の値が 角度の秒単位で得られる. V=1 であるから、この数値はそれぞれの項の採り得る最大値と見なして良い. つ まり φ_2 , λ_2 の所要精度に応じて、採用すべき項を第1表から選び出すことができる. 例として s=200海里= 370.4km および 1000km, φ_1 =+20°, 50°, 70° に対する (s/c)ⁿ(h^{2m}/n!)A_{max}·B の値を第2表に示す. 表 値の単位は角度の秒である. s=200 海里、 φ_1 =+50° の場合に φ_2 , λ_2 の値を ±1″ の精度で求めるのであれば、 緯度の計算には4次までの主項 (Nos. 101, 201, 301, 302, 401, 402) および Nos. 221, 321 だけを採り, 経度の計算には4次までの主項 (Nos. 101, 201, 301, 302, 401, 402) だけを採れば充分である. s=1000 km, φ_1 =+70° の場合には、主項の大きさの推移から見て、7次項まで採っても、緯度については ±0'1, 経 度については ±0'1 程度の精度しか期待できない.

(3) シュライバーの方法

この方法はルジャンドルの方法の変型である. 起点 P_1 を原点とするときの端点 P_2 のソルドネル直角座標を x, y とする. すなわち P_1 を通る子午線へ P_2 から垂線を下し,その足を $F(\lambda_p, \lambda_1)$ とすれば, P_1F の長さが x,

AKIRA M. SINZI

 P_2F の長さが y である. これらについてルジャンドルの展開を適用することによって,まず φ_F が得られ,これから φ_2 , λ_2 が計算できる. この方法では精度をそこなうことなしにルジャンドルの展開よりもはるかに少い項によって P_2 の位置が得られるのである. 式の誘導法は JEK の 954—961 ページ,序説 183—188ページ,概 観16—19ページに記してあるが,誘導法と計算式が混在しており,実際の計算にはどの式を使うべきか困惑する. 前節で触れたように,原田氏は計算の実行に必要な式だけを抜き出して,簡明な形にまとめている. これを序説 294ページから写す (序説の他の箇所を参照しないですむように,表現を若干改めた).

$$\begin{split} & \text{Schreiber's Solution for the First Problem} \\ & (\text{rewritten by K. Harada}) \\ & N_1 = \frac{a}{(1 - e^2 \sin^2 \varphi_1)^{1/2}} \\ & \eta_1^2 = h^2 \cos^2 \varphi_1, \quad V_1^2 = 1 + \eta_1^2, \quad t_1 = \tan \varphi_1 \\ & \varepsilon = \frac{V_1^4 (1 - e^2)}{2a^2} s^2 \sin \alpha_1 \cos \alpha_1 \\ & \varepsilon = \frac{V_1^4 (1 - e^2)}{2a^2} s^2 \sin \alpha_1 \cos \alpha_1 \\ & x = s \cos \alpha_1 + \frac{2}{3} \varepsilon s \sin \alpha_1, \quad y = s \sin \alpha_1 - \frac{1}{3} \varepsilon s \cos \alpha_1 \\ & \frac{\varphi_F - \varphi_1}{V_1^2} = \frac{x}{N_1} - \frac{3}{2} \frac{x^2}{N_1^2} \eta_1^2 t_1 - \frac{1}{2} \frac{x^3}{N_1^3} \eta_1^2 (1 - t_1^2) + \frac{1}{2} \frac{x^4}{N_1^4} \eta_1^2 t_1 \\ & \text{I} \\ & N_F = \frac{a}{(1 - e^2 \sin^2 \varphi_F)^{1/2}} \\ & \eta_F^2 = h^2 \cos^2 \varphi_F, \quad V_F^2 = 1 + \eta_F^2, \quad t_F = \tan \varphi_F \\ & (\lambda_2 - \lambda_1) \cos \varphi_F = \frac{y}{N_F} - \frac{1}{3} - \frac{y^3}{N_F^2} t_F^2 + \frac{1}{15} - \frac{y^5}{N_F^5} t_F^2 (1 + 3t_{F'}^2) \\ & (\text{II}) \\ & \frac{\varphi_2 - \varphi_F}{V_F^2} = -\frac{1}{2} - \frac{y^2}{N_F^2} t_F + \frac{1}{24} - \frac{y^4}{N_F^4} t_F (1 + 3t_F^2 + \eta_F^2 - 9\eta_F^2 t_F^2) \\ & (\text{III}) \\ & \gamma = \frac{y}{N_F} t_F - \frac{1}{6} - \frac{y^3}{N_F^3} t_F (1 + 2t_F^2 + \eta_F^2) + \frac{1}{120} - \frac{y^5}{N_F^5} t_F (1 + 20t_F^2 + 24t_F^4) \\ & \alpha_2 = \alpha_1 + 180^\circ + \gamma - \varepsilon \end{split}$$

200 海里水域の境界線の計算には、この原田氏の式を用いることとして、水路部編暦課の仙田昭夫氏がプロ グラムを作り計算を実行した. さらに仙田氏は、この検算として、得られた P_2 の位置と起点 P_1 との間の距離 *s* を、ガウスの中分緯度法(JEK 962—973 ページ、序説 189—195 ページ)によって計算した(測地学の第二 課題). $\varphi_1 = +20^\circ \sim 50^\circ$ 、 $\alpha = 0^\circ \sim 180^\circ$ について、すべて *s*=370.4000 km であった.

ここでシュライバーの方法の精度について考える. 最終結果としての φ_2 , λ_2 の値に含まれる誤差の要因としては, (i) ソルドネル座標 x, y の計算における誤差,および (ii) φ_F , λ_2 , φ_2 の計算における誤差がある.

(i) 上に掲げた x および y の計算式を導くには、 まず楕円体面上の直角三角形 P₁P₂F を球面直角三角形 によって近似し、この球面直角三角形に球面過剰に関するルジャンドルの定理を適用して平面三角形に改め、 この平面三角形をテイラー展開によって解く、という三つの過程を経なければならない. これらの過程はいず れも三角形が地球の全表面に比べて十分に小さい場合にだけ適用できるのであり、 s が中距離になるとあぶな くなる.

3点 P_1 , P_2 , F における楕円体面の曲率を K_1 , K_2 , K_F とすれば、ソルドネル座標は

$$x = s \cos \alpha_1 + \frac{s^3}{3} \sin^2 \alpha_1 \cos \alpha_1 \frac{3K_1 + 2K_2 + 3K_F}{8} + \frac{K_1^2}{15} (2xy^4 - x^3y^2) + \dots$$
(14)

$$y = s \sin \alpha_1 - \frac{s^3}{6} \sin \alpha_1 \cos^2 \alpha_1 - \frac{2K_1 + K_2 + K_F}{4} + \frac{K_1^2}{120} (x^4 y - 8x^2 y^3) + \dots$$
(15)

によって表わされる (JEK 899ページ). 一般に $K = V^4/c^2$ である. 両式において, s/c < 0.1 の場合には

$$\varphi_f = \varphi_1 + \frac{s}{c} \cos \alpha_1 \tag{16}$$

をもって φ_F および φ₂ を近似し, かつ右辺の各第 3 項について V≒1, x≒s cos α₁, y≒s sin α₁ と見なすこ とができる. その結果

$$x = s \cos \alpha + \frac{1}{24} - \frac{s^3}{c^2} \sin^2 \alpha_1 \cos \alpha_1 (3V_1^4 + 5V_f^4) + \frac{1}{15} - \frac{s^5}{c^4} (2\sin^4 \alpha_1 \cos \alpha_1 - \sin^2 \alpha_1 \cos^3 \alpha_1)$$
(17)

$$y = s \sin \alpha - \frac{1}{12} \frac{s^3}{c^2} \sin \alpha_1 \cos^2 \alpha_1 (V_1^4 + V_f^4) + \frac{1}{120} \frac{s^5}{c^4} (\sin \alpha_1 \cos^4 \alpha_1 - 8 \sin^3 \alpha_1 \cos^2 \alpha_1)$$
(18)

この両式によって測地線の長さ x, y が計算できる.

シュライバーの原式による x, y と(17), (18)による x, y との差を dx, dy とし, この誤差によって生ずる φ_2 , λ_2 の誤差を $d\varphi(\varepsilon)$, $d\lambda(\varepsilon)$ と書く. N=c/V であるから (I), (I) 式によって

 $\Delta \varphi(\varepsilon) \doteq \Delta x/c, \qquad \Delta \lambda(\varepsilon) \cos \varphi \doteq \Delta y/c$

と見なすことができる. 4x, 4y を実際に計算すれば

$$\int_{0}^{\infty} \mathcal{A}\varphi(\varepsilon) = \frac{5}{6} h^2 \left(\frac{s}{c}\right)^4 \sin^2 \alpha_1 \cos^2 \alpha_1 \sin \varphi_1 \cos \varphi_1 - \frac{1}{15} \left(\frac{s}{c}\right)^5 (2\sin^4 \alpha_1 \cos \alpha_1 - \sin^2 \alpha_1 \cos^3 \alpha_1)$$
(19)

$$\Delta\lambda(\varepsilon)\cos\varphi = -\frac{1}{3}h^2\left(\frac{s}{c}\right)^4\sin\alpha_1\cos^3\alpha_1\sin\varphi_1\cos\varphi_1 - \frac{1}{120}\left(\frac{s}{c}\right)^5(\sin\alpha_1\cos^4\alpha_1 - 8\sin^3\alpha_1\cos^2\alpha_1) \quad (20)$$

s=370.4kmの場合におけるこれらの誤差を第2図に示す.

(ii) 上に触れたように、シュライバーの方法はルジャンドルの展開において、 $\alpha=0^{\circ}$ として $\varphi_{F}-\varphi_{1}$ を求め、 $\alpha=90^{\circ}$ として $\lambda_{2}-\lambda_{1}$ および $\varphi_{2}-\varphi_{F}$ を計算する. ルジャンドルの展開の各項は $\sin^{j}\alpha \cos^{n-j}\alpha$ を含んでいるから、i=0または j=n でない限り消滅する.

すなわち第1表aにおいて、s=x、 $\alpha=0^{\circ}$ とおけば、4次項までで生き残るのは Nos. 101, 202, 321, 322, 341*, 342*, 422, 441*, 442*, 461*, 462*の $\cos^{n}\alpha$ の項だけである.記号を書き直すならば、これらの項の うち*を付けてない項によってシュライバーの(I)式が成立っていることが容易にわかる.また5次の主項 は $\cos^{5}\alpha$ を含まない.したがって(I)式は、精度上からは5次までの主項と4次までの h^{2} の項をすべて拾い 上げていることになる.第2表を見れば Nos. 441 以下の項の影響は微小であることがわかる.それで(I)式 が Nos. 341, 342 を欠くことによる φ_{F} の誤差を $d\varphi$ (I)とする.この誤差はそのまま φ_{2} に現れる.

つぎに第1表bにおいて、s=y, $\alpha=90^{\circ}$ とおけば、6次項まで採っても Nos. 101, 301, 501, 502, 521* の $\sin^{n}\alpha$ の項だけが生き残る.シュライバーの(II)式はこのうち初めの4項によって構成されている.しか し第2表を見れば、高緯度の場合に7次の主項まで効いてくる可能性のあることがわかる.それで(II)式が Nos. 521, 701, 702, 703 を欠くことによる λ_2 の誤差を $4\lambda(II)$ とする.

同様に第1表aにおいて、 s=y, $\alpha=90^{\circ}$ とおけば、5次までで生き残る項は Nos. 201, 401, 402, 421, 422の $\sin^{n}\alpha$ の項だけであり、(III)式はこの5項によって構成されている. 第2表を見れば、高緯度では6次 の主項も効いてくる可能性がある. (III)式が Nos. 601, 602, 603 を欠くことによる φ_2 の誤差を $d\varphi(III)$ と する.

99

AKIRA M. SINZI

Figure 2 Schreiber's error for the 200-mile geodesics due to the spherical excess approximation in the calculation of the Soldner's coordinales: eqs. (19), (20). (Curves for other latitudes lie between the drawn two curves.)

Figure 3 Schreiber's error for the 200-mile geodesics due to the omission of higher terms in the Legendre's expansions: eqs. (21), (22), (23). (Curves of $\Delta \varphi$ (I) for other latitudes lie between the drawn curves. Curves of $\Delta \varphi(\mathbf{II})$ and $\Delta\lambda(\mathbf{I}) \cos\varphi$ for lower latitudes lie below the drawn curves.)

以上に挙げた項をシュライバーの記法に従って表わすならば

$$-\frac{\varDelta\varphi(1)}{V_{1}^{2}} = -\frac{1}{2} \left(\frac{x}{N_{1}}\right)^{3} \eta_{1}^{4} (1-5t_{1}^{2})$$
(21)

$$-\mathcal{A}(\mathbf{I})\cos\varphi_{F} = -\frac{1}{15} \left(\frac{y}{N_{F}}\right)^{5} \eta_{F}^{2} t_{F}^{2} - \frac{1}{21} \left(\frac{y}{N_{F}}\right)^{7} t_{F}^{4} (2+3t_{F}^{2})$$
(22)

$$-\frac{d\varphi(\mathbb{II})}{V_{F}^{2}} = -\frac{1}{48} \left(\frac{y}{N_{F}}\right)^{6} t_{F}^{3} (2+3t_{F}^{2})$$
(23)

s=370.4 km の場合におけるこれらの値の付号を変じたものを第3図に示す.これと第2図を合せたものが, 200 海里測地線をシュライバーの方法で計算した場合の誤差である.

換言すれば、中距離・高緯度の場合にシュライバーの方法を使うには、(16)、(17)、(18) によって x, y を 計算し、(Ⅰ)、(Ⅱ)、(Ⅲ)式にそれぞれ (21)、(22)、(23) を加える. このプログラムも仙田氏が作成した.

(4) ヘルメルトの方法

これは長距離用であって, JEK 988—1018 ページに詳しく説明してある. 序説, 概観には触れてない. JEK の示す最終の計算式は対数用であり, また式の誘導の過程において必要であった記号がそのまま用いられているので, 計算の実行にはわずらわしい. それで記号を若干改め, また式も多少整理したものを下に示す. この計算式では角度を弧度で表わしているから, 計算を角度の秒 (または度)によって行うときには, P_1 , P_2 , P_3 , P_4 , Q_1 , Q_2 , Q_3 , R_2 , R_3 に $\rho''=206\ 264.806$ (または $\rho^\circ=57.295\ 779\ 5$)を乗じなければならない. JEK に用いてある記号との対照を計算式の後に示す.

Helmert's Solution for the First Problem

Given quantities: φ_1 , λ_1 , α_1 , s

Quantities to be obtained: φ_2 , λ_2 , α_2

(In the sheme, always calculate the quantity in the left-hand side from those in the right-hand side. Angles are expressed in the unit of radian. When angles are calculated in the unit of second (or degree) of arc, P_1 , P_2 , P_3 , P_4 , Q_1 , Q_2 , Q_3 , R_2 , R_3 should be multiplied by $\rho''=206$ 264.806 (or $\rho^\circ=57.295$ 779 5)).

1. $\tan \phi_1 = \sqrt{1 - e^2} \tan \phi_1$ 2. $\cos \phi_m = \sin \alpha_1 \cos \phi_1$ $\tan \sigma_1 = -\frac{\cos \alpha_1}{\tan \phi_1}$ $\frac{3}{2}\pi \le \sigma_1 \le 2\pi$ when $0 \le \alpha_1 \le \frac{\pi}{2}$ and $\phi \ge 0$ $\pi \le \sigma_1 \le \frac{3}{2}\pi$ " " " $\psi \le 0$ $\frac{\pi}{2} \le \sigma_1 \le \pi$ " $\frac{\pi}{2} \le \alpha_1 \le \pi$ " $\psi \le 0$ $0 \le \sigma_1 \le \frac{\pi}{2}$ " " " $\psi \le 0$

 L_1 takes same quadrant as σ_1

 $0 \le E \le \frac{\pi}{2}$

3. $\tan E = h \sin \phi_m$

 $\cot L_1 = -\tan \alpha_1 \sin \phi_1$

$$K = \tan^{2}\left(\frac{E}{2}\right)$$

$$P_{1} = \frac{1-K}{1+\frac{K^{2}}{4}}, \quad P_{2} = \frac{K}{2} - \frac{3}{16}K^{3}, \quad P_{3} = -\frac{K^{2}}{16}, \quad P_{4} = \frac{K}{48}$$

AKIRA M. SINZI

 $Q_1 = -\frac{1}{2} \left(K - \frac{9}{16} K^3 \right), \quad Q_2 = \frac{5}{16} K^2, \quad Q_3 = -\frac{29}{96} K^3$ $t = \sigma_1 + P_1 \frac{s}{h} + P_2 \sin 2\sigma_1 + P_3 \sin 4\sigma_1 + P_4 \sin 6\sigma_1$ $\sigma_2 = t + Q_1 \sin 2t + Q_2 \sin 4t + Q_3 \sin 6t$ 4. $\tan L_2 = \frac{\tan \sigma_2}{\cos \phi_m}$ L_2 takes same quadrant as σ_2 $-\frac{\pi}{2} \leq \phi_2 \leq \frac{\pi}{2}$ $\sin \phi_2 = \cos \sigma_2 \sin \phi_m$ $\tan \varphi_2 = \frac{\tan \psi_2}{\sqrt{1-e^2}}$ φ_2 takes same quadrant as ψ_2 $0 \leq \alpha_2 \leq \frac{\pi}{2}$ when $\pi \leq \sigma_2 \leq 2\pi$ $\cos \alpha_2 = -\tan \sigma_2 \tan \phi_2$ $\frac{\pi}{2} \leq \alpha_2 \leq \pi$ " $0 \leq \sigma_2 \leq \pi$ 5. $2\sigma = \sigma_1 + \sigma_2$, $\Delta\sigma = \sigma_2 - \sigma_1$ $R_1 = \frac{e^2}{2} \left(1 + n - \frac{K}{2} - \frac{K^2}{4} \right), \quad R_2 = \frac{e^2}{4} K, \quad R_3 = \frac{e^2}{16} K$ n: 3rd flattening $\lambda_2 - \lambda_1 = L_2 - L_1 - \cos \phi_m \left(R_1 \varDelta \sigma - R_2 \cos 2\sigma \sin \varDelta \sigma + R_3 \cos 4\sigma \sin 2\varDelta \sigma \right)$ Identifications of the symbols above with those in JEK: (JEK \rightarrow present) $l_1 \rightarrow \lambda_1, \ l_2 \rightarrow \lambda_2, \ \lambda_1 \rightarrow L_1, \ \lambda_2 \rightarrow L_2, \ ds \rightarrow s, \ e' \rightarrow h, \ K_1 \rightarrow K$ $\frac{1}{P_{1,\rho^{\circ}}} \to P_{1}, \quad \frac{P_{2'}}{\rho^{\circ}} \to P_{2}, \quad \frac{P_{3'}}{\rho^{\circ}} \to P_{3}, \quad \frac{P_{4'}}{\rho^{\circ}} \to P_{4},$ $\frac{Q_1}{2\rho^{\circ}} = \frac{Q_1'}{\rho^{\circ}} \to Q_1, \quad \frac{Q_2}{2\rho^{\circ}} = \frac{Q_2'}{\rho^{\circ}} \to Q_2, \quad \frac{Q_3}{2\rho^{\circ}} = \frac{Q_3'}{\rho^{\circ}} \to Q_3,$ $s_2' \rightarrow t$, $\frac{R_2}{a^\circ} \rightarrow R_2$, $\frac{R_3}{a^\circ} \rightarrow R_3$.

計算値の比較

(1) JEK の標準例題

JEK 950ページには、短距離と長距離について各1 題づつの例題が掲げてあり、JEK 9 版 III/2巻 69ページ にはこの2 題のほかに中距離の例題を掲げ、いずれも計算式の検算に広く使われている. この3 題について、 前節に記した解法を適用した結果は次のとおりである. ここでルジャンドルの方法には第1表のすべての項を 採った. 当然のことであるが、距離が大きくなるに従って、まずシュライバーに、つづいてルジャンドルに誤 差が現われてくる. 前節で説明したように、シュライバーは $\alpha=0^\circ$ または 90°として、少数の項によって実質 的には多数の項の効果を含んでおり、したがって (16)、(17)、(18)、(21)、(22) によって修正したシュライ バー (*印) は、高緯度・長距離では、第1表によるルジャンドルよりも精度が良くなる.

Standard Examples of JEK

Constants: Bessel, 1841.

<i>a</i> =6 377 397.155 00 m,	$e^2 = 0.006 674$ 372 231 315
b=6 356 078.963 25 m,	$h^2 = 0.006\ 719\ 218\ 798\ 677$
c=6 398 786.849 39 m,	n = 0.001 674 184 8

102

	φ_2	$\lambda_2 - \lambda_1$
JEK	+59° 30′ 00″	1° 00′ 00″
Schreiber	29 59.9999	00.0000
modified Schreiber*	29 59.9999	00.0000
Legendre	29 59.9999	00.0000
Helmert	29 59.9998	0 59 59.9999
II. Given: $\varphi_1 = +52^\circ 30'$	16"7, $\alpha_1 = 59^\circ 33' 00''68$	92, <i>s</i> =529.979 578 km.
	$arphi_2$	$\lambda_2 - \lambda_1$
JEK	+54° 42′ 50″6	7° 06′ 00″0
Schreiber	50.5921	00.0144
modified Schreiber*	50. 5985	00.0001
Legendre	50.6001	05 59.9989
Helmert	50. 5999	05 59.9999
III. Given: $\varphi_1 = +45^\circ \ 00'$	00", $\alpha_1 = 29^\circ \ 03' \ 15.''4598$	3, <i>s</i> =1320.284 366 km.
	φ_2	$\lambda_2 - \lambda_1$
·		

I. Given: $\varphi_1 = +49^{\circ} 30' 00''$, $\alpha_1 = 32^{\circ} 25' 21''_{5109}$, s = 132.315 375 km.

 φ_2 $\lambda_2 - \lambda_1$

 JEK
 +55°
 00'
 00"
 10°
 00'
 00"

 Schreiber
 00.5597
 00.4108

 modified Scheiber*
 54
 59
 59.9970
 00.0009

 Legendre
 55
 00
 00.0247
 00.3946

 Helmert
 54
 59
 59.9998
 9
 59
 59.9999

* x and y are calculated by eqs. (16), (17), (18).
 Corrections -Δφ(I), -Δλ(I), -Δφ(II) in eqs. (21), (22), (23) are applied to eqs. (I), (II), (II), respectively.

(2) 200海里境界線

上の標準例題の結果によって、ルジャンドル、シュライバー、ヘルメルトの計算精度のあらましが推定でき るが、これらは α_1 に特定の値を採った場合である.それで s=370.4km として、 $\varphi_1=+10^\circ \sim 70^\circ$ 、 $\alpha_1=0^\circ \sim$ 180°について、この3種の方法および(16)、(17)、(18)、(21)、(22)、(23) によって補正したシュライバー の方法を使って φ_2 、 λ_2 を計算した.わが国の海図に適用するのであるから、楕円体にはやはりベッセル(1841) を使う.計算結果の一部を第3表に示す.この表値は、10°または 5°ごとの緯度における差の最大値であっ て、同じ緯度であっても必ずしも同じ方位における値ではない.ルジャンドルとヘルメルトの差は緯度につい ては緯度+60°まで、経度($\cos\varphi$ を乗ずる)については緯度50°までは事実上一致し(第2表からわかるように 50°より高緯度では、7次項まで採ってもルジャンドルでは±0″0001の精度は得られない)、したがってシュラ イバー・ルジャンドル間の差とシュライバー・ヘルメルト間の差も事実上一致する.第4図にはシュライバー ・ルジャンドル間の差を例示する.これが第2図と第3図を合せたものとほぼ一致することは、(19)、(20)、 (21)、(22)、(23)によるシュライバーの誤差の評価が正しいことを示す.したがって補正したシュライバーが ルジャンドル、ヘルメルトにきわめて近いのも当然のことである.

わが国の200海里境界線の場合には、 φ_1 は+20°~+50°の範囲(沖の鳥島:+20°4, 択捉島北端:+46°6) にあるから、 φ_2 、 λ_2 の値をシュライバーの原式によって計算しても、その最大誤差は緯度で0.006、経度方向 で0102でであり,両者を併せた位置のずれは±20cm以内となる.シュライバーの計算法は,200海里境界線の 計算には十分すぎる精度を持っているのであり,(16),(17),(18),(21),(22),(23)による補正の必要はな い. なお第2節(2)項で触れたように,シュライバーによる第一課題とガウスの中分緯度法による第2課題の 結果が±10cm以内で一致することは,ガウスの方法の誤差がシュライバーの方法の誤差とほぼ同じ性質を持 つことを示す.

以上の計算には、水路部のNEAC 2200モデル500を使った.またプログラムはすべて単精度で組んであるから、計算値の11けた目は不確かになる.

					i	$\Delta \lambda_{max} \cdot \cos \varphi$							
φ_1	S - L	SS-L	S-H	SS-H	L-H	S-L	SS-L	$\mathrm{S}-\mathrm{H}$	SS-H	L - H			
$\begin{array}{c} +10^{\circ} \\ 20 \\ 30 \\ 40 \\ 50 \\ 55 \\ 60 \\ 65 \\ 65 \\ \end{array}$	0."0050 53 55 58 63 106	0."0002 3 4 4 4 4 4 7	0."0049 52 55 58 63 106	0."0002 2 3 4 4 3 3 3	0."0002 1 1 2 2 2 2 4	0."0017 19 19 22 22 22 24	0.0001 1 0 0 0 1 3 11 0 0 1 3 11 0 0 1 3 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0."0018 20 20 22 22 22 25	0."0002 2 2 2 2 1 1 1	0."0002 2 1 1 2 4 2 4 2 2 2 2 2 2 2 2 2 2 2 2			

Table 3 Maximum discrepancies* at the terminals of the 200-miles geodesics between Schreiber (S), modified Schreiber** (SS), Legendre (L) and Helmert (H)

* In most cases, maximum discrepancies occur at different azimuths with each other even for same latitudes.

** x and y are calculated by eqs. (16), (17), (18), Corrections $-d\varphi(1)$, $-d\lambda(1)$, $-d\varphi(1)$ in eqs. (21), (22), (23) are applied to eqs. (1), (1), (1), respectively.

付記 1 $\frac{d^n \varphi}{ds^n}$ および $\frac{d^n \lambda}{d^n s}$ の微分演算

第1表に見られるように、ルジャンドルの展開では次数 n が高くなるに従って項数が急増する. したがって $\frac{dn\varphi}{ds^n}$, $\frac{dn\lambda}{ds^n}$ を微分して $\frac{d^{n+1}\varphi}{ds^{n+1}}$, $\frac{d^{n+1}\lambda}{ds^{n+1}}$ を求めようとするとき, 各項を個々に微分してゆけば, たちまち混 乱し収拾がつかなくなる. これを次のように組織立てて行えば, 誤りなく微分演算が実行できる.

簡単のために

 $u = \cos \alpha$, $v = \sin \alpha$, $x = \cos \varphi$, $y = \sin \varphi$, $t = \tan \varphi$

とおく. (JEK では, ルジャンドルの方法には $u=(c/s)V\cos \alpha$, $v=(c/s)V\sin \alpha$, シュライバーの方法に は $u=s\cos \alpha$, $v=s\sin \alpha$ とおき, 序説, 概観もこれに従っている. 混同しないように注意を要する.) (8), (10) から

$$\frac{d^n\varphi}{ds^n} = \frac{V^{n+2}}{c^n} F_n$$
$$= \frac{V^{n+2}}{c^n} \sum h^{2m} A(\alpha) \cdot B(\varphi)$$

これを s で微分すれば,

$$\frac{d^{n+1}\varphi}{ds^{n+1}} = \frac{1}{c^n} \left\{ (n+2)V^{n+1}\frac{dV}{ds} \sum h^{2m}AB + V^{n+2} \sum h^{2m} \left(\frac{dA}{d\alpha} - \frac{d\alpha}{ds}B + \frac{dB}{d\varphi} - \frac{d\varphi}{ds}A\right) \right\}$$
(24)

(4), (5)から

$$\frac{dV}{ds} = -h^2 \frac{V^2}{c} uxy \tag{25}$$

(5), (7), (25)を(24)に代入すれば(8)の記法に従って

$$F_{n+1} = \frac{c^{n+1}}{V^{n+3}} \frac{d^{n+1}\varphi}{ds^{n+1}}$$

 $= \sum \left\{ -h^{2m+2}(n+2)uAxyB \right\} + \sum h^{2m}v \frac{dA}{d\alpha}tB + \sum h^{2m}uA\frac{dB}{d\alpha} + \sum h^{2m+2}uAx^{2}\frac{dB}{d\alpha}$

 $= \sum \left\{ -h^{2m+2} \left(n+2 \right) u A x y B \right\} + \sum h^{2m} v \frac{dA}{d\alpha} t B + \sum h^{2m} V^2 u A \frac{dB}{d\omega}$

これを

 $F_{n+1} = \sum (1) + \sum (1) + \sum (1) + \sum (1) + \sum (1)$

(26)

(27)

(28)

とおく,ここで 2*m*, *A*, *B*, 2*m*+2, (*n*+2)*uA*, *xyB*を横に排列し,たてに *n* 次の各項,例えば *n*=4ならば 4001,4002,4021,……,4062 を排列すれば, $\Sigma(I)$ は表の形式で一挙に計算される. $\Sigma(I)$, $\Sigma(II)$, Σ (IV)についても同様であるが, $\Sigma(II)$ では *n* 次の *A* の各項(第1表の各1段)は $\Sigma a_{k}u^{n-j}v^{j}$ の形を採るから, $v \frac{dA}{d\alpha}$ は $\Sigma b_{k}u^{n-j}v^{j+1}$ の形となる.係数 b_{k} は*A* の係数 a_{k} の簡単な代数関数で表わされ,これを順に横に排列 して計算する. $\Sigma(IV)$ は $\Sigma(III)$ に $h^{2}x^{2}$ を乗じたものに過ぎない.各 Σ を加えて(26)を作れば,再び(10)の形 になる.

経度についても同様に(11),(13)による

$$\frac{\frac{d^n\lambda}{ds^n}}{=}\left(\frac{V}{c}\right)^n G_n$$
$$=\left(\frac{V}{c}\right)^n \sum h^{2m} A(\alpha) \cdot B(\varphi)$$

をsで微分し(6), (7), (25)を代入すれば

$$G_{n+1} = \left(\frac{c}{V}\right)^{n+1} \frac{d^{n+1}\lambda}{ds^{n+1}}$$

= $\sum \left(-h^{2m+2}nu AxyB\right) + \sum h^{2m}v \frac{dA}{d\alpha}tB + \sum h^{2m}uA \frac{dB}{d\varphi} + \sum h^{2m+2}uAx^{2}\frac{dB}{d\varphi}$
= $\sum \left(\mathbf{I}\right) + \sum \left(\mathbf{II}\right) + \sum \left(\mathbf{III}\right) + \sum \left(\mathbf{III}\right)$

この計算を表の形式で実行すれば、やはり(13)の形に落ちつく、

Figure 5

付記 2 200海里測地線と航程線の関係

地点 $P_1(\varphi_1, \lambda_1) \ge P_2(\varphi_2, \lambda_2)$ を測地線 *s* と航程線 *r* で結ぶ (第5図). 両者の最大間隔は進士・久保 (1967) によれば次の式で近似できる.

$$d = \frac{s^2}{8a} \tan \varphi_1 \sqrt{1 - e^2 \sin^2 \varphi_1} \quad \sin \alpha_1 + \frac{s^2}{16a^2(1 - e^2)} \left\{ \sec^2 \varphi_1 + e^2 (\cos^2 \varphi_1 - \sec^2 \varphi_1) \right\} \sqrt{1 - e^2 \sin^2 \varphi_1} \quad \sin \alpha_1 \cos \alpha_1 + \dots$$
(29)

106

s=370.4km の場合の d の値を第 4 表 a に示す。当然のことであるが、この値は緯度が高くなるほど大きく、また両地点が東西に位置するときに最大となる。わが国周辺における最大値は約 3 km である。

P₁において航程線と測地線のなす角は、やはり進士・久保(1967)によれば

$$\theta = \left(\frac{1}{2}\sigma_{1}k_{1}\right)s + \left(\frac{1}{2}\sigma_{1}k_{1}k_{1}' + \frac{1}{6}\sigma_{1}'k_{1}^{2}\right)s^{2} + \dots$$

$$\sigma_{1} = -\frac{1}{a}\sin\varphi_{1}\sin\alpha_{1}, \qquad \sigma_{1}' \doteq -\frac{1}{a_{2}}\sin\alpha_{1}\cos\alpha_{1}$$

$$k_{1} \doteq \sec\varphi_{1}, \qquad \qquad k_{1}' \doteq \frac{1}{a}\tan\varphi_{1}\cos\alpha_{1}$$
(30)

ここに σ_1 は漸長図上で P_1 における測地線の曲率, σ_1' はその s に関する 1 次微係数, k_1 は P_1 における縮尺, k_1' はその s に関する 1 次微係数である. s=370.4km の場合の θ の値を第 4 表 b に示す. d と同様に,高緯度 で大きく,かつ $\alpha_1=90^\circ$ のときに最大となる. わが国周辺における最大値は約 2° である. 漸長図は正角等影 であるから,真方位 α_1 の図上の方位は $\alpha_1+\theta$ である.

次に、測地線と航程線の距離差を求める、上の θ は微小角であるから航程線の方位を α_1 で近似する、 P_1P_2 間の航程線の長さは航法でいうトラバース距離のことである、 すなわち航程線の微小片 dr を子午線に投影した長さを dlとすれば

 $dr = dl \sec \alpha_1$

Table 4 Relations between geodesic and loxodrome for s=200 miles. a. Maximum displacement (d) from geodesic to loxodrome

$\varphi_1^{\alpha_1}$	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°	100°	110°	' 120°	130°	140°	' 150°	160°	170°	180°
	m	m	m	m	m	m	m	m	'n	m	m	m	m	m	m	m	m	m	m
20°	0	185	363	527	672	793	886	948	979	978	948	891	809	706	585	451	306	155	0
25	0	234	459	668	852	1007	1126	1208	1250	1253	1218	1147	1044	913	759	585	398	201	0
30	0	287	564	821	1048	1240	1389	1491	1546	1551	1510	1424	1298	1137	946	731	497	252	0
35	0	347	681	991	1266	1498	1679	1805	1872	1881	1832	1730	1578	1384	1152	890	606	307	0
40	0	414	813	1184	1514	1792	2009	2160	2242	2253	2196	2075	1894	1661	1383	1069	728	369	Ó
45	0	493	968	1410	1803	2133	2393	2573	2671	2685	2617	2473	2257	1980	1649	1295	868	439	0
50	0	588	1155	1681	2149	2543	2852	3066	3182	3198	3118	2945	2688	2357	1963	1517	1033	523	0

b. Deviation (θ) in azimuth from geodesic to loxodrome

φ_1 0° 10° 20°	30° 40°	50° 60°	70° 80°	90° 100°	° 110° :	120° 130°	140° 150	° 160°	170° 180°
$\begin{array}{c} 20 \\ 20 \\ 25 \\ 30 \\ 30 \\ 35 \\ 35 \\ 40 \\ 35 \\ 35 \\ 40 \\ 35 \\ 35 \\ 35 \\ 35 \\ 35 \\ 35 \\ 35 \\ 3$					$\begin{array}{c} 0.55 \\ .71 \\ .88 \\ 1.07 \\ 1.28 \\ 1.52 \\ 1.81 \\ 1.81 \\ 1\end{array}$	$ \begin{array}{c} & & & \\ & & & 51 \\ & & & 65 \\ & & & 57 \\ & & & 81 \\ & & & 71 \\ & & & 86 \\ & & & 17 \\ & & & 39 \\ & & & 39 \\ & & & 39 \\ & & & 65 \\ & & & 1.45 \end{array} $		$0.19 \\ .25 \\ .31 \\ .38 \\ .45 \\ .53 \\ .63$	$ \begin{array}{c} & & & \\ 0.10 & 0.00 \\ .13 & .00 \\ .16 & .00 \\ .19 & .00 \\ .23 & .00 \\ .27 & .00 \\ .32 & .00 \\ \end{array} $

c. Difference (r-s) between loxodromic and geodetic distances

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\varphi_1^{\alpha_1}$	໌ 0°	10°	20°	30°	40°	50°	60°	70°	80°	90°	100°	110°	120°	130°	140°	150°	160°	170°	180°
	20° 25 30 35 40 45 50	m 0 0 0 0 0 0 0	m 0 1 1 2 3	m 1 2 2 4 5 7 10	m 2 3 5 7 11 15 22	m 5 8 12 17 25 35	m 3 7 11 17 24 34 49	m 9 14 21 30 42 61	m 7 11 16 24 34 49 . 69	m 7 11 17 25 36 52 74	m 7 11 17 25 37 52 73	m 6 11 16 24 34 49 69	${m}{6}{9}{14}{21}{30}{43}{61}$	m 5 12 18 25 36 50	m 6 9 13 19 27 38	m 2 4 6 9 13 19 26	m 2 2 4 6 8 11 16	m 1 2 3 4 5 7	${f m} \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 2$	m 0 0 0 0 0 0 0

であるから、これを P1 から P2 まで積分すれば航程線の長さrが得られる。すなわち

$$r = (l_2 - l_1) \sec \alpha_1$$

(31)

ここに *l*₁, *l*₂ は赤道から子午線に沿ってそれぞれ *φ*₁, *φ*₂ まで測った距離である。測地学の第二課題を持ち出す こともなく,子午線弧長の距離は例えば

$$l_2 - l_1 = a(1 - e_2) \left\{ \left(1 + \frac{3}{4} e^2 \right) (\varphi_2 - \varphi_1) - \frac{3}{4} e^2 \sin(\varphi_2 - \varphi_1) \cos(\varphi_2 - \varphi_1) + \dots \right\}$$

これを(31)に使えば r が計算できる. s=370.4km の場合の r-s の値を第 4 表 c に示す. やはり高緯度で大きく,かつ $\alpha_1=90^\circ$ で最大となる. 横浜・サンフランシスコ間では s=4540 海里であって (r-s)/r=0.05になるが,わが国辺では s=200 海里に対して (r-s)/rは 0.0002 に達しない.

領海幅すなわち s=12海里=22.224km の場合には、これらの値はきわめて微小となる. φ_1 =+50°, α_1 =90° に対して、d=12m、 $\theta=0$ °2、r-s=1.6 cm に過ぎない.

付記 3 縮尺を無視した場合の海図上の中間線

2地点間の中間線とは、両地点からの測地線距離が等しい点の軌跡であり、これは測地学の第2課題の応用 例となる.しかし比較的狭い地域内で概略の中間線を知りたいときには、海図上で単純に2点間の垂直二等分 線を作図し、これに代用することがある.同様に3地点からの等距離点も、2本の垂直二等分線の交点で代用 する.このように縮尺を無視した場合の海図の紙面上の中線あるいはその交点の経緯度は、もちろん海図の四 周の経緯度目盛りから読取ればすむのであるが、これには作図の誤差を伴い、ことに2線の交角が小さいとき には交点の確定が容易でない.それで、これらの経緯度を計算で求める方法を記しておく、原理はきわめて幼 稚である.

赤道における縮尺を 1/*a* とする漸長投影を考える. 任意の地点 P(φ, λ)の図上位置 Q の直角座標を *x*, *y* とす れば

$$x = \lambda \tag{32}$$

$$y = M = \log\left[\tan\left(\frac{\pi}{4} + \frac{\varphi}{2}\right) \left(\frac{1 - e\sin\varphi}{1 + e\sin\varphi}\right)^{e/2}\right]$$
(33)

2 地点 $P_1(\varphi_1, \lambda_1)$, $P_2(\varphi_2, \lambda_2)$ の図上位置を $Q_1(x_1, y_2)$, $Q_2(x_2, y_2)$ とすれば, Q_1Q_2 の垂直二等分線は Q_1Q_2 の 中点

$$x_0 = \frac{x_1 + x_2}{2}, \qquad y_0 = \frac{y_1 + y_2}{2}$$

を通り、かつ x 軸の正方向と $90^\circ + \tan^{-1}\left(\frac{y_2 - y_1}{x_2 - x_1}\right)$ の角をなす、すなわち

$$k = \frac{x_1 - x_2}{y_2 - y_2}$$

とおけば、この垂直二等分線の方程式は

$$y - y_0 = k(x - x_0)$$
 (34)

この式が与える x, y は (32), (33) によって φ, λ に変換できる.この場合, φ については逐次近似を用いる.すなわち

$$E(\varphi) = \left(\frac{1 - e \sin \varphi}{1 + e \sin \varphi}\right)^{e/2}$$

とおけば (33)は

108

(35)

$$\varphi = 2 \tan^{-1} \left(\frac{\mathbf{e}^y}{E} \right) - \frac{\pi}{2}$$

となる. eは自然対数の底である. ここで E の第 1 近似として E(1) = 1 とおけば(36)によって φ の第 1 近似 値 $\varphi(1)$ を得る. これを(35)に使えば第 2 近似値 E(2)が得られ(36)によって第 2 近似値 $\varphi(2)$ を得る. 以下こ れをくり返えし $\varphi(n-1) = \varphi(n)$ ならしめれば,これが所要の φ である. あるいは $\varphi(1) = (\varphi_1 + \varphi_2)/2$ から出発 すれば収束は早くなる.

P₁, P₂以外の地点 P₁'(φ_1 ', λ_1 '), P₂'(φ_2 ', λ_2 ') についても、その図上位置 Q₁'(x_1 ', y_1 '), Q₂'(x_2 ', y_2 ') の垂直二 等分線は(34)と同様に

$$y - y_0' = k'(x - x_0')$$

(37)

となる、ここに

$$x_0' = \frac{x_1' + x_2'}{2}, \quad y_1 = \frac{y_1' + y_2'}{2}, \quad k' = \frac{x_1' - x_2'}{y_2' - y_1'}$$

である. それでこれら2本の垂直二等分線の交点 R'の座標は

$$x = \frac{y_0' - y_0 + kx_0 - k'x_0'}{k - k'}$$

 $y = y_0 + kx - kx_0 = y_0' + k'x - k'x_0'$

 $R' に対応する地上位置 R の <math>\varphi, \lambda$ は、この x、y から上に述べたのと同じ方法で計算できる.

(34)が与える紙上の二等分線と、地表上の実際の中間線との差が最大となるのは、いうまでもなく2点P₁ P₂が南北方向に位置するときである。その量は漸長緯度表から求められるが、ここでは簡単のために地球を 球(*e*=0)とすれば、図上の2点の中点の緯度は(36)から

$$\varphi_{0} \doteqdot 2 \tan^{-1} \left[\tan \left(\frac{\pi}{4} + \frac{\varphi_{1}}{2} \right) \tan \left(\frac{\pi}{4} + \frac{\varphi_{2}}{2} \right) \right]^{1/2} - \frac{\pi}{2}$$

である. 地上の中点の緯度は $(\varphi_1 + \varphi_2)/2$ であるから

$$\delta \varphi = \varphi_0 - \frac{\varphi_1 + \varphi_2}{2}$$

とおけば、例えば $4\varphi = \varphi_2 - \varphi_1$ として 400 海里および 24 海里を採った場合の $\delta \varphi$ の値は次表のようになり、この量だけ図上の中点は地上の中点より高緯度にある.

φ_1	0°	10°	20°	30°	40°	50°	60°	70°
$\delta arphi \ \ \ \ \ \ \ \ \ \ \ \ \ $	0′.3	1′.4	2′.5	3′.8	5′.5	7'.8	11'.6	19′.6
	0″.0	0″2	0″.5	0″7	1″1	1″5	2″.2	3″5

本文で触れたように、シュライバーの方法とその修正およびガウスの中分緯度法に関するプログラムは、編 暦課の仙田昭夫氏が作成した.またルジャンドルの方法およびヘルメルトの方法のプログラムは編暦課の原田 幸夫氏が作成した.これらのプログラムによるシュライバー、修正シュライバー、ルジャンドル、ヘルメルト の比較計算(第3節)は原田氏が実行した.この間、仙田氏には種々の助言を頂くとともに、シュライバー・ ガウスの比較(第2節)および航程線長(第4表c)を計算して頂いた.両氏に厚く感謝する.

(36)

参考文献

Kneissl, M., 1959 : Jordan-Eggert-Kneissl, Handbuch der Vermessungskunde, 10. Ausgabe, Bd. IV, 2.

Hälfte, Metzlersche Verlagsbuchhandlung, Stuttgart. (JEK と略記) 日本測地学会, 1974:測地学の概観, 日本測地学会, 東京. (概観と略記)

進士 晃·久保良雄, 1967:水路部研究報告, 第2号, p. 61.

坪川家恒・大森又吉,1969: 測地学序説,山海堂,東京.(序説と略記)