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Abstract

During January 1978, 'the Hydrographic. Department, Maritime Safety Agency acquired
approximately 94km of digitally recorded 48 channel seismic reflection ‘data using high-pressure;
large volume air. guns on the R/V: Takuyo-maru (Japan Petroleum Exploration Co.) on three track
lines: in: the Suruga Trough off Sizucka Prefecture, Japan (Figure 1,2, 3and Table 1).

Three multichannel seismic reflection profiles, which reveal a structure of the upper crust
having a depth of 11-14km, were processed from the data using the common depth point technique
with 24 folds

The authors found strata and faalts from interpretation of the profiles (Figure 4), and also
drew P wave velocity structure derived from velocity analysis using the common depth point tech-
nique (Table 2 and Figure 5):

Especially, the authors considered fault zone along the Suruga Trough as follows :

1) The fault zone located along the west side of the Trough axis is vertical or slanted

apparently westward.
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2) 'The fault zone is possibly a reverse fault, because the Senoumi North Bank and South
Bank in the western part of the fault zone are tilted blocks tilting to the west with the fault
zone as a fault scarp, and strata of the eastern part of the fault zone show homocline-like
structure slanting toward the Trough.

3) The strike of the fault zone shows a largely north-south trend.

4) The fault zone was formed after sedimentation of the B layer corresponding to the middle
to late Tertiary (Table 3), and the tectonic movement which produced fault zone has continued

until the recent period.
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Figure 1 Location map of multichannel seismic reflection profiles of the Suruga Trough A-B-C:
track lines, NB: Senoumi North Bank, SB: Senoumi South Bank, RT: Suruga Trough,
ST : Sagami Trough, S: Senoumi Basin, UD: Udo Hill, SI: Simizu, SZ: Sizuoka, OI:
Oigawa, OM : Omaezaki, TI: Toi, TG: Tago, IR: Irozaki, Bathymetry is from M.S.
A. (1978, 1979).
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BB b 5 70, BN I 7ED odh B U TBREBICADIAATO ZHENE S VHRIBRATSH 5. Bill, T
D+ 3 7 ICHEIBEREOREMRE SN AICED, FHEBRIC VT, BT EO e BN E T 2R R
KIBEFEDs, BMRETT, PITREBI S &k » THEHNICEYD T 5. v F F » Y ANVEBEFIEEL 20
—E & UCERSN. FHBEAC K 2B OREE#EEHAER, <3 cRES (1968) 2¥1b L4 2%
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v VR B EE R X 2R BEEOFAS R s h T,

Btk AL, 19504-43KiC Lamont-Doherty Geological Institute i€ X » CRIRSNIHIFTH 505
19604ERITT » T2 T A v(air gun), <AFF o VARANL FOT 5 VD3 VP4 — 28BN < VT F
v YA VEHEEEEAEESBER SN, EHREORESTICL > ~ v F F v VA VRBESEEER,
BEMD SEMBICEE Lic A Fa 74 @) OFl—<vF F ¥ viv X b Y —<—4—7 0 (multichan-
nel streamer cable) —% BT U705 —EHMEC & ICRBERAEROFR 2R L, fRHSCE0WT, +T
DF v Y FANDANET Y 4 ML L THET — 7188 U, LB HA (common depth point (CDP)) F L —
ADIFE, CDPEA, ¥4/ v— 3 v(wave equation migration) % EDF Y AN a v o — 2 MEIC L -
T, WETRBOERBEES w7 7 AV 2 TG 280 TH 5 (Figure 2) (1A « A3 (1968),  FHII -
(1973), Dobrin (1976)).

Survey vessel Mutti-chanret hydrophone streamer cable
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Figure 2 Multichannel seismic reflection profiling
In this survey, air guns were fired once every 50m, and seismic data at 25m intervals
along a track line were digitally recorded through 48 channel streamer cable every firing.

Finally, 24 seismic data were stacked each common depth point.
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2. BEFE

REMERR, KEEHIORE LI AMEFRBHEROHSEE LSO TH 5. HEMITIEEAL (3401 )
T, 48F v VAN—LE 2, 7T50m DR b ) —w—hr—T &, =TH I8E, BHHEEEIS TLEEBICHTT
Biill. BERAMNY) —<=—Fr—7nibm, =T7HvI0mTH5. 75 VIIFAEEEOMT & (BHES / »
FDEERBT L) T, HHFES 140kg/cm? TREHCRZ L. A MY —<=—4—T D Fa 74 v (ED)
ORFEH0MTH 5. FIIEET — 213, Texas Instruments D DFS IV # v 2 VIFESBIcES L, 0B
N A Fa7x P ARRTFasmE&l, =4 Lk, P2 ERSEERBET S, v /i
43 YBTH 5.

WENEI, [1978EFTARBINHIE | OREPRBERRITE DY, 270 L 3HOMRICHE L TIT -
7z (Table 1). Figure 3 IC10A T & OREAONEERT. HEAMROE Bz » T, BRI b7 780

Table 1 Track line and shot point. number

track line shot point number date of survey
A—1 240— 1 Jan. 14 1978
A—2 367—211 # 15
B—1 1—270 )
B—2 300— 1 » 15
B—3 600—271 [t
Cc—1 1—480 » 18
c—2 330— 1 » 19

HEDED, REN—THTROBEIERICH: 2 7 7 BANEROBEICOHE L, il @ JE I 13 Decca
Hi-Fix %

EPFET — 213, CDPEAC L ZEHNMET -~/ HBRHEMESm, EAHUTH L. EERTZ
MR b 3 kn &I EEE AR & > CHM L. BHAES, b7 7 ORBATEEETRY AR (FD55)
CARHE A SERR P 7 73kE TORM (ERB—2, HHEAFES 120D W PN TwA 7 v —va VLHE
B UCHERIHAIC & » TET B EE M 4 — LR L.

3. EBEHME  REHEESONE

TNFF oy VARSI S A% LT, BRSO 1/6 R « FHVEEERAMER S hz
(B 422 FrkBEEE, 1978 1 [/ 1979). CORNCESNT, & oh UHillinuv oy, HEMEEED
I >k B (Figure 1).
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Figure 3 Shot point map
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NTw3. b7 7EEKER2 460m, Jbh SEEICFHD - TEPMICER T 2TFEE R L, B0 Skn& k{7
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BB HFEEET D 7 » A v &2 OFFR%E Figure 4 KR

(1) FEMERLESCEIBREY

BOBRE—RICRBRTH 208, HERBRBEOZMARIHFESHOESENEMH, B X > TES 581
§hov s — v D53, BIkd ZEPGEESMD b R BEESE I SKEWT, Lk oA, B, C, D3RI
SYTRBCENTE 3.

HEOABR, RENLENSEECAOEREORVOBRRTH 5. Hic, HKikdDKEH 820m O
IO AIFEZ ETRF LY. ABOSEKBEERN0. 58 GFoEEIEY 215H) b

BE, BESABICHENTRER» DAY ERD, BOBHIHL 5. FEAKMPO 820m S EBSIL
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Tz OBROFEEEXFEL TV 3.
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B ® S NES—RICEL, R—/EEOELENT 5 LIEFRE LY. BFFROR AT ZEBE L1
BORRE & O EEE RS 5.
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2, BEX0.2~0.400ABSHR L, HRWTHZEEZERL TN 2. MR TR BUER, CEge LR
WEELBIC X BN E — Y BEHR LT AFFTH 5.
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ST A T E, AEEEROHAFEC BZEERICHE D - CTEL R 2REOUWETABEESRON, AR
RAGROLARBEIRHLTT Ny PLTHBECE, FLTZOAR (H20EBED) 11, FAESORI
ORI AR L T 2 BB - FAINREERIcH 5 C &, AEER st ToRER (5B
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HAETREBEMEETNL TEE > TOELHSKRAB L ENETH .

CARC) FEEANED B RO CEIZ R G ERAICHEA U0 30, HILiEER OFRICH 7 2MRIHHO
A & B ORI TICB VT, Ch SOBOBHIIEEEL L > T 3. $EEORERS 7 78l
KHAFTOBER, b5 78CEr » TEPMICER LT 29 Rt sl cliian. FEEEMoB
B, Ry LB > TEOMCET 20, EAREZKECHECEEERT. CBE LcEE k0=
Wi AR, WEICL -, THE o2 — P VB OIS 5 (Bl). KMBLOBRII N 5 7#Es s A
TEhEhEHENTRE» T BRI, FEEBETRERFCESLICEM LT A0MRE LN, HIOB/E
& OISR ABIRERT



Figure 4 Multichannel seismic reflection profiles and its interpretations.

(a) : Line-A section (compiled).

thin rigid line (horizontal) : main reflector

thick rigid line (vertical) : fault

Depth shows in two way travel time, seconds.

Vertical exaggeration is 2 to 1.2.
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Figure 4-(b)

Line-B section (compiled).
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Figure 4-(c)

Line-C section (compiled).
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(8) W &
BEAEDERBIR, HBEICH > TETEEEI ONTOAEEN S22 — v O dififhic E SO T IR L7
(Dobrin 1976, Fitch 1976).

i THRANCREER, b5 7 ENE B ERES ORBEMABED 2 SEncERBR 5N,
ZNETNDRIMIZKDEBD TH 5.

(r 7 7B OBEED MSARUBOHBEE, &bic by 7#fEfoX AR THEPIbEESE 02
FHICATLTED, Hkiho 820m SEHE OGS FE-PIE— BRI, Bs7~8WicEd 53IEE
BEIGEOEBESS - T, HVIKEZ 3 X5 LTERBICEC TN 4.0 Th 6 OERHL, e e Ahy
FEFCEHEEEER L TSRS 5. —F, JLHEEAO N 5 7iiciE, R o BETF IR
BEE P 5.

W C OB, b 7 7 EHEOBHER O 2 UT, B R ER iRl 2iEmE s, ¢
FARBMBTEANCHET 2EEE RE T 3. ChooER, 7 7 HOEHEFED I, RIZBEHRIL
O UEHEAIC RN AR SV IBTEBR LT 2 REELd 2. SBEEEEM b, Brg EEAICHE
a5 0PI E ORBEHE BFEFUNR 5. ,

(Fef)-— T AR PR L DITEED  BiRA : B - COKRPEMSEHTIC Bl 2HE RN, Kt
JUF b, FEESINC G U GBI TE 2ES 3~ 5 B OiEsd b, BFmE s LR EFHICH
B 2BRENAMEBEABRLTCO A 205 b, HEETOEBRMCHNRTEZVHEBETERDAST
W5 ZOEHONIEE LTSRN ORE, b b EERHEE OBILMEE bic, Bhy RS
IR 2D H 5.

it BB OSHEEICDVTH, KE<ABE, RUCEBUTEAY MBI TCRAZENTSE
5. A BEEWAHEIE, b 7H, HE—MEESAAREMAEMAT SER L THET 5. Shick
LT, THOCEEY AMBIE LABICHNTESHEY 5N 30, SEhENPPEL BIEFAEICD - T
BEH LN, CREHML LT 295N 5.

5. ERNEESHLHLRCREEE

HiEEe T 57001, Bk > CHIBEEE L 8 UBREL BN 5 C L fFbh 5. BiER
7 —4# OCD PESME DT DICTT - FEE TR (Table 2) &2 Fv, #ESiD © BIcRE#E&EE {~k.
B S EEE ORBHIERAVICHEE L TOR VLA, BREHO&E:, HCBRORESKELESR LN
HIT 3. HEWHEANOBPLEEL 1.5~4kn/sec ICH D, SHERRER LOFWAEEEL, 2.0, 2.4,
3.0, 3.3km/sec EEIRL, X FTWIE, #E L (Figure 5). = OfEERO L& 5 HEFAMBEOMICE - 1.

Table 2 Results of velocity analysis

ID : identification number CDP: CDP number
SPN : shot point number TIME : depth in two way travel time in second

VRMS : root mean square velocity VINT : interval velocity
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Figure 5 Derived P wave velocity structure of the Suruga Trough.
Dashed lines show iso-velocity of each 2.0, 2.4, 3.0, 3.3km/sec in descended order,

derived from multichannel seismic reflection data themselves, by velocity analysis.

(1) 2 Okm/sec DIEZHE THO0. 68 % TORBMNICH Y, 2 Okn/sec LDBWEOEXRI, HFEHMTR
RIEECE { RBERHETECEHIER L, BRI TRIVBICE  BEcE B A EAMR OGN 5. dt - B
HOBRMFE CRES SR T,

(2) 2.0~2 gkm/sec JEi3, FEKRBED 2 Okn/sec DITFOE EIZIFFE 0. THTH 5755, JLEpicE B
1% {75 BN 2. Okm/sec LI T OfF 13 SB35,
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(3) 3.0 KU 3. 3km/sec DFHEMIZ, FEEALILIRDERYZ. ZOLEICHI 2 2.4~3. Okn/
sec JBIE, CcOShDEHhrbEBLCERTALIICE TV 5.

(4) 2hbY ¥R, AEEERORItE LI - EREORgIKR SN, 5 7RI H7 -
T b,

(5) HEBGEIC B ZHIEERE S & Ot (BN« 8107, 1972) 2T 5 &, 2.0km/sec KIF @ HUR,
2.4~3. Okm/sec : 85=5R, 3.3km/sec PAL: B=R By BEELEE) Ld50&WT& % (Table 3).

Table 3 P wave velocity structure correlation

velocity-geology-thickness correlation velocity-thickness
in Sagami Bay (Hayakawa ¢ lizuka, 1972) in Suruga Trough
layer P wave velocity geology thickness derived P wave thickness
(km/sec) (km) velocity (km/sec) (km)
1 1.5 ~2.0 Quaternary 0~0.3 1.5~2.0 0 ~0.7
2 2.45~3.0 Tertiary 4~6 2.4~3.0 0.8~3.9
(Sirahama fins.)
3 3.3 ~4.15 Tertiary 3.5 3.3~
(Yugasima group)
volcanic

(6) HEHNEELECESWTRSS L BOREHE &0 L b—F L. BB X% 2 Okm/sec YF
DBZARE, 2.0~3. Okm/sec JEHBE, 3.0km/sec BLLEWCEELTR LI EHTES.

6. £ =

b7 7 EROBBENCH - T, BBHSEE,PPREEEMICEMT 2ERSD D, KRS UIBHEEKL
TWBEBPORICE T REWFETO MBES BERGEEH L EELONBMEIL, 3AOMRLES
P 7O 1 ~6ka ICHY, REE B« C TR 22 P EOWBEICK > THRENWTH 2 Ak & 3
(Figure 5).

AR LCORE BHEH OE, AfEdEt « Btk o r s i iR 5 2w AT
HEOWE, Ho0ECh & FIFERY ZILE—FRAAEORBICERShTHW 2600, + 5 7 OXMERIL
« EMHEDF s EOF B, S RT, by i EZEF SRl AFREE 2 b0 EEZ o . FEEEIK
Bon 2 REHESR, AIEEESEEOBESS 50 RLBEOEZOEMANIZ, CcOBAETHLTVIL
CRA B, TAREUEHBTEERT 2HEE O, BA « BRUNRC OBEER ORI TIEED
LSREDF AR EEZ SN S UL, BCO s 7HESOHERREFEF BRI, EEATHER
5N, 7 7Eh SHEGEEREROGREIC Y TR SN 2 HEE O AR EHRE & 5.

NS 7EIAVORSTEIET, s L CHREEER L T 3SR S . AItEEZ OIBERR
EHRLTH3ABHBHROT Ny MG, AIEEEEOMEER T~ 2RE S 2 EIE-P RS, dt - EliE
b5 7 MOSMEOBBOBRELE ) SlilkHan s, b ElHEO b 7 7 #AUEMEENE & L, AERER
WEMEA S & ¢ 2 FRE S it oES), chicdd 2R GEENEROLMERET S, 37
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WiEE OB TN RMC DO TR S T,

R EIMET ORI BEHRE =08 DBRchd, z0EHREHKE TRATHEEEL N
5. ZORMRBKROEBD THS. CEBIEIHERS C OWBIC X > TS THME L, BEMEERO 25T
AR - YR S OEBIE A TRt 7 7, AEEERMERS W iBENSnC &, GIEEEADARE
(ER) e oBiBicEL, pORBREAR LIESOMEZRB LTWAT EREMET NS

AitiEEGOmERICHI B, FHE—MAEARENSETEDE U BB O R8I D W TR
THB. Lk L, KEESEHZ O ERPEFMEERE LT 27053 5.

C OWMETHEHEROERE, NI HIBIMNERIC LSS » . Mg oGt —~BHE L hicd 5z
DI, @NE - FENSENESICEORENY, #E, NEBEOME S & LD IERNSRAVHETH 5.
FRICERT b 7 7 ERE, REEESCEIENAHMNROEREFEHEROBELHoMcT 5T &3, B
b5 7m0 OREES O] L EELHETH L LEZ 5.

¢ OIER, MSHEEA AT RRERERIC £ 5 [ OMR T A B 2R A% O—BCh 3,
BRI QRSB OWIZ E LTHIE L. © OFIRS 51c 25051, M EREIKBIBAIESET X 35
MBI, WERET AT X A5 — 2 BB A EY L.

C OWIER T HICH20, B OBRD DYISINE B AR O bl - EEDLRmE, ~
WFF v ¥ AN BRI > O TR IR ¢ ¥ 2 — OLRESEE, SREE7 07 -
A L ORIRIC SO THEE A BRI AR OB ALE, (EEOEIC B -7 TR A
i, W LI OBURERL CALD DY & ORI &4 15 & AFIRIIICH LIS BHLH L B L.

51 B X #
Dobrin, M.B., 1976 : Introduction to Geophysical Prospecting 3rd ed. McGraw-Hill, New York.
Fitch, A.A., 1976 : Seismic Reflection Interpretation, Geoexploration Monographs Series 1, No. 8§,
GEBRUDERBORNTRAEGER.
RAEE < fjt7 & 1972 FRERBAUOHBRYEFAME FERE, EERFHES pp. 217243
IR < ARRERE 1973 : M LMBISNC B 57 — 4 B, AR, 8.
¥ LEREFIKERER 1978 : N OBOEAR, BAEILE 6362, 6362°7°
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A SIGNAL ENHANCEMENT TECHNIQUE
FOR SINGLE CHANNEL
SEISMIC REFLECTION DATA

Mitsugu Okada* and Akio Uchida*

Received 1979 September 10

Abstract

Single channel seismic reflection profilings have been oneé of the most popular methods
in hydrographic surveys and other geophysical investigations around Japan for the last 20 years.
In the shallowwater environment, - such as continental shelves and continental margins, large-
amplitude  multiple reflections obscure smaller-amplitude primary reflections, which prevent
investigaters from detecting both finescale and more important geological structures in that area.

To detect more detailed geological information, a digital data processing method using the
Wiener shaping  filter and conventional stacking was developed to remove noises and multiple
reflections from: the original data. This method was applied to the digital single channel seismic
data obtained at sea near Tokyo Bay, and results of the processing are given in the form of
subbottom profiles drawn with an automatic plotter and compared with original analogue record
seismograms. We can conclude that this method will be of much help in extraction of geological/

geophysical information from single channel seismic data.

1. A MNE

R T OMBRFEES 2104, FEEHY, BEEROEE TOZMBRE TR s TR - T 2R 8HE
WEMECRELESTAHFAMS 5. L LT Ol EERESNTL 3E8ERESOMuT, BELK
M OB fEMEE LA RCREIN ZLERHESHEI LT . COLHERMESR, ik,
Wi e U Btk GRUbRED & UTHN, ERRHENE & T LGRS St 570, HERRFD S
ATRENBEELI > T 5.

Z LT, CORFRESERET AL OEFHERK L5574 V2 VI E, 757 4 » » COM(Computer
Output on Microfilm) i€ k 2R ONLARAI- DT, #OFEEMBEOIEIC >\WTHESET 5.

* MIE# Surveying Division
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Figure 1 REZBEHOEAK TH Y, Figure 2 [ZHME LBMES Db ZHBHERHO—FITH 5.
F 7z Figure 3 OEHERR, #EkOT + 0 /R8T LT, CORBORHBICT 1 ¥ 2 Vvide Bk Lic 7 4 ¥
2R TH D ORI, BX 7304 — b OF —F v ) — v ARBEF—-72FEMAL, 925520 7T
1600B P I OEHELE T AWEHEE, 162db O X1 F I v VYV EFTE A F IS4 YT V7, &
BHEMROBHIZRRBFC L OBRINTO 5. ABIINEREOIPICHS T — 7 HAERESEL, D/A
ERUESLHFFER 7 7 o /GHICE T Lic X pibBEREMihE 5T ENTE .

VT
VW Y

Figure 1 Sound paths of multiple seismic

reflections.

Figure 3 Digital seismic recording system.

Figure 2 Seismic data showing typical

multiple reflections.

2. ZERSHESHREDFRE
ZHENHHESMFED Y 7 /"5 13, Wiener shaping filter Z{#if] L, Figure 4 [URT & 5 K EERHEESK
FMEETTH T Lic kD, REESEBROTH S 2OFREROEEDTHS (FHEBLURBT  1978).

A i
ﬁf zﬁ&ﬂ@g'-—4\%mﬁz-
— BRET AR
7 N AN
ENFEMES SERHES BESLXBRHES

Figure 4 Illustration of function of the filter for multiple reflections.
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TTT, AW, HAELTRLY do EEBEOHT » LIKHONT
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HT fi 2RDEHETH 5.
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&5 5.
LT,
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ei=X dp* be—s (3)
=0

Ll RRRAHEEOE CAHEMETH D, BRIATIEIY LRI & OHEMRBEBEETH 5. (2),
BRTUOAZTHES]|Z 2L,
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Lz, FARERNTEL RO L HITE 5.
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be do oo ol | 7 N
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¢:m ¢7:71~1 SI;M—Z """"" ?:50 J%n ?;m
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THES GHEHEEF—2) %248 (Convolution) 32 &, FEOHMNMIEL O BENIENELS XS IHIE
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Figure 5 Block diagram of the signal processing.

MEERE BTN & LTRET K, coTi
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ELTHEL, ch%E3smm~Aa s a7 s bici
BT 5E0IBIEERD, XY 70y 4 R
BEMS100~2008% & W S RIEDSH 2. 57 4 52 CO
Mic & 3{LFRIRECIZ, Figure 6 1089 L 55 5 H
hdh 543, Figure 12 1RSI, B Omsis
BOHRMCET (@REER—2) 1ICk-> TV &
DTH 5.

3. BFIEEzAOHMEHEN
FRTALERCIE, PEFIS3ES A 8 B s [AHEE
(45084 b ) I REB LIc7 4 ¥ 2 VB RIC X DG
LICHFUEOIC S 2 FIRFE 7 — 24 2 A L 7
Figure 7 2SR O/HIBKIT, 4 OHFR - OHb
RICBY BT 0 Y ORERESZRT. LT
7Y OHMERIL0.64 TH 5.

s NI EEEREOREH R ~ 27 b vi,
Figure 8 {W/R$ B0 THY, 10H (i ic ERkEN

1. IBRR .
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A A A &
3 . mEER—-Z
——— — =z L] i

4. (1.-+2.) HER

(10’}‘3‘)355;\‘
—H AR

Figure 6 Five types of COM display patterns

5 o

used for seismic traces.

Figure 7 Track chart of seismic data acquisition,
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MR OGN 5. Figure 9 3ah%E 1 P L — A5 ORMNSEBIE T ABEOSHE LTER LKT, 1002972
HHE 0 1 BEHOMBRELTS L oND. COTH vERBRE LI K M OERTIR, 0.64 OTH YD
BERTRAMNI2IE TH2p 5, LHINTV5S 10H: ORREERRIEES TRV ENVZ B,

£00.0

BiEs (Hz)

; : . % o
3.0 199.0 200.0 300

Figure 8 Amplitude spectrum of seismic signals.
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Figure 9 An example of wave form of received seismic signal.

Figure 10 BHHEEF — 2 OMIBBEARER LI 70 —F v — FThH 5. MICET L IEENTH2E
HHERREICEL - T, 2 — V& - S5 HEOISORMLELT - TB Y, g~ 100K Ed
C OBRPETH Y i 5. Figure 11 355 FAEEGIT OMBESHE O, Figure 9 & EROEEFH: il
Wb DTH 2. TDFlL, NV F/v¥RT 402 %50~300Hz iIKEEE LT L7c b DT, 10Hz DR S 53EH%:
FEhic 2 LERLT0 3. Figure 10 OMIELERICEWTERE L 20MMOERIR, BIESHEENG=38
H, REESEA=3/A, SERHEEHREDA V-2 DY 1 ¥ FUE=250CH 3.
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Figure 10, Flow chart illustrating whole digital seismic data processing.
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Figure 11 Seismic signals shown in Figure 9 after application of digital band-pass filter.
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FCOMRE (AL #) TH3. ZoOMEHHFHOLMSE~TRRODT, HiZDicbic Figure 14 2
s, Figure 13 O7 5 0 /iR CIIRHIES - 72 0D, MEEHO Figure 12 TREMICE SN T B8
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N5 LI Th 5.

Figure 15 (), (b) b, FERHHESHRIOMER] L NBEHOWFEHTMKO—FTH 5. AR (2) TRHIEES
£1600~1650, %1 0.2 BOMHEIITT 23RO BR o 3. Chld, AKE&GEMEERE LTRIc K2
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Figure 12 An example of processed subbottom profile.
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Figure 13 Original subbottom profile obtained by analogue

recorder onboard the survey vessel.
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profiles.
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Figure 15 Two trace gathers showing the effect of removing multiple reflections.

(a) Before processing. (b) After processed.
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Figure 16 Structural configurations shown in Figure 12 after interpretation.
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GEOMAGNETIC ANOMALIES AT SEA AROUND
SOUTH-WEST JAPAN

Shoichi Oshima, Takashi Tozaki and Ken-ei Onodera
Received 1979 September 10

Abstract

Magnetic total intensity data collected around South-West Japan obtained through “The
Basic Map of the Sea” project of the Japanese Hydrographic Department are compiled. Results
were compared with the topographic and geological features of the sea floor and adjacent land
area.

The smooth magnetic pattern with two weak magnetic positive zones along the deep sea
terrace and the outer edge of the continental slope are characteristic between Nankai Trough and
South-Western Japan. The Eastern China Sea and the Japan Sea area around S-W Japan show
complicated magnetic patterns accompanied by NE-SW or NNE-SSW trending islet-seamount chains
or uplifted zones of the basement rocks. The geological structure on land of Kyusyu and these
magnetic features of the Eastern China Sea suggest that the opening or spreading of the marginal
sea resulted from the intrusion of andesitic and other igneous rocks along fault zones caused by
crustal movements of the trench.

key words: Solid earth geomagnetism, Island arc.
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HEOME PR Ed, AR 2 ~3 kT, MEBCERLA S 0 P YRIAENC LD ES NI bDTH L. Z
OEED S B, W, HE R, AT, BN, RESOEROREESE I L.
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BLoSEIRE Lish-7.
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FEREIL OSSR EATC A 5N, BEOBRAREINEEBEZOFRRTH L L3N TS —F
FEME b 5 70 SEEIIC DWW TIR, RN OMEHEEN ORI, HRSOHHICHET 2B TEE LT &b
DIFRY T 51,
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Thb. U LEEOHBSEERSHCHET I LOERBEIEASE SN - b H - T, FHALE
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Figure 1 Geomagnetic stations used for the estimation of secular change

of total intensity at sea around Japan since 1965.

HIES B B M ORHEME IR IGRF 1965. 0 %M ic s, © ORFZMbIZ I HARTERl S o 7 — 4 1c 2L
Hhisnicd, BROEMFTT — 2 2o TRk ER L.
AF=F—(IGRF+SECULAR) (1)
¢ T F g ekt &R0E, IGRF (I IGRF =57 01965. 0(EDfE, SECULAR {3RICHR~ 3 Ts
72 19654ELIR ORI LR, AF 13k 2SR NIRE TH 5.
BACTHE, EEHET OB THIR ST OERRNEO { ohRR 5N, EEOBIRE S hETH
FROPE T BUMBER SN TH 2D, B OMEERERREEEBR TR, 196542k 1EO



36 S. OSHIMA - T. TOZAKI - K. ONODERA

B OZ(LEREMOR E LTELTICE, TilAOEP oEL T4RUEOERORTER L TNE S

. 2 THBMEAOREELELRHHO 4 RN TEREL, SEMSOTFHEEHCTRMNERRICLD £
OEFFOEEHREL. $hbH MR OBHFIC >V TRO LS IKEHTE S
SECULAR=A,t+ Aut>+ At + At (2)
722l t AR T = RERFH—1965. 0
ST Ai~Ay BENENREAOHRE o, BE 2T 3 UATEUTEZEELD
Ai=aiy+ 110+ Aipd + Q30+ iR+ Q5 A+ A i60% + Qa2 d -+ i A2+ A1 43 (3)

L, ¢ RO 2 OERNEROILE 34, EE—I36EESBENTH b LAMET S b ay (=1
~4, [=0~9) ERDIHERE Table 1 WRd. 2L, ¢ KU TREES ARA CHIRAER & RaEsE U
ERD—RBINCENRE > TLE S A, S TIIBEYENER LD SEE LRERES RN TENERL,
B AR DM LicBI L TR S B LB TH A 5. #5595 Figure 2 10, FE{L LB OEE Table 2
ARG CORCkD, BARKCE ORIOERSICE T 21965 AT TORBEZLEBEEH TS 3
153, BT — 2 ORWHic O TE, KESBINEA S ORG 2 THEEEA R TR L.

Table 1 Coefficient values ai; for equation 3

- ; _ : - B,
oo ] 2 3|4 | s e Lo ] s | e
~2.9109 | ~3.9036 | 2.0239 | 5.1796 | —1.5340 | 6.3386 | —1.8951 | 51748 | 7.3053 | —5.8753
1
X107 | %1072 | x107' | x1074| x1078 | X104 | x10°6 | x10°7 | X106 | x10°6
1.5833 | 1.9022 | —4.3868 | —7.7773 | 3.1104 | —1.3704 | 3.9700 | —1.8774 | —1.5113 | 1.2073
2
X101 X103 x1072 X108 X1074 X104 X107 X107 X10-6 X10°6
\ 1.6785 | 9.2280 | 3.1579 | 3.9036 | —1.9720 | 1.0403 | —2.9392 | 3.6519 | 8.5309 | —9.4351
X107 | x1074 | x1073| x10°7| x10°5| x10-5 | x10-8| x10°8 | X108 | xI0
, | ~wez | —s.orss | —7.om0 | Lsw23| 2.0087 | ~2.7714 | 7.3192] ~L6736 | ~13iss | 2385
X103 | %1075 |  x105 | x10°7| x10°7| x10°7| x10710| x10-9 | x10-0| x10-9
Table 2 Difference between observed and calculated geomagnetic total
intensity secular change since 1965 at each magnetic stations
(observed-calculated). Estimated values are given in parentheses.
YEAR| o
sTaTioN— 2R 1965 | 1966 ] 1967 | 1968 | 1969 | 1970 L1071 | 1972 | 1973 | 1974 | 1975 | 1976 | 1077 | 1978
MEMAMBETU | 0.1| 1.4]-2.6 ]—o.sl 13| —o.4| 15| 2.4]-20|-28|-0.8] 1.4] 28|18
MIZUSAWA 1(1 D(-1.7 (—1.4)| (0.9) (1.4)’ ~0.6| 1.8]-0.1]-0.9|-26] 02| 11| 20|14
KAKIOKA | 0.9] 0.2 | ~L9|-1o| 20| 00| s1]-03]-1s }~3 3 —0.4{ 19| 2.6]-2.0
KANOZAN | 09] 01\~28 —0.4 | 20| 0.2 26 0.5|-1.2]-4.6 ~0.2| 23] 30|22
NOMASI |(o.8)](—1.3)|<—1.0)} L5| L4]~0.8]-15] 0 6[ 1.0|-0.6|-0.9] 0.6 0.7]—0.4
HATIZYO (aoj(—a3) (0.4)| (0.8)]—0.5| —3.3| 2.4 3.0|~-1.0|—2.9|—-0.8] 3.3 {—1.3 —
YATUGATAKE | (0.6)|(—0.9|(=0.6)| @.8)| (1.2|(-2.D] 0.6)] 1.6| 0.5 |~2.6]-0.3] 0.4] 19|10
SIMOSATO 01| 1s|-31|-sz| 59|04/ L4 |~0.9 [-2.9 |-1.6 | 26| L7]-Le| —
TOTTORI | ©.8)-Lo-03 @0 0.3|-06] 0.2 ]—0.2\ 0.5 -11]-0.1] 13|-06] —
KANOYA ] L1]-03]-25 ~1.5\ 3.2} 0.5 2.3] 0.1 l«l.z —4.5 ~o.3| 2.3 3.4|-2.4
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Figure 2 Observed and calculated annual mean values for each geomagnetic stations.
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2L TR ICEEA U, HIRESE S OFERIZ 7 ) —~ v FTHiv /2. (DX OFH8IL, IGRF $ SECULAR
SHICHITOEENE CEMTH 50, FVREER (BABEACOS—6) MSHEMNEET, 50005RED
7 — 2 OFFAE LML (57 51 Y) AOBERESERT 2 7 — 7 OERICET ZBREEAPIRT
BV, HCHERNEROTRRSECTEL .

BESRRH ORUERT 0Tk, BONIHHSEESAR, TRSLIEEDEROEE -2 ORto s E
WIS U CRE DA A RINENS 5. KROBERFRO > B, FiE, HEMOWHY 35 HEROWES T,
RBERER O QR OF VR E IO IEOREFHAH 61, Ch-DOTIEBHCHE AR (1978) i
PR RAVREN TV B, (LR & AR TR, MRERESFRED THEETHY, BL0EREKH»
THMISFRITET SBERER TR Frc R O ¥ FETEEVE JEHERB O TICaliE OB AS %
oML TwiEas00, COBAGERBEASDEROEENSHETH 5.

Ok AR LM AL, HENDERSON and ZEITZ (1948) OFE:TH Y, PITFIK % OFHEOR
B AR 5.

F9, BASRMERREFVORNUTEZ2EL, FRADESIK BN, ERRHA LT OZBLEATES
BEWCHEC ERET 2. CNUBEOHH TS 2154, HSERMMR L TRETRCEORE L, 2olt%d
CHVAORENENS. ERFOC— s 2RdHIAZEAE L, ARFOHLAR~y 2 & 5. vy @b SR
FEEIAIIC 90° DR x 8, FUEM S TFhE~ 28 & 5. & @i & FIREIS ORAEA~EEST 3 b Dicill - 7o i
B, AFEREORME [ &5 2. FhA,S » IOTEOFIRIC, EOEEHENFEDOEOYSCILE LTS
F O (RICHERETS) 2 E &L, FErofiREF v EEZ TORsE D &+ 5&

D=5, D-E (4) -
EWVSBEERARR YL H, HENDERSON and ZEITZ (1948) it 8 R ¢* I OEkcsdd 5 f(8, I) OEMT 5
7ORENT 5. =90 EHiR, % DHWOLAMBRAEORIE L HIF CAMOGE, HEEROR M40
B o50ETHEDT, F(B D) OER L6, LIBETHS. Likd-T, BABKOERELR, EOH
BOSDEHDOTRELDTEBICHEET 5 &MTE, REED L6 ERELELTL. SBEHRREFVIC
DNTHRBOFHC IV ESEMETT 5T ENTE 5. 2 OBAR B2 HRBRERE OhLE A & L,
Yy BRENICERT 2T oFRICED, WREFBICES D IREE E 5
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ELTRDZENTE, F/(B, D DEDS 5 7ITRENT S, flE LT I=45, B=90 BEDEA, /(5
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Figure 3 Geomagnetic total intensity anomalies. Contour interval is 50 nT.

Solid lines are positive and dotted lines are negative values.
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Figure 4 Geomagnetic total intensity anomalies. Contour interval is 50 nT.

Solid lines are positive and dotted lines are negative values.
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Figure 6 Geomagnetic total intensity anomalies. Contour interval is 50 nT.

Solid lines are positive and dotted lines are negative values.



Figure 7 Geomagnetic total
intensity anomalies.
Contour interval is
50 nT. Solid lines
are positive and
dotted lines are

negative values.
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Figure 10 Location and symbols of areas divided according to the magnetic characteristics.
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E5Z 5 BIHAMEALDTOECREHOFEISFEETHS. LirL, BARKCERR 1, 000kn 2R Q¥R
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. BRCai g & = OB b HEIISPIUNEE, SUNERHOHE Y YT, IRRTERERHE LR
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BEBL, ZOROHRATIHOME WET 288N S MNEAICE L —HTE, BLECRERELZ->TH
BEXAHICAZS. C OREREE 4, 500m TCOMTERINBEOBRTH 50T, MBNEEREIHOHRHEEREL
TVBEZBZTEL, LOBHOAROHEATERESEB LTS &R, WFNCEEKDOSH B LETH
- T, BERIEARENS D TR, FHcih o UNTEFICE AILORERHR, R0k LicZilE, X
RESOMEEANE AHB LT &0 5, BEBRIGEATARENERICOMH LT EEA SN, &
ST BN CAE—REREE P REOREN > TN 5. 0L EFEHRO WAGEMAN et
al. (1970) DR E—H T 5.

wic, MR ESE ORI X - THEEREEE Figure 10 O XS5 ICX4G L, #h 2R Oiglic >0 CHbR
SRR OFM EBREOH A RUBEBEIC OV TR 2.

(1) AR GuE, £6, mESES

TR, RSO 7 ZICh I TCHEE 7 7 SIREVTRR 50T, KRR, RERE, EET
HE, B LOMERS, BROZCKREERE, EEN 5 7 OIHCES L 5. B SRHCh I T,
ERTB I O A TR STIRIEHLE D, EMECEY 2EEIIL, BEIREE OBV R E S & 1LY 2448
R & o T D FHEEEOKE G« 1977) Ik 5 &, EBAKERZPLBE PR o HEE
b O ORREEE L - T 5. ULk LEEEE OB TS REZOPLENCE » THERBORED
Mb 5.

HESEERSTR, T PEMLDEOER, SR T &, EERERITY. b hicilfLEREHE,
SFTRETIC O CREARERZE 2 EORFEEBR SN, 2 ORIERMEDHEED 57z b5l v <
THb CORBEWHRN v~ & OSER TR\ TRV, BR &L 2 HIEAROE S 3HEE TH10kniE
ELEZOND. WEBEROWIHE (1978) i iiud, TOMMSEMKT B#E 9 ~10kn, HHEI~4 X
10™*emu/ce G, FEEREMEEBS OB NEEEL LN TV 2N 50MELICKBEREI R - TRS
NAEORERZ, BHRERCLIFEEBOET D OHHIC—KT 2EIEFRTH, WHEESEROESIL Ikn
BETHD, BRMEOHECHEEROST VR, COBMBREEOEHRTRRNWEZL 6N 5.

I X D EOREE T O, BRSICHEEEOBRAST 0T IR TB Y, TIREEEE, RINERE,
B RS ORI CIDARER P L EERS OB PHES LS REL T 5. ABRRH TRMEEL 5 7
O EFTLTHEN 5 7R &Y » VIROHER 2 ~3FI RGN 5. BEEHRERR O OIRKEREHE I,
BIEASE D & ARG CERAEL B0 ERMTECE > T3 L5 TH 5. KREMNTEROLOIEEERI,
BRI 4 H e TR T A, 2 XOETREILICGEREL, BED 200 4 ¥ <DL EIC R SR - o
HIRG bDEIL > TN D.

PEkR3 &9, AREROHW A2FHEROEWERBICERNYT 2 & E8hh 5L H RIS &,
B R R BERE O F 0¥ FI0kmBIR OB X, 7 ZICETREVEL (EMEREE) 2R3k
FERPUELTH BT EHFHTH 5.
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IMPROVED TIDAL CHARTS FOR THE WESTERN PART
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Abstract

The co-tidal charts of M; and K,, and the co-range charts of 2(M:+S,) and 2(K,-0;) for
the western part of the North Pacific Ocean drawn by Ogura (1933) have been re-examined and
revised on the basis of new tidal data. The co-tidal charts of S; and O,, and ratio charts of S;/
M, and O/K,, have also been prepared. The co-tidal charts of M, and S, indicate a very weak
counterclockwise rotation in the Philippine Sea. The comparison between M; and S;, and between
K and Oy show that they generally have the same features in phase and amplitude. But, a peculiar

bending of the S; nodal line, which is not found in the M, tide, are seen in the Caroline Islands.

1. Intreduction

Several authors have drawn tidal charts based on harmonic constants in the
western part of the Pacific Ocean (Harris, 1904 ; Sterneck 1920, 1921 ; Ogura, 1933a;
Dietrich 1944). Harris drew the co-tidal chart of the semi-diurnal tide (M,) for the world.
Sterneck drew the co-tidal chart of the diurnal tide (K,) as well as the semi-diurnal tide
(M,). But the number of the data stations which were used by these authors is not su-
fficient to show detailed features in this portion of the Pacific Ocean. Dietrich drew the
co-tidal charts of four major components (M,, S,, K,, O,) for the world, and also showed
the amplitude along the coasts. His charts, based on 1665 tidal stations in the world, are
considered to be the most reliable. But his work is confined to the open ocean and the
conditions in the marginal seas are not shown in his charts.

The most comprehensive work on the tides in the western part of the North
Pacific Ocean is Ogura’s (1933) work. He compiled his earlier works (Ogura 1923a, 1923b,
1926, 1932) in his paper. He collected data from over 600 tidal stations in this area and
drew the co-tidal charts of M, and K,, and also the co-range charts of 2(M,+S,) and
2(K,+0)). The principal features in the western part of the North Pacific Ocean and
the marginal seas (Okhotsk Sea, Japan Sea, Eastern China Sea, Yellow Sea, Bo Hai,
Liaodong Wan and South China Sea) are described in his paper.

Four major tidal components which have relatively large amplitude were chosen.
They are M,, S,;, K, and O,. Eight charts were prepared. Four of them are the co-tidal
charts of each component. Two of them are the co-range charts of the semi-diurnal and
diurnal spring tides, that is 2(M,+4S,) and 2(K,+0,). The other two are the amplitude

* Qceanographic Division
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ratio charts of S,/M, and O,/K,.

Ogura’s charts were used as basis for the co-tidal charts of M, and K,, and also
for the co-range charts of 2(M,+S,) and 2(K,+O,). His charts were examined based
upon new tidal data, and in some portions of these charts modification of contors were
made. The co-tidal charts of S, and O,, and the ratio charts of S,/M, and O,/K, were
newly drawn by the author.

In this paper, some characteristics obtained from the detailed examination of the
Ogura’s charts and from the charts drawn by the author are described.

The original purpose of this work was to estimate tidal constants for each one-
degree square in the western part of the North Pacific Ocean from 0° to 55° N and from
115° to 160° E. Those tidal constants were read from the prepared charts and were in-
tended for use in the processing of satellite altimetry data from the offshore regions.
A table of the tidal constants can be obtained from the Oceanographic Division, Hydro-
graphic Department.

2. Data and results

Tidal data are mainly from Ogura’s collection (Ogura 1933a). These data cover
Japanese islands, the coast of the Okhotsk Sea, the Tyosen Peninsula, the coast of China
and the scattered islands in the western part of the North Pacific Ocean. In these areas
no new tidal data important to tidal charts can be added to his collection. But along the
coast of New Guinea, his collection is insufficient. Many tidal data have become available
since then. In these regions, the IHB bulletin was referred for new tidal data.

The tidal data at Okino-Torisima (20° 25N, 136° 03’E) obtained by the Central
Meteorological Observatory (Kitagawa, 1943) and recently analyzed by the Hydrographic
Department for harmonic constants, have also become available. The specifications of these

data are shown in the table 1.

Table 1 Harmonic constants at Okino-Torisima

H(cm)  x(deg) g(deg) [ ' H(cm)  x(deg) g(deg)
K, 15.9 209.7 209.0 N; 8.3 195.7 179.6
0 12.2 185.7 175.1 L, 1.9 77.2 70.9
P, 5.3 209.7 208. 2 vy 1.6 195.7 180.2
Q 3.2 168.6 153.1 453 1.7 199.9 179.5
M, 41.5 203.7 192. 4 M 0.9 359.1 336.6
S; 18.1 221.8 225.7 MS; 1.0 3.1 349.7
K. 4.9 227.8 226. 4

Figure 1 shows the geographical names referred to in this report.

Figure 2 and Figure 4 are the co-tidal charts of M, and K,. The northern halves
are almost the same as Ogura’s charts. In the southern halves, small modifications were
made to Ogura’s charts. In some portions of these charts, the contors of 0.5 hour were
added for convienience of estimation.

Figure 3 and Figure 5 are the co-tidal charts of S, and O, which were prepared by the

author. Contors are drawn at every 1 hour, and in some places 0.5 hour contors are drawn,
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The hours in all co-tidal charts are referred to 135° E.

Figure 6 and Figure 7 are the amplitude ratio charts. Contors are drawn at every
0.1 with additional 0.05 line.

The charts of the spring range of the semi-diurnal and diurnal tides, 2(M,+S,) and
2(K;+0,), are not shown in this paper, because they are essentially the same as Ogura’s
charts.

The amplitude of each tidal component, calculated from the range of spring tide
and the ratio, are shown in Figures 8 to 11.

3. The co-tidal charts of four major tidal components
(1) M, tide

The number of tidal stations along the western coast of Kamchatka Peninsula is
still small and we have no islands which can be used as tidal stations in the open ocean
east of Japan. Therefore, the co-tidal lines in the eastern Okhotsk Sea and in the eastern
sea of Japan are uncertain. In other areas, we have a good amount of tidal data along the
coasts and at scattered islands, so co-tidal lines were drawn with higher confidence.

There appear eight amphidromic points in the marginal seas. Two of them, in the
Bo Hai and the Liaodong Wan were confirmed by Ogura (1934, 1936), base on the offshore
tidal observations which show very small amplitudes. The other amphidromic points th-
ough they very probably exist near the points shown on the charts, have not been confi-
rmed by a direct observation.

There is an area along 148°E which has very crowded contors in the southeastern
part of this chart. This is a nodal line, which was first pointed out by Ogura (1933a) and
later confirmed by Dietrich (1944). The additional data on the north coast of New Guinea
and in the Admiralty Islands, taken from the IHB bulletin, show that the M, tide wave
progresses from east to west. This supports the existence of the nodal line.

In the large area between the Philippine and Mariana Islands, the tidal hour is
almost the same, taking the value of 6.5 to 7.0. But closer examination shows that the tidal
hour in the western Caroline Islands is 30 minutes later than along the Pacific coast of the
Philippines. This fact, along with the fact that the close contors in the nodal line spread
as it goes northward, seems to show that there is a weak counterclockwise rotation of the
M, tide wave.

(2) 8, tide

The obtained co-tidal chart is similar to the M, tide chart. It has the same charac-
teristics with respect to amphidromy and node.

In marginal seas, the pattern is almost the same as M,’s. The difference in phase (S, —
M,) is about one hour in almost every marginal sea. But it takes a little higher value in the
Okhotsk Sea, that is, 1.5 hours along the Kuril’skie Islands and 2 hours in the east of Sakhalin.

The greatest difference between the M, and S, phase diagrams is shown on the nodal
line between Japan and New Guinea. To the north of 15°N, the nodal line of S, exhibits the
same pattern and position as M,. But it bends westward between 15°N and 8°N, and south
of 8°N, the nodal line of S, is located about 200 miles west of the M, nodal line. The
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difference between the above-mentioned two nodal lines in the Caroline Islands was pointed
out by Ogura (1933a).

Similar to the M, phase, the S, phase in the western Caroline Islands is 30 minutes
later than along the Pacific coast of the Philippines. But this is not represented on the
chart because of the irreguralities of data.

(3) K, tide

The discussions concerning the density of data stations and uncertainty of co-tidal
lines on the M, tide also are able to apply to the K, tide.

As for the area in the South China Sea a small correction was made to Ogura’s chart.

(4) O, tide

The co-tidal chart of O, resembles the K, chart, The differences in phase (0,—XK,)
in most locations are about 2 hours, and these values in the open ocean in the western
North Pacific are one hour.

4, The ratio charts of S,/M, and A(),/K1
(1) 8:/M, '

In the greater part of the marginal seas, the ratio between the amplitudes of S, and
M,, S,/M,, takes the value of 0.3 to 0.45. However there are several localities where it
takes a higher value. These localities are the southeastern part of the Okhotsk Sea (in-
cluding the Sbya Strait), which has the value of 0.45 to 0.6, the Tusima Strait, which
has the value of 0.45 to 0.5 and the Celebes Sea, which has the value of 0.6 to 0.7.

On the eastern coast of Sakhalin, we can find the area where the ratio takes a
very small value (0.1). This area is very near to the amphidromic points of both M,
and S,. This amphidromy may be the cause of this extreme small values.

At the location of about 8°N, 148°E, a very high value (over 6.0) is found, and at
200 miles west of this location, we find a very low value (below 0.2). These two extremes
are due to the difference in the positions of the M, and S, nodal lines.

(2) OJ/K,

The ratio between the amplitudes of O, and K,, O,/K,, takes a relatively high value
of about 1.0 in the area from the southwestern Okhotsk Sea to the Japan Sea. It is between
0.7 and 1.0 in the Eastern China Sea and the Yellow Sea. In the South China Sea, it is
slightly higher, being about 0.9. In the major part of the Philippine Sea between the
Philippine and Mariana Islands, the ratio is under 0.6. But we have very few data in
this region, so this conclusion should be reexamined in the future.

5. The amplitude charts of four major tidal components
(1) M, tide
From the Kuril’skie Islands to New Guinea, a relatively low amplitude belt runsina
north-south direction. The southern part of this belt, where the amplitude is less than 10cm,
coincides with the nodal line. This low amplitude belt stretches as far north as the Kurile
Islands and continues to the low amplitude area of the southwestern Okhotsk Sea. When
entering the Japan Sea, the amplitude decreases, reaching less than 10 cm.
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In the western part of this nodal line, the amplitude increases as we proceed west-
ward. Meanwhile, in the South China Sea, it is considerably smaller (less than 20cm).
(2) 8, tide
In general, the amplitude of the S, tide has a similar pattern to the amplitude of
the M, tide. The low amplitude belt along the nodal line is deflected from a north-south
direction corresponding to the bending of the S, nodal line itself.
(3) K, tide
We find a tendency for the amplitude to increase as we proceed from east to west.
An area of relatively small amplitude stretches to the west as far as the Celebes Sea along
5°N. The amplitude of K, in the Japan Sea is as small as the M, tide, but, in the South
China Sea it is large, contrary to the M, tide.
(4) O, tide
The amplitude of the O, tide has features similar to the K, tide. But, in the open
sea where the amplitudes are small, high confidence should not be put on this chart,
acknowledgement ;
Thanks are due to Mr. T. Itoh, Oceanographic Division, Hydrogr. Dept., who has
helped to generate the magnetic tape and to draw the figures.
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Figure 2 The co-tidal chart of M, referred to 135°E (unit ; component hours).
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Figure 4 The co-tidal chart of K, referred to 135°E (unit; component hours).
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Abstract

A marine geoid around Japan is computed on the basis of 30’ X30’ and 1°X1° block mean
gravity anomalies. The 30’ X30’ block data are prepared by reading out the block-averaged gravity
anomalies from the published gravity anomaly maps around Japan, The 1°x1° block data are prepared
by taking averages of DMAAC’s 1°X1° global gravity data and Watts and Leeds’ 1°Xx1° block
means. The geoidal heights are computed from the above terrestrial gravity data in combination
with the GEM-10 satellite-derived global anomaly field. The GEM-10 model comprises a geopotential
coefficient set which is complete up to degree and order 22. The radius of the circular cap area
of the numerical Stokes’ integration is taken to be 20°. The marked features of the computed geoid
are the dents over trench areas. The dents amount occasionally to more than 20 meters relative
to the GEM-10 global geoid. The general geoidal high along island arcs is another marked feature
of the calculated geoid. Geoid undulations on the land areas of Japan are compared with an astro-
gqodetic geoid of Japan (Ganeko, 1976). The standard deviation of the undulation diflerences is
1.4m, while the standard deviation decreases to 0.8 m if the Hokkaido area is excluded. The
astrogeodetic geoid in the Hokkaido area seems to have a tilt downward to the north relative to
the gravimetric geoid.

The gravimetric geoid is compared with the Geos-3 altimetric sea surface heights. Altimeter
data taken along 12 revolutions of the satellite passing over the region of the gravimetric geoid
are used, and the comparison figures for each revolution are presented. The r.m.s. values of
differences between altimetric sea surface heights and the gravimetric geoidal heights for each
revolution vary within the range from 0.6 to 1.9m except for tilts and constant biases. The total
r.m.s. difference is around 1. 3m. Differences seem to be large in the region where terrestrial gravity
data are sparse and consequently gravimetric geoidal heights are poorly determined.

Detailed investigations are carried out concerning the error sources involved in the procedure
of computation of a gravimetric geoid by means of numerical integration of Stokes’ formula. The
results of the investigations estimate the accuracy of the calculated gravimetric geoid to be around
1.3m in the area near Japan and to be around 1.8m in the gravity data-sparse areas. Terrestrial
gravity data errors form the biggest error source under the present availability of the surface
gravity data around Japan. The estimated accuracy of the gravimetric geoid is compatible with
the comparison results between Geos-3 altimeter data and the gravimetric geoid. The accuracy
of the geoidal height difference is also investigated. This kind of error estimation is meaningful

because some of the error sources have long correlation distances, so that such error sources

*  Astronomical Division



72 Y. GANEKO

hardly affect the accuracy of the geoidal height difference. As for the calculated geoid, the
accuracy of relative geoid undulations over 100km distance is estimated to be around one meter.

Detailed investigations concerning various error sources enable us to get a perspective of the
geoid computation of the future. After an investigation of the statistical characteristics of the
gravity anomaly field around Japan, we derive requirements for marine gravity surveys to achieve
a 10cm geoid. 10’ block mean gravity anomalies with an accuracy better than 5 mGals must be
prepared in the inner area of Stokes’ integration, i.e. inside and outside to 2° around the area where
a 10cm geoid is computed. These block data can be derived from profile gravity observations carried
out along parallel ship tracks located every 10 nautical miles, Moreover, we need additional gravity
surveys by profile observations made every 15 or 30 nautical miles depending on the roughness of
the gravity anomaly field in the outer area extending to a distance of 20 to 30 degrees from the
boundary of the inner area. Systematic errors larger than 0.1 mGals in gravity observations must
be avoided though a few mGals random errors of point gravity observations are acceptable. Stokes’
integration should be carried out in combination with a satellite-derived global gravitational field
because long wavelength components of the geopotential field are well determined by the satellite
trackings. The flattening of the earth and the sea surface topography must be taken into consideration

in the computation of a 10cm marine geoid.
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1. Introduction

The determination of the figure of the earth has been one of the most important
problems of the geodetical sciences, and not a few people have made great efforts in this
subject. The figure of the earth is formed by the topographic reliefs at land areas and
by the quasi-stationary sea surface (mean sea surface). Under the assumption that the
mean sea surface realizes a equipotential surface in the earth’s gravitational field, and
then the mean sea surface is equivalent to the geoid, which is elemental in the expression of
the figure of the earth as a reference surface of the topographical heights at land and as
a realization of the figure of the earth itself at sea.

The three dimensional rectangular coordinates (X, Y, Z) of the earth’s surface in
the geocentric coordinate system are obtained from the geographic coordinates (¢, 1), the
geometric parameters of the earth ellipsoid ¢ (semimajor axis) and & (semiminor axis),
and the ellipsoidal height % of the earth’s surface which is the sum of the topographical
height H and the geoidal height N (see Figure 1):

h=H+N=H*+(, a-n
where H* and ({ are so called normal height and height anomaly whose further explanation
will be found in the next chapter. The explicit expressions of X, Y and Z are given by
(2-7). It should be noted that equation (2-7) is based on the assumptions that the center
of the reference ellipsoid coincides with the center of the earth’s gravity and the potential
of the geoid is equal to the normal geopotential at the surface of the reference ellipsoid.

The three dimensional geometrical relations of points located on the earth’s surface
can be determined by the geometrical satellite geodesy (e.g. Yamazaki, 1971), but the
positions in the geocentric coordinate system cannot be given by such a geometrical method.
The world-wide networks of the satellite tracking stations determined by the geometrical
method are translated to the geocentric coordinate expressions by knowing ellipsoidal
heights, i.e. geoidal heights, at each satellite tracking station. The least-squares adjust-
ment provides us with the translation parameters and the geometrical parameters of the
best-fitting earth ellipsoid (e.g. Schmid, 1974 ; Mueller, 1974 ; Gaposchkin, 1974). The
long wave-length components of the geoid undulations can be determined by the observa-
tions of orbit changes of artificial satellites (e.g. Caputo, 1967), and this method can
provide us with geopotential coefficients up to degree 20 (Lerch et al., 1977). A geopotential
coefficient set comprising coeffi-cients up to degree 20 can express geoid undulations with
an accuracy of +4m on the world-wide average basis (see Figure 30). In other words,
on the world-wide average basis, geoid undulations of shorter wave-length components
than degree 20 amount to =4 m and the satellite-derived global geoid undulations commit
errors of +4m even if the low degree harmonics are determined without errors. As we
will see in Chapter 3, the differences between detailed geoid and the satellite-derived
global geoid sometimes reach 20 meters at a specific area such as trench area. Therefore,
the satellite-derived global geoid is insufficient for the use of deriving three dimensional
positions of the earth’s surface by using equation (2-7). The determination of accurate
three demensional positions are necessary for satellite tracking stations whose positions
affect the determination of satellite positions directly and for observation sites of the
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position astronomy, and also the map projections require accurate geoid undulations.

The detailed structures of the geoid undulations can be computed by applying
Stokes’ formula to terrestrial gravity data. The recent accumulation of sea gravity
observations by surface ship gravity meters has made it possible to compute detailed
gravimetric geoid not only at land areas but also at ocean areas by the combination of
terrestrial gravity data with the satellite-derived gravity anomaly field. The recent works
concerning the world-wide detailed gravimetric geoid were made by Marsh and Vincent
(1974) and Marsh and Chang (1976a). The Northwest Atlantic area, off east coasts of
the United States, is the area where various satellite tracking stations are located and
geodetical and geophysical surveys have been carried out with high density. This area
has also been selected as the calibration area of the satellite altimetry experiments
(Leitao et al., 1975), and much efforts have been concentrated there to obtain an accurate
geoid (e. g. Talwani et al., 1972; Marsh and Chang, 1976b).

Detailed geoid undulations at land areas can also be computed by Helmert’s

formula:
Q
No—Np= — S (€ cos A+ sin A) ds (1-2)

P
from deflections of the vertical, where ¢ and » are the deflection components in the

meridian and prime vertical, respectively, and A is the azimuth of the direction of the
tangential at a point on the integral path from point P to point . We call a geoid
computed from deflection observations an “astrogeodetic geoid”. The numerical values of
deflections of the vertical depend on the adopted deflection of the vertical at the geodetic
datum station and the geometric parameters of the reference ellipsoid of the geodetic
system, so that the astrogeodetic geoid depends on the geodetic system. Since it is
impossible to determine the deflection at the geodetic datum station and the geometric
parameters of the best-fitting earth ellipsoid from the geodetic observations made in a
restricted land area, astrogeodetic geoids suffer some amount of systematic tilting and
distortion against the geocentric coordinate system. On the contrary, the gravimetric geoid
computed by Stokes’ formula is automatically expressed in the geocentric coordinate
system, so that the gravimetric geoid can be of use as a calibration field of astrogeodetic
geoids.

Various geodetic systems can be interrelated with each other on the basis of satellite
geodesy, and we know the positions of each geodetic datum in a global geodetic coordinate
system. In other words, we know translation values of each geodetic datum relative to
the global geodetic coordinate system or the deflection values at each geodetic detum
station. SAO-SE3 solution (Gaposchkin et al., 1973) estimated the shift of the Tokyo datum
station to the global coordinate system as dp=11.7” and 42= —12. 3", After applying these
shifts to the Tokyo datum, the Japanese astrogeodetic geoid is expressed in the same
coordinate system as gravimetric geoid. There have been made several investigations to
determine the Japanese astrogeodetic geoid, i.e. Atumi (1933); Kawabata (1939); Okuda
(1951); Fischer (1960); Ono (1974); Ganeko (1976). Hagiwara (1967) computed a gravi-
metric geoid on the land of Japan for the first time from restricted gravity data around
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Japan available at that time. Watts and Leeds (1977) drew a gravimetric geoid in the
Northwest Pacific area including the adjacent seas of Japan based on 1°x1° block mean
gravity anomalies of their own surface gravity data. Ganeko (in press) made a test
calculation of a detailed gravimetric geoid around Japan based on 30’ x 30’ block mean
gravity anomalies, the present paper is a further extension of his preliminary investiga-
tions.

Japan is located in a geophysically specific area such as trench and islands-arc
system, and moreover the Kuroshio Current, which is one of the strongest ocean currents
of the world, is passing by along the south coasts of Japan. So the area around Japan
is one of the quite interesting areas in the field not only of geophysics but also of
oceanography. It may be surely expected that much more satellite techniques will be
applied in these scientific fields, and that the Japan area will necessarily become one of
the calibration areas of satellite trackings. In this sense, it may be quite useful to obtain
an accurate geoid in this area.

The satellite altimetry has opened a new page of the physical geodesy, for the
satellite altimetry provides us with a direct solution concerning the determination of the
figure of the earth at ocean areas. This situation may give a new physical meaning to
the determination of the marine geoid, an equipotential surface at sea. The sea surface
topography ascribes to real existences of various oceanographic phenomena accompanied
with motions of sea water, and inversely the observed topography is taken to be a
constraint condition for the ocean dynamics.

The test observations of the satellite altimetry by Skylab and Geos-3 have been
successfully carried out (e.g. Mourad et al., 1975 ; Kearsley, 1977). Leitao et al. (1978)
succeeded for the first time in relating the differences between altimetric sea surface
heights and gravimetric geoidal heights with the sea surface topography due to a strong
ocean current of the Gulf Stream. To use both the altimeter data and gravimetric geoid
for the oceanographic purpose, 10 cm accuracy may be required for the determination of
the satellite positions and for the geoid undulations. The achievement of such accuracy
may be one of the main objects of the geometrical and physical geodesy at present.

The present paper attempts to compute a gravimetric geoid around Japan based on
the current availability of the terrestrial gravity data in the area and to make detailed
investigations to realize the reliability of the computed geoid. The detailed investigations
of various error sources involved in the geoidal height computation procedures will tell
us what kind of effort should be made to achieve a 10 cm geoid.

2. Procedure of Gravimetric Geoidal Height Comutation
(1) Stokes’ Integral
The geoid undulation are computed from terrestrial gravity data by using the
conventional Stokes’ integral on a unit sphere (Heiskanen and Moritz, 1967, p. 94),
which is

N= 4fG SSngO/;) do, (2-1)

o
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where R is the mean radius of the earth, G the mean gravity on the whole surface of
the earth, dg so-called free-air gravity anomaly defined on the geoid, and S(¢) well-
known Stokes’ function written by

3 2[+1
S =3 2 Puceos )
=2
- ¢ . _ o 9 2 ¢ -
—cosec-2—~631n——2—+1 5cos¢ 3cos¢ln<s1n~2~+sm 7) (2-2)

(ibid., p. 94). ¢ is a parameter of the spherical distance. Equation (2-1) is varid if the
reference ellipsoid has the same potential as the geoid and the same mass as the earth
(ibid., p.101). On the other hand, (2-1) is based on approximations such as neglection
of the flattening of the earth and approximate treatings of the topographic mass between
the geoid and the physical surface of the earth. The spherical approximation causes
errors of the order N, where f is the geometrical flattening of the earth ellipsoid (see
4-(6)).

The geoidal height is computed more accurately by

R R -7 _
N_WSS dg S@ydo+ e Spydo+ ET 1 (2-32)
or
zve:c»%igilfvfy (2-3b)

(ibid., p. 326) on the basis of Molodenskii’s theory for the determination of the figure of
the earth (Molodenskii et al., 1962). In the equations (2-3a, b), 7 is the normal gravity
on the telluroid which is defined as a surface where the normal gravitational potential of
the reference ellipsoid is the same as the actual potential on the ground (see Figure 1),
G, the first order correction term of the Molodenskii series solution of the geodetic
boundary value problem (ibid., p. 122), g the mean gravity along the plumb line between
the geoid and the ground, 7 the mean normal gravity along the normal plumb line
between the ellipsoid and the telluroid, H the topographic height from the geoid, and
¢ the height anomaly which is the distance between the ground and the telluroid (see
Figure 1). Then 4g is the ground level gravity anomaly which is defined by
dg=gp—y=gp— ( ro+—g%H *) 2-4)

where gp is the gravity at a point P on the ground, y the normal gravity on the telluroid,
7o the normal gravity at P, where P is projected onto the reference ellipsoid, dy/d% the
vertical gradient of the normal gravity, and H* the normalheight (see Figure 1). Then
the potentinl difference between the ground and the geoid is defined by using H* as
follows :

¥
aw=-\ 7 an.
0
It is clear that (2-4) differs from the definition of the conventionally and widely-used
free-air gravity anomaly :
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Figure 1 Normal height H* and height anomaly (.

0
dg=gr—-5r- H—70,
only by the amount
_or '

The difference H*—H is equivalent to the difference between geoidal height and height
anomaly (see Figure 1), that is,

H*—H=N-(=*_T H. (2-6)
The difference is approximated to Bouguer anomaly dgs (in Gals) x H (in km) meters
(Heiskanen and Moritz, 1967, p. 328). The difference is estimated to be 1.1 m in a specific
case as at the top of Mt. Fuji (H=3776 m), Japan, and may in general be much less
than the case. Therefore, (2-5) is as small as the order of 0.1 mGals, and it is negligible
in ocean areas because the sea surface topography is estimated to be the order of 1m
(e. g. Lisitzin, 1974),

The second term in the right-hand side of (2-3a) is as small as or less than one
meter (Heiskanen and Moritz, 1967, p. 329). Hagiwara (1972a) obtained the term as
about 6 cm at the mountanous area of Tanzawa, Japan, and Hagiwara (1973) ascertained
by using a model topographic relief that the term is small even in areas of rugged
terrain.

We thus can consider that Stokes’ integral (2-1) is a good approximation to height
anomaly as far as dg is understood as the ground level gravity anomaly (2-4), and that
(2-1) is also a good approximation to geoidal height especially in ocean areas.

It should be noted that zero-th and first degree terms of the spherical harmonic
expansion of geoidal heights automatically vanish in the performance of Stokes’ integral
over the whole surface of the earth, even if such terms are included in the gravity
anomaly data, because of the characteristics of Stokes’ function (see (2-2)), so that the
computed geoidal heights are free from the ambiguity of the actual size of the earth
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ellipsoid. Consider the computation formulas of three dimensional coordinates of the
earth’s surface by using parameters ¢ (semimajor axis) and f (geometrical flattening)
of the reference ellipsoid, geoidal height NV by Stokes’ integral and topographic height H.
Then we can write the three dimensional coordinates by the formulas:
X=(N+N+H)cosp cos2,
Y=(N+N-+H)cosp sin2,
b

Z:@%N+N+H)ﬁn%

@-7

where the origin of the rectangular coordinate (x, y, z) is located at the center of gravity
of the earth, x-axis is in the meridian plane of Greenwich, z-axis coincides with the
earth’s mean axis of rotation, and y-axis is so chosen as to obtain a right-handed coor-
dinate system. & is the semiminor axis of the ellipsoid calculated by b=(1—/) a, ¢ and
2 are geographic latitude and longitude, and N is defined by

N= a . (2-8)
(a? cos? ¢+ b2 sin? 90)15

Equation (2-7) may not give an actual position of the earth’s surface, because zero degree
term of geoidal heights N, cannot be determined by Stokes’ integral. NV, is evaluated by

- R koM
Ny= OTal AgoJr*Z‘G‘R‘, (2-9a)
or
7
No=—-8 g+ 20, | (2-9b)

where 4dg, is the mean gravity anomaly over the whole surface of the earth, k2 the
gravitational constant, o} the difference between the masses of the actual earth and the
reference ellipsoid, and ¢W the difference between the potential’ of the geoid and the
normal potential on the surface of the reference ellipsoid (Heiskanen and Moritz, 1967,
p. 102). Therefore, in (2-7) N should be replaced by N+ N, to obtain accurate coordinates
of the earth’s surface. We cannot evaluate N, term here because we do not have
gravity data of world-wide coverage, so that we assume the term to be zero. Then the
geoidal heights evaluated in the present paper are understood to be ones referred to an
ellipsoid which has the same potential as the geoid on its surface and the same mass
as the earth.
(2) Satellite-Derived Gravity Anomaly and Geoid Undulations

The geopotential outside the earth, except for the potential of centrifugal force by

the rotation of the earth, is expressed in a series of Laplace harmonics as follows:

V:MW{

7

o 1 a r__ — P .
1+ Z Z <7) [Clm Riy (¢; Z) + Dim Slm(ﬂ_a, /{)]}, (2—10)

=2 m=0
where #» is the distance from the center of gravity of the earth, M the product of the
gravitational constant and the mass of the earth, & and 2 the geocentric latitude and
longitude, and ., (@, 2) and S,,(@, 2) are defined by using a fully normalized associated
Legendre function P, as follows:

_I‘Em (_g‘o, D 2?1111(5?1'1 _¢) cos A, } @11
Sim (@, A) = P (sin @) sin mA.
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Rin and S, are normalized so that the average squares of them over the unit sphere is
unity :

W B, dr= (5] dr-1.

The geopotential coefficients Cin, Din can be determined by observing the orbit changes
of artificial satellites moving in the gravitational field of the earth. But the contribu-
tions of high degree terms in (2-10) to orbit changes are too small to be detected by
satellite trackings. Let L be the highest degree of the geopotential coefficients derivable
from satellite trackings. We write the satellite-derived geopotential V as

Vo= kM{

1+Z Z: ( ) (Cim Rin(@, 2) + Dim Sin (@, z)]} (2-12)

=2 m=0

The gravitational potential U of the reference ellipsoid is uniquely defined by
Stokes’ constants, kM, a, f and o (angular velosity of the earth’s rotation). U is
written in a series expression of Laplace harmonics of even degrees and order zero:

y_ M B 5 ()7 82 Runa (5 D) (2-13)

n=1

which does not include the potential of centrifugal force. The coefficients C,, are
computed from the given Stokes’ constants (Heiskanen and Moritz, 1967, p. 73). We
define the satellite-derived disturbing potential 7 by

L 1
=Vs‘— U= kf‘w’ LZ: Zj ( ) [Clm Rl1n+Dl1n Slm] (1_14)

where negligibly small high degree terms in (2-13) are omitted, and C,k, are differences
between coefficients in (2-12) and those of corresponding degree terms in (2-13).
In an approximation of the spherical earth, we write the satellite-derived disturbing
potential T as
U = L
TS—RG ZZ Z:O [C:n RLnL+D1m Slm:], (2_15)

and the satellite-derived gravity anomaly 4g; as
L 4 _ - - e
Ags': G 122 (l“‘ 1) Z—:O [len Rin+ Dlm Slm]: (2_16>

The satellite-derived geoid undulations are computed from (2-15) by Bruns formula:

T
G

which expresses the global feature of the geoid undulations.

N;= (2-17)

(3) Performance of Stokes’ Integral in Combination with Satellite-Derived
Gravitational Field
Stokes’ integral (2-1) requires gravity anomalies distributed over whole surface
of the earth. However, it cannot be expected at present to have terrestrial gravity
data coverage over the whole surface of the earth. On the other hand, the terrestrial
gravity data exist densely in some areas, by using which we can compute geoid undulatios
gravimetrically, When we perform Stokes’ integral only over a restricted area, say a
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spherical cap area whose angular radius is ¢, centered at the geoidal height computation
point (see Figure 2), the error of the computed geoidal height caused by omitting gravities
outside the cap is called truncation error.

qu

¥

geocenter
Figure 2 Spherical cap area.

Molodenskii et al. (1962), de Witte (1967) and Hagiwara (1970) evaluated this kind of
error. Figure 3 shows the truncation errors evaluated around Japan when cap radius is
10°. To obtain Figure:3, the SAO-SE3 satellite-derived geopotential model (Gaposchkin
et al., 1973) is used as the gravitational field outside the cap. Truncation errors are
evaluated by the forfnﬁla:

N D= g 2 Qo) 426D, : (2-18)

where @Q:(¢,) is Molodenskii truncation function when cap size is ¢, (Molodenskii et al.,
1962, p. 147) and 4g, is /—th degree Laplace spherical harmonics of gravity anomaly
which is evaluated by

L w N,
Agl = Agsl = G(l“]-) Z‘*:O [cz:i le +DL1n Slm]v (2_19)

The SAO-SE3 geopotential model is composed of a complete geopotential coefficients set
up to degree and order 18, then we put L=18 in equation (2-18). Hagiwara (1970)
obtained the same kind of figure as Figure 3. There exist some numerical differences
between two figures since Hagiwara took a different gravity model. Although Figure 3
does not include the effects of more detailed structures of the gravity anomaly field
than degree 18, Figure 3 is approximately varid. Because the effects are estimated to
be only around one meter (see the curves for ¢,=10° in Figures 30a, b in Chapter 4).
The detailed discussions concerning with truncation error problems will be found in
Chapter 4.

As seen in Figure 3, the truncation errors are quite large even in a relative sense,
10 m error difference over Japan area. Therefore, Stokes’ integral should be performed
by adopting some gravity anomaly informations outside the cap, where terrestrial gravity
data do not exist. In this case we adopt satellite-derived gravity anomaly field as the
additional gravity data. Though the satellite derived gravity anomaly field includes
only low degree terms, a great improvement in diminishing the truncation errors is
expected because there will be left the truncation effects only of higher degree terms
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Figure 3 Geoidal height truncation errors for ¢¢=10° evaluated by using

SAQ-SE3 geopotential coefficient set (18, 18).

than the satellite-derived gravitational field which are the order of one meter as mentioned

before.

Let S’ be the remaining area of the earth’s surface outside the cap (see Figure 2),

and we reform Stokes’ integral as follows:

N: Ni7L+N01Lt,
where
R
Nuw=—gi | 42 S(9) do,

Now=—2~{ 42,5 av,

S/

and dg; is the satellite-derived gravity anomaly given by (2-16).

obtain another expression of Stokes’ integral:

N=Npgr+Ns
where
R
Ne=-, -\ (dg—dg S() as,
cap
R
Nyg= TEG"SS g, S(¢) do.

a

(2-20a)

(2-20b)

(2-20c)

From (2-20a, b,c) we

(2-21a)

(2-21b)

(2-21c)

Ns is equivalent to the satellite derived long wave-length components of geoid undulations
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which can be evaluated by (2-17), and Nz is the residual short wave-length components
of geoid undulations which can be evaluated by integration of residual gravity anomaly
dg—4g, over the cap. Accordingly, numerical integration is necessary only for Ng.
We know the undulation of the geoid reaches up to +100m and the average height of
the undulation is arouad +30m on the world-wide basis. The total effect of the short
wave-length components on the geoid undulation of higher degrees than 20 is estimated
to be around +4m on the world-wide average basis (see Chapter 4). Since Np takes a
value much smaller than N some approximation techniques may be applicable to the
evaluation of Ny.

3. Computation of a Gravimetric Geoid Around Japan
(1) Numerical Integration of Stokes’ Formula
When we perform numerical integration (2-21b), we replace the integral by a
summation by using average values of gravity anomalies over certain sized blocks, such as

R R
IVR :-ZT[—G—— ; 5gz qi, (3"1)

where dg; is the block mean of the residual gravity anomaly over the /—th block inside
the cap area, which is computed from block mean surface gravity anomaly 4g: and block
mean satellite-derived gravity anomaly 4g;; as follows:

0gi=Ag:—dgs:. 3-2)
In (3-1) ¢: is the integration of Stokes’ function over the i—th block oy, i.e.
a:=| S S($) dos. (3-3)

In the numerical integration of ¢;, a block is divided into some subblocks, and the
number of subblocks is chosen correspondingly to the size of the block and relative distance
between the geoidal height computation point and the block. dg;; is calculated from
(2-16), in the spherical approximation, as

dgv: :%*SS dg, do;

=G i (-1 Xi:o {:ézj; -g\; SS Rin dUi‘{“Dlm—;? SS St (l(fi:l (3-4)

where S; is the area of block ¢ Since the satellite-derived gravity anomaly is composed
of long wave-length components of the gravity anomaly field, Jg;; is replaceable by a
point anomaly 4g; given at the center of block o;.
(2) Terrestrial Block Mean Gravity Anomalies
The main problem in the computation of geoidal heights is the preparation of
terrestrial gravity anomaly data. The block mean gravity anomalies are read from gravity
anomaly maps, or estimated from observed point gravities in and around blocks. The
gravity measurements on land and at sea around Japan have been made by various
institutions not only in Japan but also in other countries, and gravity anomaly maps
have been published. The author prepares block mean gravity anomalies in the land
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area of Japan and the adjacent seas of Japan on the basis of gravity anomaly maps:
GSI (1970), Tomoda and Segawa (1971), Segawa and Bowin (1976), Segawa (1970b, 1976),
JHD’s gravity anomaly maps (1970-—1977), published as a part of series of the Basic Map
of the Sea), Stroev (1971), and Ganeko et al. (1978). In reading the block mean
gravity anomalies, the basic block size is selected in accordance with the estimated accuracy
and the reduced scale of each gravity anomaly map, i. e. equiangular blocks 5/ x5/, 10/ x
107, 15’ x 15" and 30’ x 30’ are taken. A block bordered by meridians of latitude S° and
parallels of longitnde S° is called equiangular “S°xS° block”. On the other hand, we
nominate “S° block” for a block formed by partitioning the earth’s surface into near-
equal areas as an area of S°xS° block at the equator.

The block gravity anomaly means obtained from the gravity anomaly maps are
reduced to 30’ x30’ and 1°x1° block means for the geoidal height computations. The
reductions are made by taking averages of smaller blocks included in each 30’ x30’ and
1°x1° blocks. Area A in Figure 4 indicates the area where 30/x30’ block mean
gravity anomalies are estimated. The accuracy of the 30/ x 30/ block means is estimated to
be +10~+18 mGals from the gravity data density on the assumptions of 10 mGals
contouring error of gravity anomaly maps, 10 mGals reading error of 10’ < 10’ block means

Figure 4 JHDGF-1 gravity anomaly file area: area A. The shaded areas include
no gravity data in the world-wide 1°x1° block mean gravity data files.
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and 15 mGals reading error of 15’ x 15’ and 30 x 30’ block means. Although the contouring
error may bring about some amount of error correlations among block means located near
each other, we neglect the effects because of difficulties in evaluating the effects and
consider the contouring errors are random in each block. The reading errors are also
considered to be random. Some systematic errors are possibly included in the blocks
near and along the coasts of USSR. Fortunately, the possible systematic errors may not
cause large geoidal height errors near Japan and in the Pacific area.

The read and reduced block means, i. e. 10/ x 10/, 15’ x 15/, 30’ x 30’ and 1° x1° block
means, are compiled into a machine readable magnetic tape file named as JHDGF-1
(Japan Hydrographic Department Gravity File). The gravity anomalies are based on the
JGSN 75 System (Suzuki, 1976) and the Geodetic Reference System 1967 (IAG, 1971).
307 %30’ block mean gravity anomalies compiled into JHDGF-1 are listed in Appendix B.

Since the surface gravity data included in JHDGF-1 file are not sufficient to compute
geoid undulations around Japan, other gravity data have to de introduced. We use 1°x
1° block mean anomalies of DMAAC* and Watts and Leeds (1977, referred as LAMONT
from now on in this paper) for the area outside the JHDGF-1 region of Figure. 4. The
weighted means are taken over the comon 1°x1° blocks of DMAAC and LAMONT data
sets by using the accuracy estimates in DMAAC data and =8 mGals equal accuracy
assigned to LAMONT data for convenience’ sake to produce higher weights than DMAAC
data because of high reliability of LAMONT data in the Northwest Pacific area (Watts,
private communication), DMAAC data are used on the continental areas where there are
no LAMONT data coverage. All the 1°x1° block means are referred to the Geodetic
Reference System 1967. The 1°x1° blocks which have no gravity anomaly means are
indicated by the shaded blocks in Figure 4.

A data file is produced by weighted means of DMAAC and LAMONT. The dif-
ferences of 1° x1° block means between JHDGF-1 and this data file is examined over the
common blocks, and the histogram of the differences is shown in Figure 5. The total
number of common 1° x1° blocks amounts to 354, the mean difference is —1.1 mGals, and
the r. m. s. difference is 13.6 mGals. We find no large systematic difference between these
two data files. From the 13.6 mGals r. m. s. difference, we may conclude that the average
accuracy of 1°x1° block means in JHDGF-1 is less than 10 mGals. Other statistical
characteristics of JHDGF-1 will be investigated in Chapter 5.

(3) Satellite-Derived Gravity Anomalies and Global Geoid Undulations

GEM-9 geopotential model (Lerch et al., 1977) is one of the most recent geo-
potential coefficient sets derived from satellite tracking data including accurate laser
tracking data of high density satellites such as Peole, Starlette and Lageos. GEM-9
model is composed of a complete geopotential coefficient set up to degree and order 20 and
some coefficients of resonance terms up to degree 30.

GEM-10 model (Lerch et al., ibid.) was derived by combination of GEM-9 solution
and 5° block surface mean gravity anomalies. The model is composed of a complete

*  Defence Mapping Agency/Aerospace Center 1°x1° mean freeair gravity anomaly set (1976)
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Figure 5 Histogram of the differences of 1°X1° block mean gravity anomalies between
JHDGF-1 and the weighted means of DMAAC's and LAMONT’s.

geopotential coefficient set up to degree and order 22 and some coefficients of resonance
terms up to degree 30. GEM-9 and GEM-10 solutions recomended to use the following
physical constants of the earth ellipsoid :

kM =398600. 64 km?/sec?,

a=6378140 m, 3-5

f=1/298. 255,

The estimated possible errors of the constants are +0.02km?/sec? for #M and +1m for
a. The accuracies of the geopotential coefficients are estimated to be 1.9m and 1.5m
respectively for GEM-9 and GEM-10 solutions on the global basis. We adopt the geop-
otential coefficient set of GEM-10 solution for the satellite-derived gravity anomaly field
in the computation of a detailed gravimetric geoid around Japan. Figure 6 is the long
wave-length geoid undulations around Japan computed by (2-17) from the geopotential
coefficients of GEM-10 solution.

We need one more physical constant @ (angular velocity of the earth’s rotation)
of the reference ellipsoid to compute the normal gravitational field (2-13), adopting

w=7.2921151x 10~  1/sec. (3-6)
In order to make the surface gravity data compatible with the satellite-derived gravity
anomalies, the block mean gravity anomalies based on JGSN 75 and the Geodetic Reference
System 1967 must be converted into a new system with adopted Stokes’ constants (3-5)
and (3-6). The conversions are made by using the equation:

Agnew=Ag1as57;+ V1067 — Tnew, &-7
where 744; and y.e. are normal gravities on the reference ellipsoids with Stokes’ constants
of the Geodetic Reference System 1967, i.e. kM=398603 km?/sec?, a¢=6378160m, f=1/
208. 247167, 0=7.29211515x107% 1/sec, and newly adopted Stokes’ constants (3-5) and
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Figure 6 GEM-10 global geoid around Japan. Contour interval: 1m.

(3-6). Normal gravity on the ellipsoid is given by

___aracos’p+b7ssin’e

. i 3-8
(a*cos?e+b?sinp) ®

(Heiskanen and Moritz, 1967, p. 70), where ¢ is geographic latitude and b=a(d—f). 7,
(normal gravity at the equator) and y, (normal gravity at the pole) are computed by the
formulas (ibid., p. 67):

Ta= M(l L Lq,“«), 1

ab 6 qo 3-9)
kM m e'q [
(L L),

Ty
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where
R
o ( azl;bz >%, (3-10)
and
=y e 2]
(3-11)

q0=3 (1+%)<1—%tan‘le’> —1.

Ae we see in equations (3-8), (3-9), (3-10) and (3-11), the normal gravity is uniquely
defined by Stokes’ constants.
(4) Computation of Geoidal Heights

We have finished the preparation for geoidal height computations in the previous
sections, and we perform the computation actually in this section. We adopt the cap
radius ¢,=20° and divide the cap area into two parts at ¢=10°. 30’x30’ block mean
gravity anomalies are used in the area of ¢=0° to 10° (inner cap), and 1° x1° block mean
gravity anomalies are used in the remaining area of the cap from ¢=10° to 20° (outer
cap). When a 1°x1° block in the inner cap has no 30’ x30’ block means in it, the 1°
x1° block is considered to be composed of four 30’x30’ blocks which have the same
values of gravity anomaly means as the 1° x1° block. 26 mGals error is assigned to such
30’ %30/ block means. Zero gravity anomaly and 30 mGals error are assigned to 1°x1°
blocks of no gravity data.

At the centers of each 30’ %30’ block, satellite-derived gravity anomalies are eval-
uated and they are adopted as the 30’ x30’ block means of the satellite-derived gravity
anomaly instead of evaluating (3-4) strictly. 1°x1° block means of satellite-derived
anomaly are given by the average values of four 30’ <30’ block means. These approx-
imations seem to be plausible because the satellite-derived gravity anomaly changes almost
linearly in a small area such as 30’ x30/ block.

The computations of geoidal heights are carried out at the center of each 30’ x 30’
block, i. e. at every 30/ x30’ mesh point. ¢: in (3-3) is calculated by dividing block g;
into subblocks. 30’ x30’ block is divided into 25 subblocks when the distance between
the geoidal height computation point and the center of the block is less than 1.5° i. e.
when ¢<1.5°. On the other hand, we take 9 subblocks when 1.5°<¢<3°. No subdivi-
sions are made for the 30’x30’ blocks when ¢>3° and for 1°x1° blocks in the outer
cap area. The residual geoid undulations Nx are computed around Japan using (3-1).
Figure 7 shows thus computed residual geoid undulations. We see much detailed features
of geoid undulations than satellite-derived ones (cf. Figure 6). It is matter of course that
the shorter wave-length undulations than 30’ x 30’ block size, the smallest block size adopted,
are not included in this residual geoid. Deep geoidal valleys are found along the trenches
and shallow geoidal basins are extending in Japan Sea, Philippine Sea and the Northwest
Pacific area. Geoidal highs exist along the island arcs, Korea Peninsula and the continental

coast.
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We obtain the final results of geoidal height computation by adding the residual
geoid Figure 7 to the satellite-derived global geoid Figure 6. The produced final results,
i. e. 30’ x 30" detailed gravimetric geoid around Japan, are shown in Figure 8. Figure 7
and Figure 8 include a wider area than the JHDGF-1 region (see Figure 4), so that
Figures 7 and 8 are for 1°x1° geoids outside the JHDGF-1 region. Watts and Leeds
(1977) computed a gravimetric geoid in the Northwest Pacific Ocean based on their own
1°x1° block gravity means, and their geoid map includes the area of Figure 8. Comparing
these two geoid maps, more detailed geoid undulations can be seen in Figure 8 than Watts
and Leeds’ because of detailed informations of the gravity anomaly field brought into by
smaller block-size.

One of the marked features of the present geoid undulations is over the trench
areas characterized by large negative gravity anomalies. Figure 9 shows the geoid section
along the parallel at latitude 35° 15/, 22 meters geoidal dent relative to GEM-10 global
geoid is seen along the axis of the negative gravity anomalies over the trench. If the
geoidal dent is compared with the geoidal high at the mountainous area of the central
Japan, the relative undulation of the geoid reaches 26 m within 400 km horizontal distance.
The steep geoidal slopes in the land areas accompanied by the geoidal dents over the
trench areas are seen at Kanto District and at the southern half of Hokkaido.

Ganeko (1976) obtained an astrogeodetic geoid of Japan by applying a statistical
interpolation technique to deflections of the vertical. The relative geoid undulation on
the land areas of Japan are compared between the astrogeodetic geoid, converted into
SAOQO-SE3 global geodetic system and shown in Figure 10, and the gravimetric geoid shown
in Figure 8. The comparisons are made at every 30/ x 30’ grid point inside the land areas
of Japan, and the standard deviation of 1.4 m is obtained while the standard deviation
decreases to 0.8 m when Hokkaido area is excluded. The agreement between two kinds
of geoid is fairly good. The geoidal slope to the south in Hokkaido is not so marked in
the astrogeodetic geoid as in the gravimetric geoid. On the other hand, we see some
amount of geoidal slope to the north in the astrogeodetic geoid at the northern half of
Hokkaido, which is not seen in the gravimetric geoid. It is, therefore, considered that
there may exist a tilt in the astrogeodetic geoid at Hokkaido probably because of sparse
deflection observations at Hokkaido. It may be noted that the geoidal slope at Kanto
District seems to have caused a shift of Tokyo Datum to the southeast relative to the
global geodetic system.



90 Y. GANEKO

it
XN
o 394
[otans 4

A
A T

IR
(i 3
ol L
RO

[y
I

e e P

N PR N
s J \ TN
N v + ’ IE
AT Ry + ‘o '
il L
ey AT Tad I
04 ¢
) i
SNS RN
WS Crin LY . N
PRI \ e N
RN
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Figure 9 Sections of the GEM-10 global geoid and the 30’ %30’ gravimetric
geoid along the parallel at latitude 35° 15 N.

(5) Comparisons Between Computed Gravimetric Geoid and
Geos-3 Altimeter Data

Geos-3 satellite launched in April, 1975, has made a great deal of altimeter obser-
vations of the sea surface heights (e. g. Kearsley, 1977 ; Rapp, 1977a; Marsh et al., 1978).
In addition, there are some altimeter data in the region of Figure 8. It is quite interesting
and valuable to compare the altimeter data and the gravimetric geoid, so that we use
altimeter data taken along the subsatellite tracks shown in Figure 11, which have been
supplied from NASA (Stanley, 1978, private eommunication). The numbers attached to
each track in Figure 11 are the revolution numbers of Geos-3.- The tracks with four
digits revolution numbers are the data taken at the early stage of the satellite, i.e. from
July, 1975 to September, 1975, and those with five digits revolution numbers are the data
at later stage, i.e. from August, 1977 to September, 1977. In the former revolutions,
large errors exceeding 20 m are occasionally included in the radial component of the
satellite positions (Stanley, 1978, private communication). That is seen in revolutions
1411 (see Figure 13) and 2051 (see Figure 17). In the latter revolutions, the acéuracy
of satellite positions has been improved (ibid.) (see Table 1).
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Figure 10 Astrogeodetic geoid of Japan converted into SAO-SE3 global geodetic
system (Ganeko, 1976). Contour interval: 1 m.
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Figure 11 Geos-3 altimetry subsatellite tracks with revolution numbers of the satellite.

The sea surface height determined by the Geos-3 altimeter is the distance between
sea surface and the reference ellipsoid whose parameters are a=6378145m and f=1/298. 255.
Altimeter data were calibrated by using laser tracking data obtained at the satellite tracking
stations located in the Geos-3 calibration area which is shown in Figure 12 (Leitao et
al., 1975).
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Figures 13~24 show altimetric sea surface heights, gravimetric geoid profiles along
the subsatellite tracks and the differences between altimetric sea surface heights and gravi
metric geoidal heights for each revolution in Figure 11. All the altimeter data used
here are observations by the short pulse mode (ibid.), and altimeter data rate is 0.1 sec.
Altimeter data form a unit data set, called “frame”, with 32 or 20 observations corre-
sponding to the adopted telemeter system of high or low data rate, Hence, the period of
one frame is 3.276964 sec. or 2.048102 sec., and the period is corresponding to a subsatellite
track length of about 22km or 14 km, respectively. The individual sea surface heights
plotted in Figures 13~24 are the average values of altimeter data included in each frame,.
Distinctions of telemeter systems adopted in each revolution are tabulated in Table 1.

40
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L 20.
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Figure 12 Geos-3 altimeter calibration area (Leitac et al., 1975).
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Figure 18 Comparison between Geos-3 altimetric profile (Rev. 2198) and the
gravimetric geoid.
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Since the altimetric sea surface heights are not corrected by ocean tidal heights
and sea surface topographical heights, there may exist differences amounting to about
one meter between plotted sea surface heights and geoidal heights. Detailed procedures
of the altimeter data processing of Geos-3 are found in Leitao et al. (1975; its revised
version, 1976).

As we see in Figures 13~24, the altimetric sea surface heights agree fairly well
with the gravimetric geoidal heights except for tiltings and large differences in some
parts. To eliminate long wave-length errors included in both profiles, a linear model
difference

d=0bt+a, (3-12)
where t is the parameter of time, is fitted to the differences of each revolution by using
a least-squares method. The fitted linear model differences are shown along the difference
profiles in Figures 13~24, We can see deviations from linear difference amounting to
+1to +2m. The parameters of the fitted linear model differences and standard deviations
from linear differences are listed in Table 1 for each revolution with some other data of
the revolutions. In the least-squares fitting procedures, unreasonable and spikelike sea
surface heights, which are apparently wrong data, are omitted, and such data are not
protted in the figures.

We find a systematic sign difference among fitted b parameters in Table 1, ie. b
has positive sign for the satellite tracks of south to north direction and vice versa. This
implies the facts that geoidal heights become higher than altimetric sea surface heights
to the south, and the tilt may be ascribed mainly to the disagreement between the origin
of the coordinate system of the satellite altimetry and that of the gravimetric geoid.
According to the physical oceanography, the sea surface topographical heights near Japan
become higher to the south across the Kuroshio area (e.g. Lisitzin, 1974 ; Sugimori, 1978).
The fact that large bias parts appear in revolutions 1411 and 2051 may be caused by large
position errors of Geos-3 satellite as mentioned before, although we have not enough
informations to discuss the bias parts further. Standard deviations from the linear model
difference of the recent revolutions are generally smaller than those of the early revolutions,

Table 1 Comparisons between altimetric sea surface heights and the gravimetric
geoidal heights

Revolution Track a S.D. Data
Number Date Direction (m) (cm/sec) (m) Frames Rate
1411 1975.7. 18 South 35.1 -4. 362 1.3 158 Low
1587 7.31 North 2.5 2.572 1.7 140 L
1616 8.02 N 3.6 0. 596 0.7 90 L
2023 8.30 S 5.5 -0. 736 1.6 161 L
2051 9.01 S 29.7 -2.176 1.4 192 L
2198 9.12 N 1.2 2. 387 1.0 174 L
11966 1977.8.02 N 0.8 0.872 1.9 97 High
12008 8.05 N 2.5 0.822 1.1 86 H
12235 8.21 N 2.6 0.513 1.2 97 H
12548 9.12 N 4.3 1.074 0.9 95 H
12719 9.25 N 0.6 1.275 0.6 67 H
12770 9.28 S 4.8 ~0. 442 1.2 235 L
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That may come from the improvements in the altimeter data processing and the satellite
trackings. Revolution 11966 has the biggest standard deviation, which is resulted from
large differences around the area of Bonin Islands. Large differences around the area of
Bonin Islands are also found in revolutions 1587 and 2051. The gravimetric geoid may
be inaccurate around there. We see large differences at the north parts of tracks of
revolutions 2023 and 2051, which may indicate that the gravimetric geoid has not correctly
determined in the north part of the region of Figure 8 because of sparse gravity data
around there. It is noted that revolutions 2198, 11966 and 12548 include large differences
in Japan Sea region.

On the basis of the results of comparison between altimetric sea surface heights
and gravimetric geoidal heights, we may conclude that the relative undulation of the
gravimetric geoid is determined in the accuracy of one to two meters. Other detailed
error estimations of geoidal height computation by using Stokes’ integral will be made
in the next chapter.

4. Error Sources Involved in the Practical Performance of Stokes’ Integral and

Evaluation of the Computed Gravimetric Geoid

In this chapter we will make detailed investigations concerning with error sources
involved in the practical computation of a gravimetric geoid based on Stokes’ integral.
Such investigation will make a contribution to the evaluation of the gravimetric geoid,
which has been presented in the last chapter, and furthermore to the computation of a
more accurate gravimetric geoid, i.e. geoid of 10 cm accuracy. A 10cm geoid will play
an important role not only in the geodetical science but also in other earth sciences,
e.g. ocean dynamics.

(1) Statistical Characteristics of the Gravity Anomaly Field

The knowledge of the characteristics of the gravity anomaly field is indispensable
for the error estimation of geoidal height computation, especially for the estimation of
omission errors (see (2) in the present chapter). The characteristics are given mathe-
matically in the. statistical expressions. The knowledge of the statistical characteristics
of the gravity anomaly field is also useful in the interpolation of gravity anomalies and
estimation of block mean gravity anomalies (see Chapter 5). So we study the statistical
characteristics of the gravity anomaly field for the conveniences of later sections.

The disturbing potential which is harmonic outside a sphere with a radius R is
written in the form:

kM & R\
T-%-E )T @D

where 7 is the radial distance and 7} is /—th degree Laplace surface harmonics. Let P
and Q be points in the space outside the sphere, »» and 7o be radial distances of P and
Q from the geocenter, and the geocentric angular distance between P and Q be ¢ (see
Figure 25). The rotationally symmetric spacial covariance function of the disturbing
potential is given by
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K(P, Q) = M{T#T)

PM\2&2 = RN+ R l/+1
EYEE(R)(E) wmemen w2
where M { } indicates the average taken over the possible combinations of points P and

Q under the condition : ¢=constant. Then, we get

K, Q=% (X

2
Yp ¥

)'“mz Pi (cos ) (4-3)

(Moritz, 1972, p. 88), where P; is /—-th degree unnormalized Legendre function and g2
is the degree variance of the disturbing potential. When we use a similar expression
for the disturbing potential to (2-15), we can write

1 _ . - —
TI :ﬁjR-}!_ Z() [Cl":; le '*‘ Dlm Slmj (4_4)

and ;% is written as follows:
2 1 e -
ae=(LRL) % (it D). (4-5)
R is chosen as the radius of a sphere included completely inside the earth (the sphere
is called Bjerhammar sphere, (see Figure 25)) so that the disturbing potential T is
harmonic on and outside the earth. Consider the case that both of P and Q are located
on the surface of the earth. We put approximately 7p7o=R,? where R, is the mean

Geocenter

Figure 25 Explanation figure for the derivation of the spacial covariance
functions,
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radius of the earth, and introduce a parameter s=(R/R,)%. From (4-3) we get
K($)=3" o s+ Pi(cosg) (4-6)
=2

as the covariance function:of the disturbing potential on the surface of the earth.

By using the relation between gravity anomaly and disturbing potential ;

(Heiskanen and Moritz, 1967, p. 89), we obtain the covariance function of the gravity
anomaly on the earth’s surface ‘as follows :

@)=, ai*(dg) 5+ Pi(cos) -7

(Moritz, 1972, p. 89), where ¢,2(dg) is the degree variance of gravity anomaly called
“anomaly degree variance”. Then ¢;2 in (4-6) is given by

2 R2 2
g :'(7:1—)5 gy (Ag) . (4:—8)
From (4-5) and (4-8), 0,2(4dg) is expressed by geopotential coefficients as follows:
Loy _
02(4g) = G*(I-1)* 3, (Ci + D), 49
. : an=0 " .

where

Gi— < kM)z.

R2
On the other hand, we can compute anomaly degree variances from (4-7) when we know
the covariance function of gravity anomaly, i.e.

mzwg)___ﬁ;_rl s—(z+z>SC(¢)P¢(cos¢)sin¢d¢. ‘ o (4-10)

The statistical characteristics of the gravity anomaly field are thus expressed by the
covariance function or degree variances of gravity anomaly.

Kaula (1966) proposed an equation to estimate sizes of the fully normalized geo-
potential coefficients: V

10-°
2

and it is called Kaula’s rule of thumb. From (4-9) and (4-11), the anomaly degree

Ul(élnl, Dlm) = (4—11)

variance based on Kaula’s rule of thumb is written as

02(4g) = G2 (I—1) (21+1) —19;, I>3. (4-12)

Figure 26a shows the anomaly degree variances expressed by (4-12) and ones based on
the satellite-derived geopotential coefficients : GEM-7 (Wagner et al., 1976); GEM-9 (Lerch
et al.,, 1977). As seen in this figure, (4-12) is a fairly good model of the anomaly degree
variances at least up to a degree of several tens. Geopotential coefficients are also derived
from the combination of satellite tracking data and surface gravity data, or solely from
surface gravity data. Figure 26b includes anomaly degree variances based on such
geopotential coefficients : GEM-10 (Lerch et al., 1977, combination solution); Rapp’s results
(Rapp, 1977b, surface gravity data).
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Equation (4-7) is the covariance function of point gravity anomaly, and we can
compute covariance functions of block mean gravity anomalies by using the point covariance
function. Let op and o be two blocks whose areas are Sp and Sy, and ¢ be the angular
distance between centers of the blocks. The covariance function C of the block mean
gravity anomalies is derived by

C =57 [§ cwdor doo, (4-13)

ap 0Q

where ¢’ is the angular distance between dop (in op) and dog (in oo ). Approximating
a square B° block to a circular area with radius ¢,=B°/ 4/ = and using (4-7), we obtain
the covariance function of mean gravity anomalies of B° block as follows:

)=, oi*(dg) 5% it P(cosgy), (4-14)
where
pi=cot- %9 - f%‘g—f—?'%@ (4-15)

(see Appendix A). p: is called smoothing parameter introduced by Pellinen (1966) and
Meissl (1971). Rapp (1977b) tabulated the numerical values of f; up to degree 52 for
B=5°, Note $;i~>1 when ¢,—>0. The variance of block mean gravity anomalies is given
by putting ¢=0 in (4-14), and it is written as

P fi o:2(dg) 5% B, (4-16)

Tscherning and Rapp (1974) obtained a model anomaly degree variance :

2 . AU-D
748 = o I By

with A=425.28 mGal?, B=24, and s=0.999617. They obtained the model by using actual

(4-17)

degree variances up to degree 20 adopting ¢,2(dg) =7.5 mGal?, =C(0)= Zolomz(dg)s”z———ﬂ%
: i=2

mGal?, and variances of 1° and 5° block mean gravtiy anomalies 920 and 302 mGal?,
respectively.

We adopt notations Cs(¢) for the long wave-length component of the gravity
anomaly covariance function :

L
Ce(P) = gzozz(dg) st*2 Py(cosg), (4-18)
and Cr(¢) for the local anomaly covariance function :
Culd)= 3 oi(4g) 5t Pi(cosy). (4-19)

Consequently, C(¢)=Cs(¢)+Cr(¢). Figure 27 shows C(¢) and Cr(¢) based on the
anomaly degree variance model (4-17) when L=20. The correlation distance (the distance
where the covariance value is a half of the variance) of Cr(¢) is much shorter than that
of C(¢), because Cp(¢) expresses only the statistical characteristics of short wave-length
component of the gravity anomaly field. Since the covariances in Figure 27 corresponds
to the world-wide average statistical characteristics of the gravity anomaly field, they
may differ from covariance functions derived from gravity anomaly distribution in a
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Figure 27 Anomaly covariance function C(¢) and local anomaly covariance
function Cr{¢) based on the anomaly degree variance model
(equation (4-17))by Tscherning and Rapp (1974).

restricted area. Ganeko (1976) obtained a local anomaly covariance function from obser-
vations of the deflections of the vertical distributed in Japan. It is approximated by an
analytical function as follows:

CL($)=C, eXP(~%), (4-20)

where C;=2809 mGal?, D=55km, and r is the parameter of distance in kirometers. (4-20)
is based on the residual anomaly field of SAO-SE3 geopotential model (Gaposchkin et
al., 1973) up to degree and order 18, The residual variance C, in (4-20) is larger than
that of world-wide average, 1795 mGal?, obtained by Tscherning and Rapp (1974). This
is probably due to the fact that Japan is located in a geophysically active area and the
gravity anomaly field around Japan is rougher than the world-wide average. If we assume
the local covariance function (4-20) to be the world-wide average one, we can compute
anomaly degree variance of a high degree by using (4-10). The computed anomaly degree
variances for s=1 are shown by curve ¢ in Figure 28. This figure also includes the degree
variances based on Kaula’s rule of thumb (curve @), degree variance model (4-17) (curve d)
and another degree variance model by Rapp (1973a) (curve b) :
B{-1)

(I-2) ({+D+<l?)

where B=246,5556 mGal?, D=12.6755 and <=0.000657. Rapp determined the parameters
so that (4-7) and (4-16) fitted the actual gravity anomaly field by putting s=1 in both
equations. In other words, the anomaly degree variance model (4-21) may be approximated

0.2(4g) =

(4-21)
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Figure 28 Anomaly degree variance models: (a) based on Kaula’s rule of thumb; (b) Rapp
(1973), equation (4-21); (c¢) Ganeko (1976), based on anomaly covariance function
(4-20); (d) (d) Tscherning and Rapp (1974), equation (4-17).

by the degree variance model (4-17) multiplied by s'*2, i. e.
a.2(dg) [equation (4-21)]=s'*? ¢;2(4dg)[equation (4-17)]

The anomaly degree variance model ¢ shown in Figure 28 is characterized by a
peak around degree 90, and the possibility of such peak seems to be supported by the
anomaly degree variances by Rapp (1977b) derived from surface gravity data (see Figure
26b). However, if we take the difficulties of determination of the geopotential coefficients
of high degrees into cosideration, it is not so firmly supported by the Rapp’s results that
such a peak exists on an anomaly degree variance curve as the global average. Degree
90 corresponds to about 400 km wave-length.

We compute covariance functions of block mean gravity anomalies included in
JHDGF-1 gravity file obtained in the previous chapter. The obtained covariance functions
are shown in Figure 29a (for 30/ %30’ and 1°x1° blocks) and in Figure 29b (for 10’ <10’
block). It is assumed that each block has the same area as far as they are located in
the JHDGF-1 region (see Figure 4), and the block covariance functions are computed by

B ZA(IQ—ZE%% (dg—4gy);
Crlrey=-"" )/ — (4-22a)

where dg—dg; is the block residual mean gravity anomalies based on the satellite-derived
gravity anomaly of GEM-8 geopotential model (Wagner et al., 1976). The summation
is taken over N, paires of blocks ¢; and ¢; whose centers are separated by the distance
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rij, v, which satisfies the condition :

re<ripp<ri+dr, k=0,1,2, ..., (4-22b)
in which we assume 7°=0. 4y is taken as 20 km for 10/ x10’ block, 30 km for 30’ x 30’
block and 60 km for 1°x1° block. The distance parameter of the covariance function is
computed by

n»::]_Z; Fink/ N

mGal 2
3000}
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Residual Anomaly Block Covariance

’ Disfance r (km)

T

=400

Figure 29a Residual anomaly block covariances of 30 <30’ blocks (broken line)
and 1°x1° blocks (full line) derived from JHDGF-1 data. Residual
anomalies are referred to- GEM-8 global anomaly field.
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Figure 29b Residual anomaly block covariance of 10’ x 10’ blocks
derived from JHDGF-1 data.
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Figure 29c Residual anomaly block covariances of 10’ x 10’ blocks
included in 5°%5° blocks.
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Figure 29d Residual anomaly covariance functions based on the analytical function
model (4-23): (a) point covariance; (b) 10’x10’ block covariance; (c)
30" %30’ block covariance; (d) 1°x1° block covariance. (e) is the
point covariance (4-20). Full and open circles are actual covariances
for 30’ %30’ and 1°x1° blocks, respectively.
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It should be noted that the covariance function of 10’ %10/ block shown in Figure 29b is
an average of covariance functions derived from 10’10’/ blocks in every 5°x5° block
area of JHDGF-1 region, and the number of pairs (V) is used as the weight in taking
an average of 10’ x10’ block covariance functions. Some examples of individual 10’ %10’
block covariance functions are seen in Figure 29c. As we see in the figure, there are
not any rules among the curves of covariance functions. This fact may indicates that
the features of the short wavelength components of the gravity anomaly field largely
depend on the local geophysical structures.
Adopting a model analytical expression of covariance function:

CrL(¥)=Cy exp [—(#/D)?] cos kr (4-23)
for the residual gravity anomaly around Japan, the parameters are determined as follows:
Co=3133 mGal?; D=161.2km ; £=0.007854 1/km; »=1.227. In the determinations of
the parameters, 10’ <10’ block covariances are not taken into consideration because of
instabilities of 10’ <10’ block covariances., Figure 29d shows the analytical covariance
function (4-23) and the analytical block covariance functions derived from (4-13) and
(4-23), comparing with the other type of covariance function (4-20).

(2) Omission Errors in the Numerical Evaluation of Stokes’ Integral
Omission errors involved in the numerical evaluation of Stokes’ integral come
from the following situations.
(A) When the terrestrial gravity data are given by average value over a certain
sized block area, the shorter wave:length components of the anomaly field than the size

of the block area are omitted in the performance of numerical integration of Stokes’
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integral.

(B) Outside the cap area, we adopt a satellite-derived geopotential coefficient sef,
so that we consequently omit the more detailed informations of the gravity anomaly field
than the satellite-derived gravitational field.

These kinds of omission error were discussed in detail by Christodoulidis (1976)
and Ganeko (1977). We summarize the methods of omission error estimations and apply
them to the gravimetric geoid obtained in Chapter 3.

1) Basic equations of omission errors

We can write the geoidal height error due to the truncation of higher degree
components of gravity anomaly than degree L outside the cap area as follows:

N=—5 3 Quign) dgi, (4-24)

where @, is Molodenskii’s truncation function (Molodenskii et al., 1962), ¢, the radius
of the cap, and 4g; /[—th degree Laplace surface harmonics of gravity anomaly. R and
G are the mean radius of the earth and the mean gravity on the earth’s surface, respec-
tively. We call usually (4-24) “truncation error” of geoidal height. The truncation
error covariance is defined by

Con(0, L, o) =M {dNp Ny}, (4-25)
where O is the angular distance between P and ), and the average operator M{ ] works
as an average of possible pairs P and @ with a constant angular distance @ over the whole
earth. Inserting (4-24) into (4-25), and using orthogonality relations among spherical
harmonics and an equation

ot (dg) =M {dg?},
we get (Ganeko, 1977)

Csn (O, L, ¢y) :(TRG—)Z;ZL Q% (¢y) 6.2(dg) Pi(cos ), (4-26)

where P, is [—th degree unnormalized Legendre function, and ¢,2(dg) is the anomaly
degree variance already discussed in the previous section.
2) Point truncation error
When 0=0 in (4-26), the equation is reduced to

Pav(Lgn) =Cov(0, L, ¢y =(- ) 5, @it o2y @-27)

which defines the variance of truncation error. (4-27) is evaluated when the anomaly
degree variances are given. The definition of Molodenskii’s truncation function is

Qg ={ Pi(cosp) S(9) sing dy, (4-28)
90
where S(¢) is Stokes’ function (see (2-2)). The analytical evaluation equations of @

were investigated by Molodenskii et al. (1962), Hagiwara (1972, 1976) and Paul (1976).
Ganeko (1977) obtained a simple asymptotic analytical expression of @, applicable at high
degrees. Figure 30a shows the evaluated truncation errors of geoidal heights, a:n (L, ¢%),
given by (4-27) for various cap sizes on the basis of the anomaly degree variance model
(4-21) (curve b in Figure 28, and it is called “anomaly degree variance model 4" in this
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Figure 30a Point truncation errors based on the anomaly degree variance model b.
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Figure 30b Point truncation errors based on the anomaly degree variance model c.
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paper). Figure 30b shows truncation errors based on another anomaly degree variance
model which is a combination of curve « for degrees lower than 30 and curve ¢ for
degrees higher than 30 (the combined degree variance model is called “anomaly degree
variance model ¢” in this paper). The truncation error defined by (4-27) is called “point
truncation error”. We may be able to consider Figure 30a and Figure 30b as the lower
bound and the upper bound of point truncation errors, respectively, due to the adopted
anomaly degree variance models.

As for situation (A), L in (4-27) is derived by following equation for 6° block

mean gravity anomalies :
Lo 180 @)

and as for situation (B), L is corresponding to /,ex+1, where /[,q. is the highest degree
of the available satellite-derived geopotential coefficient set. Furthermore, let us consider
the point truncation error of geoidal height computed under conditions shown in Figure
31. A cap area is divided into % zones which are numbered as 1, 2,..., k& from inner to
outer as seen in Figure 31. The radius of the outer boundary of /—th zone is ¢; and
or is the radius of the outer-most boundary that coincides with the conventional cap size
formerly denoted as ¢, It is assumed that s;° (i=1~%) block mean gravity anomalies
are available in each zone. We consider s;° block mean gravity anomalies can represent
the gravity anomaly field up to degree [180°/s;°], and we put

Li=[20]41, =1~

Let Li,, be the maximum degree of the satellite-derived geopotential coefficient set. By
using (4-27), we can estimate

5

(Lk+i, Lk+1)
geopotential
coefficient set

mean gravities of various
sized blocks

Figure 31 Zone divisions of a cap area,
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Table 2 Individual point truncation error terms evaluated on the basis of
anomaly degree variance models b and ¢

Anomaly degree Anomaly degree
variance model variance model
¢
osn(181, 0) 0.36m 0.69m
osn (361, 0) 0.17 0.31
asn(181,5°) 0.05 0.10
asn (361, 5°) 0.02 0.03
asn( 23,20°) 0.45 0.51
aan (181, 20°) 0.02 0.04
asx {361, 20°) 0.01 0.01

the point truncation error of geoidal height according to the zone divisions of Figure 31.
It is evaluated by

k+1 R i
o, :iz=“1 0,5 (Liy hiy) —_iZzll ng a2 (L, ) (4-30)

(Ganeko, 1977), where ¢, is zero.

We have computed the geoid undulations around Japan in Chapter 3 under the
following data conditions :

0<¢<5° 30’x30’ block mean gravity anomalies
5°<¢p<20° 1°x1° block mean gravity anomalies 4-31)
¢>20° lnan=22 satellite-derived geopotential coefficient set

To apply (4-30) to the data conditions (4-31), we put k=2, ¢;=5° ¢,=20°, L,=361, L,=
181 and L;=23, and then the point truncation error is given by

Gsw =0ay (361, 0) -+ 0, (181, 5°) + 5 (23, 20°)
—0.2 (361,5°) —0,2 (181,20°) —0 2, (361, 20°). (4-32)
Values of each term of (4-32) can be read from Figure 30a or Figure 30b depending on
anomaly degree variance models. These values are listed in Table 2. Thus (4-32) is
evaluated as

a_’;’vz(0.48m)2 for anomaly degree variance model & }
¢ (4-33)

=(0.60m)* for anomaly degree variance model ¢
When geoidal heights are co mputed under the conditions :
0<¢p<20° 1°x1° block mean gravity anomalies
»>20°  lnao=22 satellite-derived geopotential coefficient set (4-34)
the point truncation error is evaluated by
o2 =0’ (181,0)+0* (23,20°) —0 2 (181,20°)

N

and using numerical values in Table 2, we get
02 =(0.58m)* for anomaly degree variance model b
‘ (4-35)

=(0.86 m)? for anomaly degree variance model ¢

3) Relative truncation error
The error of geoidal height difference between two points P and @ is written as
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04dNpg=0(Ng—Np)=0Ng—0Np,
and using (4-24) the mean square value of it is given by

"aZJN (6, L, ¢) :M{‘;AIVI?Q}

=2[Cen(0, L, ¢p) —Csx (0, L, ¢¢)] (4-36)
(Ganeko, 1977). Inserting (4-26) and (4-27) into (4-36), we obtain
0500, L 99 =2 (55 ) £ Q90 a2 (dp)[1~ P (cos0) ], (4-37)

(4-37) can be used to evaluate thg error in geoidal height difference between two points
separated by an angular distance ©® when the geoidal heights at both points are computed
under the same data conditions. The error defined by (4-37) is called “relative truncation
error” in this paper. It may be natural that the relative truncation error (4-37) amounts
to twice the point truncation error (4-27) when two points are separated far enough each
other.

Ganeko (1977) calculated (4-37) by adopting anomaly degree variance model 5, and
gave Figure 32a and Figure 32b. We find out some rules concerning relative truncation
errors from his results. When the distance between two points is one sixth or one seventh
of wave-length 2,:, which corresponds to the highest degree of the gravity data, i.e.
surface gravities or satellite-derived gravity anomalies outside the cap area, the relative
truncation error amounts to the same quantity as the point truncation error. When the
distance is less than the critical distance, the relative truncation error is smaller than the
point truncation error, and when the distance is sufficiently larger than 2,:,, the square
relative truncation error amounts to twice the square point truncation error. - By using the
notations of (4-27) and (4-37), the above rules are summarized as follows :

a,35 (0, L, ¢o) =0, 0=0, (4-38a)
2 2 60°
Goan (O, L, o) <oz (L, do), 9<T, (4-38b)
60°
0w O, L, g~y (L, do), O~ (4-38c)
60°
05w (0, L g0) =20, (L, §),  O>1.5~— (4-38)

We consider the case that #° block mean gravity anomalies are available on the whole
surface of the earth. Then we know the gravity anomaly field up to degree L=180°/6°.
According to (4-38c), when the distance between two points is /3, i.e. ©=0/3, the
relative truncation error is as large as the point truncation error. Therefore, the geoidal
heights computed at every #° mesh point on the basis of #° block mean gravtiy anomalies
commit relative truncation errors in the geoidal height difference between neighbouring
mesh points which are larger than point truncation errors at each mesh point.

Let us apply the rules of (4-38) to the data conditins of (4-31). On the analogy
of (4-30) and (4-32), a relative truncation error is estimated by

Giw =0,y (0, 361, 0)+0,5y (0, 181, 5°) +0,. (O, 23, 20°)

—0,55 (0, 361, 5°) —a,,y (0, 181, 20°) —a,.y (O, 361, 20°), (4-39)
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rms Volues of Relative Truncation Error: g;,(@,L,%)
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Figure 32a Relative truncation errors for ¢o=0° and 20° based on the
anomaly degree variance model b.
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and the critical distances of (4-38c) corresponding to each L in (4-39) are
6,=60°/361=0.17°,
0,=60°/181=0. 33", (4-40)
0,=60°/23=2.61°,

When 0>1° (=100km), using (4-38) and (4-40), equation (4-39) is reduced to

0oy =205 (361, 0) +20,% (181, 5°) + 0,15 (6, 23, 20°)
—~20 % (361,5°) —2¢ % (181,20°) —20 2 (361,20°), (4-41)

N

and when 0>4°, equation (4-39) is simply reduced to
Oy =205 . (4-42)

Thus the relative truncation errors of the gravimetric geoid computed under the data
conditions of (4-31) are estimated as shown in Table 3 on the basis of the anomaly degree
variance model 6 given in Figure 32a (Table 4). When we compute geoidal heights
under the data conditions of (4-34), a relative truncation error is estimated by

0w =051y (0, 181, 0) + 0,5, (6, 23, 20°)

—0;5 (0, 181, 20°). (4-43)

The estimated relative truncation errors are also listed in the third column of Table 3.
4) A numerical test of the truncation error

JHDGF-1 gravity data file includes 10’ <10’ block mean gravity anomalies in some
regions, and a 10/ x 10/ detailed gravimetric geoid is computed. Figure 33 is obtained
under the data conditions: 10’ x10’ block mean gravity anomalies for ¢<2°; 30’ x30’
block means for 2° <¢<10°; and GEM-8 geopotential model (Wagner et al., 1976, complete
up to degree and order 25) for ¢>10°. we see more detailed structures of geoid undu-
lation than the 30’x30’ geoid previously shown in Figure 8. The geoidal dent seen
from off Ensyu Nada toward Suruga Bay is due to the negative gravity anomalies along
Nankai Trough (e.g. Segawa and Bowin, 1976). The contour lines change their direc-
tions as seen at the central part of Boso Peninsula. This is caused by the regional
positive gravity anomalies at the tip of the peninsula. A 30’x 30/ gravimetric geoid is
computed in the same region of Figure 33 based on the data conditions: 30/x30’ block
mean gravity anomalies for ¢<10° and GEM-8 geopotential model for ¢>10°. The
differences detween the 10/ <10’/ geoid and the 30/x30’ geoid are shown in Figure 34.
Differences exceeding one meter occur in some regions. The numerical differences are
also computed at 30’ x30’ mesh points located in the region of Figure 34. The mean
difference is —9cm (10’ x 10’ geoid —30' %30’ geoid) and the r.m.s. difference is 54 cm.
On the other hand, we can estimate the difference between two kinds of geoid by using
the truncation error estimation technique described formerly. If we adopt the anomaly
degree variance model ¢ to be fitted to the gravity anomaly field around the region
concerned, from Figure 30b, we obtain truncation error difference between two geoids
as around 30cm. This value is slightly smaller than the actual r.m.s. difference, but
acceptable taking the rough gravity anomaly over the concerning region into consideration.
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Table 3 Relative truncation errors involved in the computed gravimetric

geoid (Figure 8) estimated on the basis of the anomaly degree
variance model &

Distance Data condition Data condition
e (4-31) (4-30)
0° 0 m 0 m
1 0.31 0.54
2 0.43 0.62
3 0.54 0.70
5 0.68 0.82

Table 4 Numerical values of a relative truncation error term sy (O, 23, 20°)
based on the anomaly degree variance model &

Distance

0.1° 0.2 0.5 1.0 2.0 3.0

O54N 0.02m 0.04 0.10 0.19 0.36 0.48
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(8) Error Propagation from Geopotential Coefficient Errors
1) Error covariance
The satellite-derived geopotential field contributes to geoidal height computation
from outside the cap area as much as equation (2-20c), and the contribution is evaluated
by using Molodenskii’s truncation function @, as follows (Molodenskii et al., 1962, p. 147):

R L
Nout :—ZT EZ Ql (‘,!)O)Agl ] (4_44)

where R is the average radius of the earth, G the average gravity over the whole earth,
L the maximum complete degree of a satellite-derived geopotential coefficient set, and ¢,
the radius of the cap area. (4-44) has a similar form to (4-24) which was used to estimate
the truncation errors. 4dg;, [—th degree surface harmonics of satellite-derived gravity
anomaly, is evaluated from the satellite-derived geopotential coefficients as follows:

Uk = L
AgL: G(l_]-> Z—:O [C7;kl le +Dl7n Shn] (4_45>

which has the same notation as (2-16). From (4-44), we write the error of N,,. caused
by geopotential coefficient errors as

L
ONous = ‘2%“ Z Q. <¢o> 5Agl s (4_46)
=0

where d4g, is the error of /—th degree harmonics due to geopotential coefficient errors
56;:; and 5Dlm .

L R
6AgL=G(Z’_1) Z [aclj:;le"*’a«Dlm Slm]- (4'-47)
m=0
We define the covariance of 3Ny by

Kin (0, ¢) =M (6N, 6N %)

~(£) L 2 Q0Qy oM (p4g(PIIR! (@), (4-48)

where @ is the angular distance between points P and @ on the surface of the earth.
In the same way as we have obtained (4-26) from (4-25), (4-48) is reduced to

Ko (O, ¢o) = (%)ifg Q2($o) 02 (34g) Pi(cos O). (4-49)

6:2(04g,) is the error degree variance of satellite-derived gravity anomaly, which is evaluated
from the geopotential coefficient errors:

A .
0 (0dg) = G*(I-1)* 3 @Cra+6D,5). (4-50)

Here subscript s indicates “satellite-derived” again.
2) Point undulation error
The mean square error of geoidal height due to geopotential coefficient errors at
an arbitrary point is given by putting ©=0 in (4-49), and it is written as

e (o) =Ksn (0, ) = ({2—;—)2[2; Q2 (o) 0:2(0dgs). (4-51)
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To evaluate the above equation, we have to know the error degree variances (4-50),
i.e. geopotential coefficient errors 6C% and 6D;,. It is not necessarily easy to get the
geopotential coefficient errors actually. Some geopotential coefficient sets are accompanied
with estimated errors of the coefficients, We can define % error of the coefficients by
L, _,
Z (aclm +5Dlm)
(% error);=1-m50— %100 (4-52)
(€2 + D2
0 m

me= im

which was used by Rapp and Rummel (1975). Figure 35 shows examples of % errors
produced from GEM-8 and GEM-10 geopotential models. We see some accuracy impro-
vements of the coefficients in GEM-10 model. The fact that % errors around degree 20
are almost 100 % or more shows that coefficients at high degrees were poorly determined,
but not that those coefficients are meaningless.  Another method of evaluating the
accuracy of coefficients was adopted by Rapp (1973) and Rapp and Rummel (1975),
which estimate coefficient errors from two different geopotential models, A and B for
example. In this case coefficient errors are calculated by

A

156“,1{ = %'ém - lew

’

(4-53)
= lym4 nB
]5Dlm‘ = «/EiDlm —Dlm "
Table 5 gives error degree variances derived from coefficient errors in geopotential models
GEM-8 and GEM-10 and those evaluated based on (4-53) from coefliicient differences
between GEM-8 model and SAO-SE4. 3 model (Gaposchkin, 1976). The lowermost line

L
in Table 5 indicates commission errors of gravity anomaly computed by [} 0:2(ddgs)]?
on the basis of each error degree variance set.
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Figure 35 Percent errors of geopotential coefficients. Open and full
circles are for GEM-8 and GEM-10 models, respectively.
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Table 5 Error degree variances based on satellite-derived geopotential coefficient sets

Degree CEMB ks 3 GEM-8 GEM-10
mGal? m@Gal? mGal?
3 0.024 0.003 0.001
4 0. 067 0. 004 0.001
5 0. 444 0.028 0.013
6 0. 355 0.033 0.014
7 0.710 0.123 0.062
8 0.916 0.132 0. 057
9 1.594 0.308 0. 166
10 1.342 0. 354 0.169
11 2.561 0. 681 0.382
12 2.095 0.675 0.349
13 1.669 1.042 0.534
14 2.814 1.152 0.527
15 2. 547 1.645 0.732
16 1.712 2.119 0.762
17 2.394 3. 296 1.074
18 1.970 5.071 1.283
19 2.150 6.277 1.322
20 3.001 7.265 1.553
21 2.877 7.960 1. 584
22 2.946 8.357 1.740
23 2.626 8.374
24 3. 147 8. 168
6.3 mGal 8.3 mGal 3.5 mGal

When we know the errors of geopotential coefficients, a point undulation error is
obtained by (4-51). The evaluated undulation errors are shown in Table 6 for cap radii
de==0, 10°, 20° and 30°. When ¢,=0, the tabulated undulation errors express the
accuracies of satellite-derived geoid undulations in combination with omission errors due
to the omissoin of higher degree terms of geoid undulation than those included in satellite-
derived geopotential models. The omission errors have already discussed in detail in
the previous section. Such omission error given as g;x(L, 0) (see (4-27)) is read as 3
or 4 meters from Figure 30 in the case L=20. Then we can estimate the accuracy of
the satellite-derived geoid undulations by

m=cpy (0)+0dsy (L, 0).
As we see in Table 6, under the data condition (4-31) or (4-34) adopted in Chapter 3 to
compute a gravimetric geoid, the mean point undulation error amounts to 0.31 m due to
uncertainties of geopotential coefficients of GEM-10 model.
3) Relative undulation error

The error of the difference between Nou: components at points P and @ is written by

P

04N ur= 8N pu — Nowe) =N —0Nour
and its mean square value is sxpressed by using the undulation error covariance (4-49)
as follows :
$5an (0, $0) =M (34N )
=2 [Ksw (0, ¢o) —Ksn (0, ¢0) ], (4-54)
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Table 6 Point geoidal height errors due to errors of
geopotential coefficients

Cap size GEM-8

Po —SAO-SE 4.3 GEM-8 GEM-10
, - - -

0 3.46 3.02 1.53
o 1.6 0.95 0.5
20 0.82 0.52 0.31
30 0. 44 0.27 0.15

where @ is the angular distance between P and @. Inserting the expression of (4-49)
into (4-54), we obtain

a6, 40 =2( 55 ) B 012(04g) [1-Pu(cos0)]. (4-55)

Note that (4-55) is very similar to (4-37) which is obtained for the estimation of
relative truncation error. Although (4-55) has been already discussed by Christodoulidis
(1976) and Ganeko (1977), we here evaluate (4-55) by using error degree variances
shown in Table 5. The obtained relative undulation errors due to geopotential coefficient
errors are given in Table 7. We find that the relative undulation errors up to distance
©=5° (=500km) are less than the point undulation errors. As seen in Table 6 and
Table 7, the GEM-10 model results in the smallest undulation errors.

Table 7 Relative geoidal height errors due to errors of geopotential
coefficients

GEM-8—SAO-SE4. 3 GEM-8 . GEM-10

Cap size | =10 20° 30° 10° 20° 30° 10° 20° 30°

Distance
¢}

m m m m m m m m

m
0.2° 0.04 002 0.01 0.04 002 001 0.02 0.01  0.005
0.4 0.08 005 0.02 0.08 004 0.02 0.04 002 0.01
0.6 0.12 007 0.03 0.11  0.06 0.04 0.07 0.03 0.02
0-8 016 0.09 0.04 0.15 0.08 0.05 0.09 004 0.02
1.0 020 012 0.06 019 010 0.06 0.11  0.06 0.03
2.0 0.40 023 011 0.38 020 012 0.22 011 0.05
3.0 0.59 0.34 0.16 0.56 0.30 0.17 0.32 016 008
4.0 0.78 0.46 0.22 0.72 038 0.22 042 0.21 0.10
50 0.95 0.55 0.26 0.89 047 0.27 0.51 026 0.13
6.0 112 064 031 1.03 0.54 0.31 0.60 030 0.15
7.0 127 073 0.3 116 0.61 0.34 0.67 034 0.17
8.0 1.40 0.81 0.39 1.26 0.66  0.37 0.74 0.38 0.18
9.0 1.52  0.87 0.42 1.3 071 0.39 0.80 0.40 0.19

10.0 1.63 093 0.45 1.42  0.74  0.40 0.84 0.43 020

Point
error

1.26 0.82 0.4 0.95 0.52 0.27 0.59 031 015
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(4) Error Propagation from Terrestrial Gravity Data Errors
1) Point undulation error

When terrestrial gravity data are utilized for geoidal height computation through
(2-20b), a geoidal height error can be written in the form:

N = 45(; SS 5dg S($)do, v (4-56)

cap

where ddg is error of terrestrial gravity anomaly. When the terretrial gravities are given
in the form of block means, (4-56) is rewritten as

R & ..
5Nin=m“ izz:l 5dgi * i, (4-57)

where ddg; is the error of the mean gravity anomaly over block ¢;. ¢: is given by (3-3),
and k is the number of blocks included in a cap area with radius ¢. The mean square
value of (4-57) is given by

Moy (Po) =M 0N, )

R \tk k o R \tk & o
~(He) Z 2 M(6dgide) a o=(grg) & LGGDaa,  (458)

i

where C;(i, j) is the error covariance of block mean gravity anomalies assuming to be
a function of the distance between blocks ¢; and o;.
We consider first a specific case of the error covariance (called “Case A”):
Ci(i, ;) =mq for i=j,
(7 =1s =/ } Case A, (4-59)
=0 for ixj,

which means that the errors of block mean gravity anomalies are completely independent
of each other. m,® is the mean square error of #° block mean gravity anomalies.
When the error covariance satisfies (4-59), (4-58) is reduced to

2k
Moy (Po) = (“"45(; ) 2t g, (4-60)

In the evaluation of (4-60), we take a square cap area such as shown in Figure 36, and
the square cap area is extended by adding square rings of #° width. The evaluated
undulation errors for block sizes #=10’, 30’ and 1° are shown in Figure 37, and
some of numerical values are given in the columns labeled as “Case A” in Table 8. m,
has been taken to be 1 mGal for all block sizes. As we can read from Figure 37, the
undulation errors increase steadily as cap size becomes larger, but they increase little
even when cap size becomes larger than 10°. That may be due to the facts that the
correlation distance of gravity anomaly data errors is short under the assumption of
(4-59) and that distant short wave-length variations of gravity anomaly contribute little
to the geoidal height computations as investigated in section 3-(2). We can derive a
simple formula for estimating undulation errors due to terrestrial gravity errors when
the cap is large enough, such as

msy(cm) 12 X me(mGal) x 0(degree).
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Figure 37 Point geoidal height errors due to errors of block mean gravity anomalies.

For error covariance Case A, and mg?=1 mGalZ,



136 Y. GANEKO

Table 8 Point geoidal height errors due to errors of block mean gravity
anomalies (m42=1mGal?)

Block size ] =10 30 1°
Brror e | CaseA CaseB CaseC| A B c A B c
Cap size ¢,
o m m m m m m m m m
Bo 0.011 0. 032 0. 064
2 0.018 0.024 0.040 | 0.048 0.065 0.092 | 0.089 0.120 0.189
5 0.020 0.027 0.045 | 0.054 0.074 0.122 | 0.101  0.139  0.226
10 0.021  0.020 0.049 | 0.059 0.081 0.135 | 0.110 0.152  0.252
20 0.062  0.085 0.144 | 0.117 0.162  0.270
30 0.062 0.086 0.145 | 0.118 0.163 0.274
35 0.118  0.163  0.274

Let us adopt another type of error covariance of gravity anomaly data instead of
(4-59); i.e. an exponential type error covariance:

Cs(¢) =ma* exp (—Do ¢), Dos>0, (4-61)

which has a long tail in the error correlation and was ever used by Christodoulidis (1976)
to estimate the same kind of undulation error as treated in this section by a different
method. Before applying (4-61) to (4-58), we rewrite (4-58) as follows:

mas 9o = (g ) {57 27 C6i ) avas
+20,% GG, @i+ Co(p0)0,7)s (4-62)

where P is the center of block ¢r where computation of geoidal height is made, and >}’
indicates the summation over all blocks in the cap area except for block ¢r. Since the
correlation distance of gravity anomaly data errors is usually short, we approximately
write the first term in the righthand side of (4-62) as

§’ §/Ca(i, Nagi= ;’ u? q, (4-63)
where
w =5 Csliy J)- (4-64)
J

It is noteworthy that (4-64) corresponds to the “error constant” introduced by Heiskanen
and Moritz (1967, p. 273). Let the area of blocks be denoted by B, approximate (4-64) to
2. - 14 PP _i (1 7 __L ;.
wi=3 Cili, )55 BCG, HB =5 cgag)cls(gb”)do, (4-65)

and insert (4-61) into (4-65), then we obtain
er 4
Bu?=m,? S S exp(— Do) sing dy da

«=0 ¢=0

=21 wDo%f [1+exp(—Dy x)]=2zme?/ Dy’ (4-66)
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The last approximation in (4-66) is permissible because of short correlation distance of
the gravity data errors. From (4-62), (4-63) and (4-66), we finally obtain

B Daz Zl: 7 (]i2

771512\,(950):(71"%)2 [ 2r m,?

+2m4? @p 2" exXp(—Ds dip)qi+ 77202(]1;2] ) (4-67)

We evaluate (4-67) for two cases of the parameter in the exponential error

covariance, ie.,

Dy=1/8y, Po= «B/x: Case B, } (4-68)

D,=1/6 : Case C,
where f, is the radius of a circular block whose area is equal to the area of #° square
block. Figure 38 and Table 8 include the results for block sizes §=10/, 30’ and 1° when
me=1 mGal. Case C gives a longer error correlation distance than Case B, so that Case
C naturally results in larger undulation errors than Case B and, of course, than Case A.
2) Relative undulation error

The error of geoidal height difference due to errors of terrestrial gravity data is

derived from (4-56) as follows:

2AN=3 (N}, — N2 =2 ({62 [S(90) S do, (4-69)
oy
where ¢p is the angular distance between P and the surface element do, and ¢q is the
distance between Q and de. The cap area is taken to be large enough to include sufficient
terrestrial data for computations of geoidal heights at both points P and Q (see Figure
39). If we rewrite (4-69) so as to make the equation fit the available terrestrial gravity
data, we have

N - ' _
64N =g % 0dgs [ar—ga]. 4-10)
The difinitions of ¢gp: and go: are derived from a generalized expression of ¢xy

gxr={{ S@ry)dos, (4-71)
134
where ¢y, is the angular distance between point X, the center of bloek oy, and the
surface element do, in block oy. Writing the block area as B=nf?, we have approximate

expressions of (4-71) as
(IA’X:4B/,39, }
Jyxy—(gvy= S (9/1&1) B,
where ¢xy is the angular distance between centers of blocks ox and ¢y. Then we obtain
from (4-70) and (4-72)

4-72)

adN:zﬂ%B {z/ 30g: [S(pri) —S(ed)]

3

+ 0dge—0dge) 5 ~Sra) |} “-73)
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Cap Area

Figure 39 Common cap area for the computation of a geoidal height diflerence.

The summation >}/ does not include i=P and i=@. Setting A=RB/4x(G, the mean square
value of (4-73) can be written in the form:

mfm (@) =M{64N?
= AZZi ! 2]1' " M{(6dg:i 04g} [S(pre) —S(9e) 1 [S(dr) —S(Pon]

+24157 M {54@ (azEpazqu)} [% ~5@ ]

+A M {(MEP ~521§Q)2} Hﬂ% —s<9)} (4-74)

2
where O is the distance between P and Q. Being assumed that the error covariance
has a short correlation distance, (4-74) is reduced to

My (O) =A%’ D;_I’ Ca(9in] [S(¢pi) —S(ge) 1?

4
+2A2% | C ) —Cs (i) || ——S(O
r247% [Co(grd —Colan || 5-—5®) |
4
— S50
5 5©@]
Note that the second term of the righthand side of (4-75) vanishes because of the
symmetrical expressions at P and Q. Therefore, we can evaluate the relative undulation

+242 [C:(0) -G || § (4-75)

errors by a sum of the following two terms:

L=AZZil’ [%]’ Co(¢i)]1 [S(dpi) —S(dei) 1%

L=24%[C:(0)~Ci(®) | [_éfo- -s©®] @70
Using (4-65) in I,, i.e. wu?=m,* for the error covariance Case A (see (4-59)) and u?=
2rmg2/BDg* for the exponential type error covariances Cases B and C (see (4-68)), we
evaluate (4-76) for block sizes #=10’, 30’ and 1°. And we take the common cap area
(Fig. 39) to be large enough, i e. the boundary of the cap area being located farther
than 30° from both points P and Q. Some of evaluated results are shown in Table 9.
The root mean square error s, is assumed to be | mGal in Table: 9.

JHDGF-1 gravity file includes estimated errors of block mean gravity anomalies,

and in these case we can compute a geoidal height error by
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Table 9 Relative geoidal height errors due to errors of block mean
gravity anomalies (#m¢®=1 mGal?)

Block size =10 30 1°
Error
covariance Case A Case B Case C A B C A B c
Angular
distance ©
° m m m m m m m m m
1 0.018 0.021 0.031 0.042 0. 046 0. 058 0. 067 0. 066 0. 076
2 0.020 0.025 0.038 0. 050 0. 058 0.082 0.085 0.092 0.118
3 0.021 0. 027 0.042 0.055 0. 065 0. 096 0. 095 0. 107 0. 148
5 0.023 0.029 0. 047 0. 060 0.073 0.113 0. 107 0.126 0.186
10 0.025 0. 033 0.054 0.068 0. 086 0.138 0.125 0.154 0. 240
15 0.027 0.035 0. 058 0.074 0. 094 0.153 0.136 0.171 0.275
20 0. 028 0.037 0. 062 0.078 0. 100 0. 165 0. 145 0. 185 0. 301
m 2~<————R )2 i} 0dg’ g 4-77)
U2 G A 8" q:

from the given errors of block mean gravity anomalies under the assumption that the
errors are independent of each other. From (4-77), m, is evaluated to be 0. 8 to 1.0 meters
in JHDGF-1 region under the data conditions of (4-31) and to be around 1.3 meters
outside the JHDGF-1 region under the data conditions of (4-34). Then we assume the
geoidal height error of one meter due to errors of terrestrial gravity data and also assume
that all block mean gravity anomalies suffer the same amount of mean errors, written
as m, independently. Under the data conditions of (4-31) and from Table 8, we can write

miy=m? {0.054%+ (0. 1172 0. 101%)} = (1 meter)?2,
The above equation yields m=12.5 mGal, and the value of s brings about a geoidal height
error under the data conditions of (4-34) such as

myy =0.1172x12.52= (1. 46 meter)?. (4-78)

Since the main contribution to the undulation error is made by 1°x1° block data,
we estimate a relative undulation error due to terrestrial gravity data errors included in
the geoidal map obtained in Chapter 3 as follows:

Mgy =12 XMy 3y (0, 0=1°),
From m=12.5 mGal and Table 9 for @=5° (=500 km), we obtain

myyy=0.1072% 12.52= (1. 34 meter)?. 4-79
We should note here that it has been assumed that the error covariance satisfies the
condition of Case A.
(5) Undulation Errors due to Neglection of Sea Surface Topography
1) Undulation errors due to sea gravity errors

Physical oceanographic theory predicts deviations of the mean sea surface from
a equipotential surface (e. g. Lisitzin, 1974), and the deviations are computed from
oceanographic data such as velocity of ocean currents and salinity and temperature of
sea water. We call the deviations of the mean sea surface from a equipotential surface,
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the geoid, “sea surface topography”. Since the sea surface topographical heights are in
order of one meter, they have been neglected in the theory of physical geodesy until
recently. The recent developments in satellite altimetry have achieved an accuracy
higher than one meter by Geos-3 satellite (e.g. Kearsley, 1977 ; Rapp, 1977), and a trial
to achieve around 10 cm accuracy of altimeter observation has been made by SEASAT-1
satellite (NASA News, 78-77). The fact that the satellite altimetry provides us with the
shape of sea surface with such a high accuracy forces the physical geodesy to enter a
new age of 10 cm global geodesy. Therefore, it may be necessary to investigate the
effects of sea surface topography on the computation of geoidal heights.

The gravity measurements at sea are generally made on the surface of the sea
water, so that the measured gravities are not considered to be on a equipotential surface,
ie. on the geoid. We can apply the gravity reduction procedure (2-4) to sea gravities
just as land gravities. Normal height H* in (2-4) is almost equal to the sea surface
topographical height #, and then gravity anomaly at sea is befined by

dg=gp—ro+ 2(? t, (4-80)

where gp is real gravity on the sea surface, y, the normal gravity on the reference
ellipsoid and ¢ the semi-major axis of the reference ellipsoid. In Chapter 3, we have
used gravity data without the correction term concerning #. The geoidal height error
due to the neglection of this term is estimated by

ON, = 45@ SS ol S($)do, (4-81)

a

where a=2y,/a. Brennecke and Groten (1977) evaluated (4-81) by using a world-wide
map of the sea surface topography by Lisitzin (1974).  According to their results, the
contribution from the long wave-length components of the sea surface topography, the
components from degree 2 to degree 10 of the spherical harmonic expansion of the sea
surface topography, is about 60 cm, and the contribution from the higher degree terms
is as small as several centimeters. Since the effect of the long wave-length components
of the sea surface topography is not negligible, we can check possible geoidal height
errors due to the effect of the sea surface topography by using the computation method
adopted in Chapter 3. The geoidal height error is evaluated as
oNi= R [§ at scgrd. (4-82)

cap
In this case, we set ¢{=constant ever the cap because of the long wave length charac-
teristics of the sea surface topography, then we obtain

0N, = —ZEC at (e, (4-83)

where

290 ={ " S sin g dp.

1]
D (¢y) is easily evaluated from the definite integral of Stokes’ function:
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Table 10 Geoidal height errors due to neglection of sea surface topography
(one meter topography over the cap area is assumed)

Cap size ¢p 5° 10° 15° 20° 25° 30° 35°
D (o) 0.640 1.345 2009 2.594 3.068 3.408  3.602
m
N, 0.20 0.42 0.62 0.80 0.95 1.05 1.11

f2 3 ] 3 ¢ 3 1
hddh =] — A 2 -+ L1 = -+ ==
S(':,‘S((/J) Slng) ([@b COSgl) COoS ¢' ZSIn < COS ¢ >

~% sin%g /[, (sin -"éianin?%)]:
(Molodenskii et al., 1962, p. 168). Table 10 show N, for various cap sizes when f=1m.
Under the data conditions used in Chapter 3 and from the feature of the sea surface
topography around Japan (e.g. Sugimori, 1978), we can conclude that the geoidal height
error of around 50 cm due to neglection of the sea surface topography possibly occurs,
and that the error is a kind of systematic error in a small region because of the charac-
teristics of the sea surface topography.
2) Undulation error due to land gravity errors

Every height system of land areas is based on the mean sea surface at certain
tide stations. The mean sea surface at tide stations, of course, suffer sea surface topo-
graphy, so that orthometric heights of the ground are not necessarily based on the geoid.
In other words, heights systems suffer systematic errors as much as the sea surface
topographic heights at the base tide stations. These systematic errors cause gravity
reduction errors at land areas as much as at ocean areas and cause systematic geoidal
height errors both at land and at ocean, especially at the transition areas from continent
to ocean. The geoidal height errors may be in an order of errors shown in Table 10.
These situation may be shown schematically by Figure 40, in which two height systems
I and II are separated by the ocean lying between different height systems. The
geopotential values on the mean sea surfaces at base tide stations 7 and T, are not
equal to each other due to the existence of the sea surface topography. We have to
interrelate two height systems by knowing the potential difference or sea surface topog-
raphic heights over the ocean, and this kind of knowledges will make us possible to
compute a more accurate gravimetric geoid, say a 10 cm geoid.

geoid
(an equipotential
‘‘‘‘‘‘‘ surface)

ellipsoid

Figure 40 Sea surface topography and land height systems.
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(6) TUndulation Errors due to Theoretical Approximations
1) Spherical approximation

We have adopted the spherically approximated earth through this paper, as (2-1)
and (2-3a) are based on the spherical approximation. Geoidal heights computed in the
spherical approximation suffer errors of the same order as the flattening of the earth.
The solution of the boundary value problem on a ellipsoidal reference surface was
investigated by Molodenskii et al. (1962, p. 59), and the solution includes three times
repetitions of integration. Lelgemann (1970) solved the problem in a simple form. We
summarize his solution in a slightly changed form.

The disturbing potential on the reference ellipsoid is expanded in the series of the
second eccentricity 2 (= (a®—b%)/b?) of the reference ellipsoid as follows:

TH=T° 4 o2 T+ ... (4-84)
(we use * on the shoulder for a gquantity evaluated on the ellipsoid), where
T° =~f;§§ dg* S(¢)do. (4-85)

The integration of (4-85) is carried out by using the geographical coordinates (g, 1),
then do=cose dp d2. dg* is the gravity anomaly on the ellipsoid, which is derived from
the ground level gravity anomaly, 2-4), by

dg¥=dg—h A (4-86)

8/1
(Moritz, 1971), where % is the height of the ground from the ellipsoid. The correction
term 67 is written as

kM i]o Z [Avm Riw+ Biw Sin], (4-87)

=2 m=90

where R, and Slm are fully normalized Laplace surface harmonics defined by (2-11),

0T=

and coefficients A, and Bi. are derived from geopotential coe fficients in the spherical
harmonic expansion of the disturbing potential :

oo A - . - .
kfg % 3 [CinRin+ Din Siw). (4-88)
1=2 m=0

Aun and Bi, are computed by the equations as follows :

T=

A_Lm: éﬁz m ﬁlm‘i’ Czj; (_]Lm+ é[tg m 7_'an;
(4-89)
Blm Dl am ﬁlm’*‘Dlm q1m+Dl+2 m Fims
where
Bim = 3(1-3) {(Z-—m~1)(l—m)(l+ m) ([+m—-1IN%
"I Rd-DEISD @2I—3)@2I+1D) } ,
= —P43Im? 49410046 m2—9 ~
qim 3-DEIEDHCI=D (4-90)
P 3/+5 {(Z+m+2) U+m+DU-m+2Y{—m+1IN L
TR 21+ 3) CIrD2l+5) }

Note that we can use the disturbing potential (4-88) in the spherical approxima-
tion, because the expression is necessary only to evaluate a small correction term ¢/267.
Since we do not know the complete expression of the disturbing potential, we have to test
the contribution of the terms of high degrees in (4-88) to ¢207. The correction of
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geoidal height from 267 is
T

ON = (4-91)
and the mean square value of (4-91) is written by using (4-87) in the form :
co 1 - —
S=M{ENY} =" R 3, % (A +Bun), (4-92)

=2 m=0
where the relation G=£kM/R? has been used. Then the mean square contribution of the
terms of higher degrees than L becomes
[=51 1 - —
S=¢"R* % % (Apm+Bi). (4-93)

I=L m=0

When [>1 in (4-90), we can set

maxfﬁz,m]%%, max|Gim ~L maxl?zmlz%

6 ?
and the sizes of coefficients A4, and B, are bounded as
|[Aun| <3| Gy ] +3 | T+ 3] Clon = [ €,
e Cie s i (4-94)
|B£711’ <‘8—!Dl—2 m ’ +€‘[ Dlm ] +‘8—[ D[+2 m| = { Dlm ’
From (4-93) and (4-94), we finally obtain
oo i — —
<R Y % (Cim+ Dim), L1, (4-95)

=L m=0
If Kaula’s rule of thumb, (4-11), is adopted to estimate the sizes of the geopo-
tential coefficients at high degrees, (4-95) is reduced simply to

er < Qiﬁ (meter) (4-96)
in which we usually take R=6371km and ¢2=0.00674. We thus conclude that (4-88)
is safely replaced by a satellite-derived disturbing potential restricted within rather low
degree terms. Lelgemann (1970) evaluated (4-92) by using actual geopotential coefficients
of up to degree 14, and obtained r.m.s, value d¥N=0.2m. He drew a world-wide distri-
bution map of 6V, and found that the contour paterns in the map are similar to the long
wave-length components of the global geoid undulations. We read out JN around Japan
as 20 to 30 cm from his map.
2) Neglection of higher order correction terms in Molodenskii’s solution
We have neglected G, term in (2-3a) to compute a gravimetric geoid in Chapter

3. G, is evaluated at P on the ground by
_ R? h—hy _
Gi=—{{ T dg do, (4-97)

a

where & and %, are heights at the surface element do and at P, and
lo=2R sin-L.,

in which ¢ is the angular distance between de¢ and P. The gravity correction G, is not
negligible because, for example, G, amounts to —34 mGals at the top of a conic mountain
having the form A(»)=H + exp (—72/4B?), where H=500m and B=300 m (Hagiwara,
1973). But the effect of G, term on geoidal height is small because G, behaves short
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wave-length variations very similar to the short wave-length components of topographic
relief (see Figure 4 of Hagiwara, 1972a). Therefore, we may conclude that the geoidal
height errors included in the geoid obtained in Chapter 3 due to the neglection of G, are
negligibly small, i.e. less than 10 cm.

The geoidal heights computed in Chapter 3 are actually height anomalies. Height
anomalies in ocean areas are almost equal to geoidal heights, but not in land areas.
The difference between geoidal height and height anomaly, which is given by (2-6), is
estimated to be around a few tens centimeters at the mountainous region in the central
part of Japan.

(7)) Summary of Error Sources

We have investigated various error sources in the geoidal height computation, and

the error sources are relisted below :
(&) omission of detailed structures of the gravity anomaly field ;
(b

o

uncertenties of the satellite derived geopotential coefficients ;

¢) terrestrial gravity data errors;

=N

)
)
) omission of sea surface topography ;
)

(

(
(
¢) spherical approximation in Stokes’ integral ;

(f) omission of higher correction terms in Molodenskii’s solution.

The geoidal height error due to (a) largely depends on the behavior of the anomaly degree
variances at high degrees, and the error decreases as the cap size becomes larger and as
the sizes of blocks, by which mean gravity anomalies are given, becomes smaller. The
recent developments of the satellite trackings have made the error source (b) less important,
The main error source is still due to errors of the terrestrial gravity data caused by lack
of density of gravity observations and lack of accuracy of sea gravity observations ever
made. We have to make great efforts in avoiding the error source (¢) to produce a more
accurate geoid. The existence of the sea surface topography brings about a complicated
problem in the definition of the geoid and in the gravity reduction procedures. We cannot
neglect the sea surface topography (d) to compute an accurate geoid. The error sources
(e} and (f) have almost been solved theoretically, and they should be taken into consideration
in the computation of a 10 cm geoid.

In Table 11, we summarize the point undulation errors accompanied with the
gravimetric geoid obtained in Chapter 3 under the data conditions of (4-31) and (4-34).
The total error is based on the assumption that the error sources are independent of each
other. We may conclude the accuracy of the gravimetric geoid (Figure 8) is around
1.5m or, in other words, in a range of 1 m to 2m except for N, term given by (2-9).
N, term is in an order of ambiguity of the semimajor axis of the earth ellipsoid. The
estimated errors of the gravimetric geoid are compatible with the comparison results
between the gravimetric geoid and Geos-3 altimeter data (Table 1).

We have also investigated the error of geoidal height difference. This kind of
error depends largely on the correlation distance of the error source. For the geoidal
height difference over 500 km distance, we can summarize the errors due to various error
sources as shown in Table 12. We find the total error of the geoidal height difference to
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Table 11 Point geoidal height errors due to various error sources involved
in the gravimetric geoid obtained in Chapter 3

Error Data condition Data condition Not
source 4-31) (4-34) ote
m m
a 0.60 0. 86 Anomaly degree variance model ¢
b 0.31 0.31 GEM-10 model
c 1.0* 1.5*
d 0.5 0.5 From Table 10, estimated
e 0.2 0.2 World-wide average
f 0.1 0.1 Estimated
Total 1.3 1.8 Independent error sources

* based on the assigned errors in JHDGF-1
* based on 12.5 mGals error of 1°X1° block means

Table 12 Relative geoidal height errors due to various error sources
for 500 km distance

Relative geoidal

Error source height error

Note

Anomaly degree variance model ¢

a 0. 8?1 Data condition (4-31)
1.22 Data condition (4-34)
b 0.26 GEM-10 model
c 1.34 12.5 mGals error of 1°x1° block mean
d 0.2 Table 10, estimted
e 0.1 Due to a long correlation distance
f 0.1 Estimated

Independent error sources
Total 1.6 Data condition (4-31)
1.8 Data condition (4-34)

be as large as the point geoidal height error, i.e. 1.6 m for the data condition (4-31)
and 1.8 m for the data condition (4-34). When the distance is 100 km, the error will
decrease to around one meter.

5. Surface Data Requirements for the Computation of an Accurate Geoid
In Chapter 3, we have used block mean gravity anomalies read out from various
kinds of gravity anomaly maps of different accuracy to obtain a gravimetric geoid. Since
it is difficult for us to estimate the accuracies of such block gravity data, the accuracy
of the computed geoid is ambiguous, When we know the errors of block mean gravity
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anomalies, we can estimate the error of the geoid on the basis of the gravity data errors
(see 4-(4)). To obtain accurate block mean gravity anomalies and to estimate the
accuracy of the obtained block data properly, we had better consider to use some
mathematical procedures to derive block mean gravity anomalies from raw gravity
observations. On the basis of the mathematical treatings, we can consider the problem
that what kind of gravity survey is suitable and effective to compute a more accurate
geoid, say a geoid with an accuracy of the order of +10 cm.

(1) Estimation of Block Mean Gravity Anomalies by Using Least-squares Collocation
1) Least-squares collocation
Least-squares collocation is one of the most efficient statistical techniques for
dealing with physical observations. Least-squares collocation has three functions of
interpolation, prediction and filtering simultaneously, and besides it can deal with not
only homogeneous measurements but also heterogeneous measurements relating functionally
to the physical measurements concerned. Moritz (1972) discussed the mathematical
frameworks of least-squares collocation in detail. We summarize briefly the mathematical
procedures of least-squares collocation for the conveniences of the later sections.
The fundumental equation of least-squares collocation is
x=AX+5+n (5-1)
(ibid., p. 7). x expresses “observations”, and when we deal with gravity anomaly, the
observations are all kinds of observations having some relations with gravity anomaly,
i.e. gravity anomaly itself, deflection of the vertical, geoidal height, topographic height,
bottom topography at sea, underground crustal structures, etc. When there are g obser-
vations, x is a column vector composed of g elements. s’ is the signal part (information

relating to gravity anomaly) included in x, and s’ is assumed to satisfy the condition of
“random” such as

M {s'}=0, 5-2)

where the operator A/ indicates a procedure “mean”. # is the random noise included in
the observations, then

M{n}=0 (5-3)
is assumed. s’ and n are column vectors comprising ¢ elements each.

The term AX expresses the systematic part included in observations x, where X
is a column vector which comprises » unknown parameters and 4 is a known g x» matrix
which is equivalent to the design matrix appearing in the conventional least-squares
adjustment. To compute p signals: s=[s;, s, ..., 5p17, from ¢ observations, we define
vector v by

U:[S, S’-I—?Z]T:[Sl, 32; ceey Zl) ZZ; very zq]Ta (5_4‘)

where §'+# is simply written as z, and T on the shoulder denotes the operation of
transposition. We use a minimum codition :

Qv =minimum, (5-5)

where @ is the covariance matrix, (p-+¢q) x (p+¢) matrix, of », which comprises covariances
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of signal and covariances between signal and noise. @ is written by a partitioned matrix

Css Csz
Q= ) (5-6)
Czs CZZ

where Css is the covariance matrix of the signal s, Css=cov(s,s), and Cs; and C,, are

such as

covariance matrices between s and z, which are
CSZ:CZTS =cov(s,2) =M {s 2T} =M (s(s' + )T} =M {s s'7} + M {s n7}.
Since n and s are independent of each other, we can write
Css=C,y =M [s5'T) = Cyy. (5-7)

In the same way, we have
Cor=cov(z, 2)=M ((s' -+ 1) (5" +1) "} = Csts/ + Cua, (5-8)
where C,, is the covariance matrix of the noise. We can solve the unknown signal
vector s and the unknown parameter vector X under the condition (5-5) with the const-
raint equation (5-1) by using the method of Lagrangian multipliers (e.g. Brandt, 1970,
p. 176-178). The solutions are written as follows:

X=(ATCA)1ATC1x, 5-9)
s=CsstC 1 (x—AX), ' (5-10)
where

C=cov(x, x) =M {x—AX) (x—AX)T}

=M (227} =Cysts4 Cra (5-11)
(Moritz, 1972, p. 15). The error covariances of obtained X and s are given by
Exy=(ATC1A)1, (5-12)
and by
Es=Css~CsxC 1 Cos+ HAEx yATHT, (6-13)
where

Csz= Cfs =cov(s, &) =M [s(x—AX)T}

=M [s 2T} = Csy, (5-13)
H= Cs:cé—l

(ibid., p. 32-33).

When we apply least-squares collocation actually, the covariances of the signal
and the noise should be known in advance. To our convenience, the computed signals
are not so affected by slight changes of the covariance functions (Moritz, 1972 ; Smith,
1974). Although there is a disadvantage that least-squares collocation requires to invert
matrices of the same dimension as the number of observations, such a problem has
become less important in the modern electronic computer era.
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2) Estimation of block mean gravity anomalies from gravity measurements

One of simple applications of least-squares collocation is the estimation of block
mean gravity anomalies from point gravity measurements. In this case, we understand
equation (5-1) in the following way : x comprises ¢ point gravity anomalies distributed
inside and around the block area; s’ is the signal part relating to the block mean gravity
anomaly included in point gravity anomalies; »n is the random noise of the gravity
measurements. If we use centered gravity anomalies which satisfy M {dg} =0, we may
put the systematic part AX to be zero. The signal s required to be computed is a block
mean gravity anomaly, and then from (5-10) the block mean gravity anomaly, written

as dg, is estimated by
dg=Ciy 5 C'dg, (5-14)
where Cg; 44 is a column vector composed of ¢ covariances between the block mean gravity
anomaly and ¢ point gravity anomalies, 4g is a column vector composed of ¢ point gravity

anomalies : dg=(dg,, 4dg;, ..., 4g)T, and C is a rectangular gx¢q matrix whose elements
are covariances of point gravity anomalies: i.e. (i, j)-th element of C is given by

[ Clij=Cuy(4gi, 4g)) + Cu(a1a, 1), (5-15)

The covariance function of gravity anomaly, C,, and the covariance function of
noise included in gravity observations, C,, are functions of the distance between points
i and j when the statistical characteristics of 4dg and »n are isotropic. The covariances
between block mean gravity anomaly and point gravity anomaly can be obtained if the
covariance function of point gravity anomaly is known (Heiskanen and Moritz, 1967, p.
277). The error of the computed block mean gravity anomaly is estimated from (5-13) as

2=Ciig —Cly i3 C'Cuy 1y, (5-16)

where Cj;; is the variance of block mean gravity anomalies. The solutions (5-14) and
(5-16) are equivalent to the solutions by a least-squares estimation approach to estimate
a block mean gravity anomaly in the form of linear combination of point gravity anomalies
(Heiskanen and Moritz, ibid., p. 277 ; Ganeko, 1978).

The same expressions as (5-14) and (5-16) can be used to estimate a block mean
gravity anomaly from mean gravity anomalies of smaller block only by replacing 4g;
and dg by dg; (mean gravity anomaly of smaller block) and zfé (mean gravity anomaly
of larger block). Smith (1974) made detailed test calculations of estimating 5° and 1°
block mean gravity anomalies from available 1° block mean gravity anomalies.

3) Estimation of gravity anomaly from other data

Least-squares collocation may possibly be applied to estimate gravity anomaly from
topographic heights, sea bottom topography and other geophysical data if the relation
between such data and gravity anomaly are given numerically, i.e. by covariance
functions. We know the fact that free-air gravity anomalies are in most cases well
correlated to topographic heights at land, and for example in Japan area, the fact was
tested by some authors, e.g. Yokoyama and Tajima (1957); Rikitake et al. (1965);
Hagiwara (1967). Hagiwara (1965) found good correlations between Bouguer gravity
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anomalies and the geological structures in Japan. A tendency that the sea bottom
topography has also some relations with free-air gravity anomaly was pointed out by
Watts (1976), Mckenzie and Bowin (1976) and Cochran and Talwani (1977). The relations
between geophysical structures at sea and gravity anomaly were investigated by Marsh
and Marsh (1976), Khan (1977) and Jordan (1978). Although we find some correlations
between gravity anomaly and geophysical and geographical structures, the correlations
are not necessarily well applicable to interpolating gaps of gravity anomaly. The use
of geophysical and geographical data for interpolating gravity anomaly may be limitted
to specific areas where strong correlations exist between gravity anomaly and such
data.

On the other hand, geoidal heights and deflection of the vertical are mathematically
interrelated to gravity anomaly by the geopotential theory, and then we can derive
analytical covariance functions between arbitrary two quantities among gravity anomaly,
geoidal height, deflection of the vertical and the differentials of them. Tscherning and
Rapp (1974) obtained covariance functions such as gravity anomaly-gravity anomaly,
gravity anomaly-geoid undulation, gravity anomaly-deflection of the vertical, undulation-
undulation, deflection-deflection and deflection-undulation from a model anomaly degree
variance (4-17). When we know these covariance functions, least-squares collocation is
well applied to estimate gravity anomaly from geoid undulations and deflections of the
vertical. Smith (1974) and Rapp (1974) made simulation studies concerning the estimation
of gravity anomaly from satellite altimeter data by least-squares cllocation assuming that
the sea surface heights from the ellipsoid (=altimetric sea surface heights) are approxi-
mately equal to geoidal heights. Rummel and Rapp (1977) and Rapp (1977a) applied the
method actually to Geos-3 altimeter data, and +3 mGals accuracy of 5° block mean
gravity anomaly and +6 mGals accuracy of 1°x1° block mean gravity anomaly were
obtained (Rapp, 1977a). Such applications of the satellite altimetry for estimating gravity
anomalies in the gravity data sparse areas will make us possible to get geopotential
coefficients up to high degrees, and the detailed gravity anomaly field will be of use to
compute an accurate gravimetric geoid as seen in the last chapter.

(2) Requirements for a 10 ecm Geoid
1) Requirements for block sizes of terrestrial gravity data

The fundumental requirement for the block size of mean gravity anomalies is
obtained from the curves for ¢,=0 in Figures 30a and 30b. Truncation errors less than
10 cm are achieved at around degree L=1000 which corresponds to the following block
size by equation (4-29):

180°

=000

=11,

i.e., we need at least 10’ block mean gravity anomalies in the inner-most cap area.

We test the truncation errors caused by two data conditions A and B in Table 13. The
truncation errors are estimated by using (4-30) for each data condition, and the estimated
truncation errors are shown in Table 14 for both anomaly degree variance models & and

¢ which have been often used in the previous chapters. According to (4-38), we can
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Table 13 Proposed data conditions for the computation of a gravimetric
geoid with an accuracy of the order of +10cm

Data condition A ‘ Data condition B
Area Data ‘ Area Data
o< 2° 10’ block o< 2° 10’ blok
gravity anomaly gravity anomaly
20 <10° 30’ block 20 p<10° 307 block
gravity anomaly gravity anomaly
10° < ¢ <35° 1° block 10° <P <20° 1° block
gravity anomaly gravity anomaly
(/J>350 lm(w:30 ¢>20° lm(w=100
global geo- global geo-
potential model potential model

Table 14 Point truncation errors of the geoidal heights computed under
the proposed data conditions A and B

Anomaly degree

variance model* Data condition A Data condition B
m m
b 0.08 0.07
¢ 0.12 0.12

* Shown in Figure 28,

estimate the errors of relative geoid undulation due to the truncation effects under the
data conditions A and B to be /2 times the values in Table 14 for a distance farther
than 300 km. So far as we consider the truncation errors, we can compute geoidal
heights as accurate as 10 cm under the data conditions listed in Table 13. We may
expect that global geopotential models comprising geopotential coefficients up to degree
100 or 2° block mean gravity anomalies all over the surface of the earth will become
available in the near future if we take the successful results of the satellite altimetry
by Geos-3 into consideration,

2) Requirements for accuracies of gravity data

a. Data condition A

Along the discussions made in 4-(4), we can estimate the point undulation error

due to gravity bata errors as follows:

mﬁv,,,: m,fv (2°,40) +m,fv 10°, 0, —mafv (2°, 05)

Ty (359, 0) —tsy (10°, ), (5-17)

where 6,=10/, §,=30/ and ¢#,=1°. Let us adopt the error covariances of the type of
Case A (4-58) for all block mean gravity anomalies, and put the r. m. s. errors of gravity
data for each block size as gy, Mo, and g (in mGals). From the listed values in
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Table 8, (5-17) is given numerically as

Moy, 4=0.018" mj +0.034" ;s +0.043" m; (meter?) (5-18)
When we can set g, =g =mpy =, (5-18) is reduced to

man,4=0.058m, (meter) (5-19)
which shows that the error of 10 cm level can be achieved by m,=1~2 mGals. As we
see in (5-18), the contribution of 10’ block data is smaller than other sized block data,

and then larger errors of 10’ block data than the errors of other sized block data are
acceptable. For example, when #,, =5 mGals, 7, =ns;=2 mGals, we obtain

Mmix,4=0.14 meters, (5-20)

Concerning the relative undulation error between 300 km distance, we assume the main
error source to be due to 30/ block data errors, and we estimate the relative undulation
error from Table 9 as follows:

2 2 2
Mg gn,a=0.055" 1y, .

If we set mg=2 mGals, we obtain msx5,4=0.11 meters.

For other types of error covariance such as exponential error covariances of Case
B and Case C (4-68), we can estimate point undulation errors from Table 8 under the
same assumptions as (5-19);

max,4=0.080m, (meter) for Case B,
(5-21)
=0.152m, (meter) for Case C.
(5-21) results in rather large undulation errors, so that we should bear in mind not to
_bring any systematic errors in the terrestrial gravity data.
b. Data condition B
Under the data condition of B in Table 13, the point truncation error is estimated
as

My, 5 =0. 018 my, 0. 034" 11y, +0.040% 1y, (5-22)

for the error covariances of Case A. (5-22) estimates almost the same undulation errors
as (5-19), and this comes from the fact that the undulation errors due to gravity data
errors little increase even when the cap size becomes larger than 20° (see Figure 37).
Therefore, so far as concerning the undulation errors due to gravity data errors, the
data condition B is equivalent to the data condition A.
(3) Accurate Surface Gravity Surveys to be Required

In this section, we will study what kind of gravity surveys can derive block
mean gravity anomalies as accurate as those required in the previous section to compute
a geoid with a 10 cm accuracy. We have studied how to compute block mean gravity
anomalies from point gravity observations in 5-(1), i.e. the least-squares collocation
method. Block mean gravity anomalies are estimated by (5-14) and the errors of the
estimated block means are given by (5-16) on the basis of the known covariance function
of gravity anomaly. Let us make a simulation study based on (5-16) for various distri-
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butions of gravity observation sites. When we apply least-squares collocation, the average
of the signal, i.e. gravity anomaly in our case, should be zero. In other words, gravity
anomaly should satisfy the condition (5-2) by taking it into consideration that a block
mean is estimated from the gravity observations being inside and near around the block.
Then it should be recommended toapply least-squares collocation to both the residual
gravity anomaly derived by subtracting a satellite derived global gravity anomaly and
its block means, because the global gravity ancmaly is considered to be a kind of bias
term of gravity anomaly in a restricted region.

The covariance function of the gravity anomaly around Japan has already been
obtained in 4-(1), and an analytical function model (4-23) of the point residual gravity
anomalies has been proposed. Covariance functions being necessary for (5-16) are easily
obtained numerically by using the model function of the point anomaly covariance
(Heiskanen and Moritz, 1967, p. 277 ; Ganeko, 1978). The errors (5-16) depends only upon
the distribution paterns of gravity observation sites. They are independent of the gravity
anomalies. But the errors of gravity measurements contribute to (5-16) through the
error covariance C, (see (5-15)). Table 15 includes the estimation errors of block mean
gravity anomalies for 5/, 10/, 30’ and 1° blocks on the basis of the model residual anomaly
covariance function (4-23). The adopted blocks are square ones which have the same
areas as equiangular blocks of 5/ x5/, 10’10/, 30’/ <30’ and 1° x1° located at latitude 33°.
Three cases that gravity measurement errors fall on 0, 3 and 5 mGals are tested on the
assumption that the errors are independent of site of measurement; i.e. the error
covariance matrix C,, comprises only diagonal elements. The second column of Table
15 shows variances of block mean residual gravity anomalies for each block size. The
estimated errors of block means are listed in the column from the third to the sixth for
four kinds of distribution paterns of gravity observation sites. The third column includes
the average estimation errors (called representation errors) for the case that there is
only one gravity observation site in the block. The fourth column is for the case that
one observation site is located at the center of the block. The fifth and the sixth columns
are for the case that gravity measurements are carried out along lines, and such a case
is actually realistic in the sea gravity observations. The fifth column is for the case
that there is one series of gravity observation sites (we call it a profile observation)
along the ship’s track crossing the block at the center of it (see Figure 41a), and the
sixth column is for the case that there are two profile observations crossing the block
as shown in Figure 41b. T.S.S.G. (Tokyo Surface Ship Gravimeter) (Tomoda and
Kanamori, 1962; Tomoda et al., 1968; Segawa, 1970a, b; Fujimoto, 1976) provides us
with gravity data with an interval of 2 or 4 km at the normal velocity of survey ships.
If we take the functional shape of the anomaly covariance near origin into consideration,
we may note that 2 km spacing of sites in a profile observation is sufficient for estimating
5/ block means, and 4 km spacing is sufficient for larger blocks.
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Table 15 Estimation errors of block mean gravity anomalies computed by using the
least-squares collocation’ method under various distribution conditions of
gravity observation sites

: Block anomaly | Representation | One obs. site | One profile | Two profile | Random
Blog;%ze at the block
variance error center observation | observations | obs. error
km mGal? mGal mGal mGal mGal mGal
B=8.5 3093 6. 411 z 7 é 7 0.7 g
’ 7. .7 .1 1.2
5 block 81 6.2 2.6 L7 5
10’ block il o 3:2 1..5 3
B=50.9 2518 19. Sl) 10.5 52 1.9 0
, 20. 10.8 5.2 2.0 3
30" block 20.5 11.4 53 2.2 5
B=101.8 2215 gg i 14. 8 8.2 g 8 g
° . 5. 8.3 .
1° block 30.7 15.3 83 31 5
Track
Track
Track
Figure 41a One profile gravity observation Figure 41b Two profile gravity

along the track crossing a block
at its center.

observations along tracks
crossing a block.

Teble 15 shows that when we require the estimation error less than +5 mGals
for 10’ block and +2 mGals error for 30’ and 1° blocks, one profile observation is necessary
for 10’ blocks, two profile observations are necessary for 30’ blocks, and more than two
profile observations are necessary for 1° blocks. In other words, parallel profile gravity
observations are to be carried out every 10 naut. miles in an area where 10/ block mean
gravity anomalies are desired, and profile observations are necessary every 15 naut.
miles in the remaining area where surface gravity data are desired. Random gravity
measurement errors up to +5 mGals may be acceptable. The gravity surveys at sea
like above mentioned will make us possible to compute a marine gravimetric geoid with
a decimeter accuracy.

The performance of the gravity surveys described here requires a little time, cost
and effort. It should be noted that Table 15 is based on the anomaly covariance functions
derived from gravity anomalies in the region including rough gravity anomaly areas such
as trenches and islands-arcs. If we adopt the variance of world-wide average residual
gravity anomaly, 1620 mGal? (Table 11 of Tscherning and Rapp, 1974) in place of 3133
mGal? in (4-23). FEach value listed in Table 15 decreases by 30%. In this case, parallel
profile gravity observations carried out every 30 naut. miles can yield 1° block mean

gravity anomalies with a sufficient accuracy, +2 mGals, for our present purpose. When



NEW DETERMINATION OF A MARINE GEOID AROUND JAPAN 155

we carry out gravity surveys actually, it may be necessary for efficient surveys that we
examine beforehand the roughness of the gravity anomaly field in the areas to be
surveyed.

6. Summary and Conclusions

‘We have obtained a gravimetric geoid around Japan based on 30’ %30/ and 1°x1°
block mean gravity anomalies. The 30’ x30’ block data have been read from the published
gravity anomaly mapé around Japan, and the 1°x1° block data have been prepared by
taking averages of DMAAC global gravity data and LAMONT data. The gravimetric
geoidal heights have been computed from the terrestrial gravity data in combination
with a satellite-derived geopotential field: GEM-10 model. GEM-10 model is one of
the recent geopotential models and it comprises a geopotential coefficient set which is
complete up to degree and order 22. The radius of the cap area of Stokes’ integration
where terrestrial gravity data are used has been taken to be 20°. The most marked
features in the computed geoid (Figure 8) are seen along trenches, where there are
geoidal dents of more than 20 meters relative to GEM-10 global geoid. The geoidal
highs along islands-arcs are other marked features in the geoid.

‘We have made detailed investigations concerning various error sources accompanied
with our computation method of geoidal heights, and the reliability of the computed
geoid has been investigated from various points of view. Some of the altimeter data
taken by Geos-3 satellite have been compared with the gravimetric geoid, and the results
are seen in Table 1 and Figures 13~24. The r.m.s. difference of relative undulations
between altimetric sea surface heights and the gravimetric geoid is around 1.3 m, which
scatters in a range from 0.6 m to 1.9 m depending on the locations of the satellite tracks
and the dates of the satellite revolutions; i.e. at the early stage of the satellite, the
satellite positions were a little poorly determined.

Chapter 4 has been devoted to the investigations of error sources accompanied
with the geoidal height computation procedures in the former chapters and evaluations
of the actual possible errors of the computed geoid. The r.m.s. error of the computed
geoid undulations has been estimated to be 1.3 m in JHDGF-1 region (see Figure 4) and
to be 1.8 m outside the region. These error estimates are compatible with the comparison
results between Geos-3 altimeter data and the gravimetric geoid. The accuracy of
geoidal height differences (relative undulation error) has also been investigated. Such
relative undulation errors have a little meaning because some of error sources have long
correlation distances, and the relative undulation errors are differently evaluated from
the conventional point undulation errors.

Concerning the computed gravimetric geoid, we have estimated a relative undula-
tion error over 500km distance to be about 1.6m or 1.8m depending on the data
conditions (see Table 12). The relative undulation error decreases to around one meter
when the distance is 100 km. As we see in Tables 11 and 12, the errors of terrestrial
gravity data still form the biggest error source. The second big error source is formed
by the omission errors, and the third one is due to existence of the sea surface topography.



156 Y. GANEKO

We may conclude from the error investigations as made above that it is difficult for us
to obtain geoid undulations with an accuracy of one meter or less around Japan under
the current availability of the terrestrial gravity data near Japan. The geoidal map
obtained in the pressnt paper shows a general features of the geoid undulations around
Japan, especially at trenches and islands-arcs, and the geoid will be of use not only as
the first step to compute an accurate geoid but also in the better evaluations of three
dimensional positions of the satellite tracking stations and other astronomical observation
sites located in the region of the geoidal map, and moreover it will be of use as a cali-
bration field of other geoids, e.g. astrogeodetic geoids (Ono, 1974 ; Ganeko, 1976) and
Doppler results (Mori and Kanazawa, 1979).

There is a strong ocean current near Japan, which is called Kuroshio, and oceano-
graphers are very interested in deviations of the sea surface from the geoid (an equip-
otential surface) over the Kurcshio area. Unfortunately, the accuracy of the obtained
gravimetric geoid is insufficient at all to detect such deviations from the obtained geoidal
map. We understand some difficulties in the determination of the sea surface topography
over the Kuroshio area because of rougher geoid undulations over the area than the Gulf
Stream area, off east coasts of the United States.

Our second object in computation of gravimetric geoid consists in a 10 cm marine
geoid which can afford to make use of the satellite altimetry with the same order of
accuracy. In Chapter 5, we have obtained the data conditions for the terrestrial gravity
data to get a geoid (marine geoid) with an accuracy of 10 cm level, and we have known
that much more additional gravity surveys are necessary to get such an accurate geoid.
Inside and near the region (see Table 13) where a 10 cm geoid is desired, 10’ block mean
gravity anomalies with an accuracy of 5 mGals or better are necessary, and such a
condition will be fulfilled at sea by profile gravity observations along parallel ship tracks
located every 10 naut. miles. In the region where 30’ or 1° block mean gravity anomalies
are prepared (see Table 13), profile gravity observations should be carried out every 15
or 30 naut. miles depending on the roughness of the gravity anomaly field. The satellite
altimeter data (sea surface heights) can be used in the geoidal height computations
directly (Mather, 1973, 1974) or indirectly, i.e. in the form of gravity anomalies derived
from altimetric geoidal heights (Rapp, 1977a), and then the satellite altimetry may take
the place of the conventional gravity surveys at sea to some extent.

The existence of the sea surface topography causes difficulties in the definition
and the realization of the geoid, as an equipotential surface in the earth’s gravitational
field is not realized by the mean sea surface (schematically explained by Figure 40).
The gravity reduction errors both at sea and at land caused by the sea surface topography
result in geoidal height errors which are are not negligible(5-(5), Table 10). This situation
comes from the characteristics of the long wave-length variations of the sea surface
topography and the systematic errors of the land height systems caused by the sea
surface topographic heights at the base tide stations of the height systems. Physical
oceanography predicts relative sea surface undulations from an equipotential surface on
the basis of oceanographic data, but the oceanographic sea surface undulations do not
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necessarily agree well with the geodetic levelling observations along the coasts of conti-
nents (Sturges, 1967 ; Hammon and Greig, 1972). Therefore we cannot put too much
reliance upon the oceanographic sea surface topography at present, however we may be
able to use the oceanographic sea surface topography as the first approximation of the
true sea surface topography in the better gravity reductions. The gravimetric geoid
computed from the gravity anomalies reduced by using the oceanographic sea surface
heights will provide us with another sea surface topography in combination with 10 cm
satellite altimetry. Consequently it may be a new definition of the geoid. The new
sea surface topography and the new definition of the geoid will be used in the gravity
reductions again to compute a more accurate geoid which will provide us with more
accurate sea surface topography and geoid.
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APPENDIX A

Derivation of the Smoothing Parameter

The covariance between block mean gravity anomalies of blocks ¢ and gq is
given by

T@= Splsq 158§ ccondar o, (A-1)

GP(IQ

where Sp and Sy are the areas of op and aq, ¢/ is the angular distance between surface
elements dop and dag which are located in each block (see figure), and C(¢’) is the
anomaly covariance function which can be expanded into the series of Legendre functions
as equation (4-7). First, we perform a surface integration over block oq. Let P, be an
arbitrary point in block ¢p, and let ¢, and » be what shown in the figure, and we use
4-7). Then we write

Cgn = [} Crrda
]

= f} 0.2(dg) s”z—sl— SSPZ (cos 7)dayq. (A-2)
iz2 Q 7
Applying a relation among Legendre functions
Pi(cos 1) =P(cos ¢;) Pi(cos t)

1
+2 37 (—~1)™P(cos ¢) Prm(cos t)cos ma
m=1

and a equation for the surface element dog=sin ¢ df da (all notations of parameters are
self-explanatory in the figure) to the surface integration in (A-2) for a circular block
with the radius ¢,, we obtain

“o
‘S% S'§ Py(cos 7')daQ:%Z— SO Py(cos ¢)Py(cos £)sin ¢ dt

%0
= Py(cos gb])%%g P, (cos ) sin ¢ dt.
0

Using Sp=2=(1-cos ¢,), and setting

1

9o
B =m5 Pr(cos t)sin ¢ dl, BB

0

we get
Clpp) = ZZ}Z 0.2(dg)st*2 By Pi(cos ¢y).
Meanwhile we integrate C(¢,) over block or as

C = || C@odon,
P
ap
and we can repeat the same procedure as the integration over block g¢. Then we finally
obtain

C(g) = X 0*(dg)s** pit PuCeos )



which is equivalent to (4-14).
functions as follows :

Py (cos ¢y)

fi=

Tl

K73
tg
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The smoothing parameter (A-3) is expressed by analytical

JHDGPF-1 block mean gravity anomaly data for 1° x1° blocks and for four 30/ x 30/

blocks included in each 1°x1° block (see the figure shown below). Mean anomalies are

listed in the following order: dg, (1°x1° block); 4dg,, dg, dg, dg, (30’ x30’ blocks).

Anomalies are given in mGals based on JGSN 75 system.

the center points of 1°x1° blocks.

30~

%

a4

Listed positions are those of

LAT. LONG. 1°x1° 30" <30’ 30" %30

e/ o/ mGal mGal mGal
47 30 139 30 -1 -3
46 30 138 30 -2 =13
46 30 139 30 -9 — 8
45 30 137 30 2 —13
45 30 138 30 —10 —13
45 30 139 30 19 37
42 30 132 30 8 —42
42 30 133 30 11 —22
42 30 134 30 — 4 —22
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LAT. LONG. 1°x1° 30" xX30° 307 X307 30" X 30 30" X 30
° 7 ° 7 mGal mGal mGal mGal mGal
41 30 130 30 —21 —12 —42 —12 —17
41 30 131 30 —24 —42 —32 —12 -12
41 30 132 30 —22 —-32 —32 -12 —12
41 30 133 30 —13 =27 —17 —-12 3
41 30 134 30 . -2 -7 —-12 8 3
40 30 131 30 -3 -2 -7 -2 - 2
40 30 132 30 — 4 -7 — 5 — 4 0
40 30 133 30 5 2 — 2 4 16
40 30 134 30 22 -2 0 46 44
44 30 136 30 15 28 8 18 8
44 30 137 30 25 21 26 24 28
44 30 138 30 33 45 39 54 -7
44 30 139 30 44 41 58 18 58
43 30 135 30 -2 28 8 —12 —32
43 30 136 30 —17 -7 —22 —22 —17
43 30 137 30 24 23 32 20 23
43 30 138 30 20 39 5 23 13
43 30 139 30 1 -1 23 9 —28
42 30 135 30 —13 -~12 —12 -17 —12
42 30 136 30 2 8 - 2 8 -7
42 30 137 30 6 3 8 3 8
42 30 138 30 18 26 16 16 17
42 30 139 30 8 - 8 -5 -7 52
41 30 135 30 3 -7 3 8 8
41 30 136 30 3 8 3 3 - 2
41 30 137 30 -7 -2 -8 -11 -7
41 30 138 30 14 - 4 13 12 36
41 30 139 30 13 -1 5 29 18
40 30 135 30 23 4 10 44 35
40 30 136 30 13 9 ) 29 20
40 30 137 30 4 -7 1 9 11
40 30 138 30 5 9 -3 10 6
40 30 139 30 23 0 19 13 59
47 30 140 30 —11 — 8 —13 -8 —13
47 30 141 30 1 -3 7 - 8 7
46 30 140 30 1 —13 -3 7 12
46 30 141 30 12 7 7 37 -3
45 30 140 30 23 30 20 26 14
45 30 141 30 11 31 -7 31 -13
45 30 142 30 27 37 16 36 20
45 30 143 30 26 33 26 12 31
45 30 144 30 12 2 12 9 26
45 30 145 30 5 — 4 12 0 12
44 30 140 30 36 55 33 26 31
44 30 141 30 18 39 —17 34 17
44 30 142 30 39 33 32 47 44
44 30 143 30 28 12 29 34 36
44 30 144 30 24 31 —11 49 27
43 30 140 30 34 25 17 39 55
43 30 141 30 37 36 40 42 31
43 30 142 30 51 43 57 34 69
43 30 143 30 54 50 64 3 71
43 30 144 30 99 60 86 113 137
42 30 140 30 58 61 67 62 44
42 30 141 30 23 77 5 45 —-37
42 30 142 30 —31 —12 47 —131 —30
42 30 143 30 -~ 8 32 22 9 —96
42 30 144 30 —11 48 92 —105 —80
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LAT. LONG. 1°x1° 30" x 30 307 x 30 30" x 30 307 X 30
o/ ° 7 mGal mGal mGal mGal mGal

41 30 141 30 47 66 —26 97 50
41 30 142 30 —-122 —164 —133 —56 —134
41 30 143 30 —105 —55 —63 —164 —139
41 30 144 30 —153 —127 —167 —148 —172
40 30 140 30 67 57 73 64 73
40 30 141 30 116 90 107 111 157
40 30 142 30 18 32 —53 84 7
40 30 143 30 —58 —60 —93 —22 —57
40 30 144 30 —125 —173 -130 —127 —72
44 30 145 30 28 20 20 35 35
43 30 145 30 122 87 73 175 154
42 30 145 30 —41 35 —33 —83 —81
41 .30 145 30 -110 —134 —137 —126 —43
40 30 145 30 —14 —48 -4 —12 7
40 30 146 30 36 30 50 31 35
34 30 128 30 18 26 ) 11 26 11
34 30 129 30 18 — 2 33 25 14
33 30 128 30 9 7 10 7 10
33 30 129 30 26 20 26 29 29
32 30 128 30 25 22 25 29 26
32 30 129 30 23 25 28 17 21
31 30 128 30 21 30 5 31 18
31 30 129 30 29 11 33 27 44
30 30 129 30 34 30 34 35 37
39 30 130 30 8 -1 19 19 — 6
39 30 132 30 5 -1 5 4 11
39 30 133 30 26 16 49 23 16
39 30 134 30 35 35 15 34 56
38 30 130 30 -9 —11 —21 -11 9
38 30 131 30 9 -1 3 9 24
38 30 132 30 23 12 18 30 30
38 30 133 30 19 14 12 27 25
38 30 134 30 15 14 13 20 13
37 30 131 30 6 8 13 1 4
37 30 132 30 22 21 32 17 19
37 30 133 30 24 32 24 27 12
37 30 134 30 —- 1 4 — 7 -6 7
36 30 131 30 5 5 5 7 5
36 30 132 30 5 1 11 -3 10
36 30 133 30 21 25 7 28 23
36 30 134 30 0 18 4 —14 — 6
35 30 130 30 17 25 26 10 9
35 30 131 30 11 20 - 2 17 10
35 30 132 30 22 0 21 25 41
35 30 133 30 27 27 5 40 36
35 30 134 30 21 13 12 33 25
39 30 135 30 30 35 48 30 5
39 30 136 30 25 33 28 14 24
39 30 137 30 25 25 23 26 25
39 30 138 30 25 18 28 10 45
39 30 139 30 31 30 46 27 20

38 30 135 30 9 18 19 5 -5
38 30 136 30 17 12 15 4 37
38 30 137 30 31 33 28 55 9
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LAT. LONG, 1°X1° 30" X 30 307 X 30 307 X 30 307 X 30
° 7 ° 7 mGal mGal mGal mGal mGal

38 30 138 30 33 28 37 40 29
38 30 139 30 41 32 42 27 62
37 30 135 30 22 - 2 18 33 39
37 30 136 30 51 47 58 48 51
37 30 137 30 12 64 - 8 10 —20
37 30 138 30 15 22 9 10 19
37 30 139 30 52 27 46 66 70
36 30 135 30 — 2 0 - 2 6 -11
36 30 136 30 27 21 24 19 45
36 30 137 30 31 -3 49 29 47
36 30 138 30 59 50 71 58 57
36 30 139 30 69 72 87 44 75
35 30 135 30 8 16 -9 23 0
35 30 136 30 0 14 21 -19 —18
35 30 137 30 45 25 53 36 67
35 30 138 30 54 56 62 44 55
35 30 139 30 26 44 9 38 13
34 30 130 30 6 — 5 -3 9 22
34 30 131 30 15 10 18 24 8
34 30 132 30 9 27 23. —14 — 1
34 30 133 30 17 22 17 7 20
34 30 134 30 19 21 15 21 17
33 30 130 30 25 32 29 23 16
33 30 131 30 10 24 9 16 -7
33 30 132 30 3 -9 -6 5 20
33 30 133 30 29 18 31 43 25
33 30 134 30 36 43 25 41 34
32 30 130 30 31 33 27 41 23
32 30 131 30 —17 26 —22 — 8 —64
32 30 132 30 —10 —17 32 —54 -2
32 30 133 30 42 45 36 43 46
32 30 134 30 3 36 7 4 —34
31 30 130 30 36 38 31 44 33
31 30 131 30 —41 3 —92 — 3 —71
31 30 132 30 —28 —64 0 —35 —14
31 30 133 30 —13 -7 -30 —19 —10
31 30 134 30 —12 —31 —-32 6 9
30 30 130 30 37 37 38 35 39
30 30 131 30 —41 —18 —51 —60 —35
30 30 132 30 - 4 4 —19 5 — 8
30 30 133 30 13 - 2 18 12 24
34 30 135 30 32 7 20 29 71
34 30 136 30 37 33 4 75 36
34 30 137 30 24 36 33 7 19
34 30 138 30 23 31 43 13 7
34 30 139 30 60 47 46 79 67
33 30 135 30 52 52 102 9 46
33 30 136 30 —15 47 —36 —42 —27
33 30 137 30 —13 —12 -7 —28 -3
33 30 138 30 14 22 ~ 5 — 8 47
33 30 139 30 85 55 91 64 128
32 30 135 30 —52 —34 —50 —61 —64
32 30 136 30 —18 —34 -5 —37 5
32 30 137 30 5 8 6 17 —10
32 30 138 30 16 -7 25 15 30
32 30 139 30 103 73 143 62 135
31 30 135 30 — 4 -38 —26 19 31
31 30 136 30 24 8 26 31 31
31 30 137 30 16 9 10 20 27
31 30 138 30 43 30 63 32 47
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LAT, LONG., 1°%1° 30" X 30 30" X 30 30" X 30 30" X 30
e/ ° 7 mGal mGal mGal mGal mGal
31 30 139 30 94 64 100 88 122
30 30 137 30 31 30 31 31 31
30 30 138 30 37 31 39 34 44
30 30 139 30 89 64 112 73 106
39 30 140 30 64 55 75 56 70
39 30 141 30 130 125 148 103 145
39 30 142 30 53 106 5 99 1
39 30 143 30 —67 —45 —171 —55 —98
39 30 144 30 —74 —99 —35 —130 —34
38 30 140 30 70 62 75 60 84
38 30 141 30 115 108 124 110 120
38 30 142 30 52 88 18 78 25
38 30 143 30 -T2 —30 —112 —24 —124
38 30 144 30 —69 —132 —25 —105 —15
37 30 140 30 105 82 113 89 135
37 30 141 30 96 99 106 86 92
37 30 142 30 -9 57 - 2 - 6 —83
37 30 143 30 —~122 —83 —132 —150 —122
37 30 144 30 —41 —173 —28 —50 —13
36 30 140 30 115 112 122 130 96
36 30 141 30 7 55 12 17 —57
36 30 142 30 —116 —68 —133 —98 —164
36 30 143 30 —92 —158 —88 —102 -22
36 30 144 30 4 —24 27 6 8
35 30 140 30 32 38 52 35 3
35 30 141 30 -80 -3 —176 —76 —168
35 30 142 30 —125 —134 —66 —210 —91
35 30 143 30 —10 —29 — 1 —20 9
35 30 144 30 21 22 17 25 20
39 30 145 30 0 —14 9 -1 6
39 30 146 - 30 20 24 29 13 14
39 30 147 30 15 25 15 13 5
38 30 145 30 4 4 7 0 4
38 30 146 30 9 10 12 7 7
38 30 147 30 — 1 9 -5 4 —11
37 30 145 30 -9 —12 -3 —15 — 5
37 30 146 30 -1 2 3 -2 - 6
37 30 147 30 —16 — 3 -13 —21 —25
36 30 145 30 2 6 — 9 6 5
36 30 146 30 2 5 5 -1 -1
36 30 147 30 -1 3 1 -3 -3
34 30 140 30 13 —31 —21 81 22
34 30 141 30 -205 —136 — 247 —159 —279
34 30 142 30 —104 -207 —48 —148 -13
34 30 143 30 7 —11 3 2 33
34 30 144 30 30 27 23 45 24
33 30 140 30 138 167 104 148 135
33 30 141 30 —107 —33 —257 52 —186
33 30 142 30 ~101 —185 —-18 —204 6
33 30 143 30 M 22 27 56 31
33 30 144 30 23 34 20 23 14
32 30 140 30 102 143 105 111 48
32 30 141 30 —55 80 —143 27 —184
32 30 142 30 —92 —176 -30 —154 -9
32 30 143 30 31 37 28 34 24
32 30 144 30 13 16 10 14 10
31 30 140 30 60 79 30 91 40
31 30 141 30 —29 39 —116 42 —-81
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LONG, 1°x1° 30" X 30 30" X 30 30" X307 30" X 30"
° 7 mGal mGal mGal mGal mGal
142 30 —147 —214 —45 —238 —89
143 30 35 38 28 40 33
144 30 13 14 11 16 11
140 30 87 99 66 117 65
141 30 15 51 —51 60 1
142 30 —146 —216 —80 —168 —121
143 30 37 40 42 18 49
144 30 22 24 13 31 19
123 30 5 0 1 10 10
124 30 13 7 15 12 17
123 30 28 25 25 32 32
124 30 35 24 26 37 55
122 30 24 39 38 3 16
123 30 38 43 47 3B 26
124 30 22 44 17 11 16
127 30 21 20 24 20 20
128 30 27 20 31 21 38
129 30 29 46 31 33 8
125 30 19 11 15 21 29
126 30 31 19 22 53 31
127 30 24 17 18 26 34
128 30 38 38 42 47 24
129 30 14 9 21 38 —14
125 30 46 28 50 42 63
126 30 44 58 33 47 38
127 30 49 38 44 56 56
128 30 33 52 26 43 10
129 30 —45 -13 ~61 —66 —42
125 30 38 61 33 43 14
126 30 32 38 43 29 19
127 30 45 58 45 43 35
128 30 - 34 —36 3 —38
129 30 —62 —48 —68 —72 —61
125 30 26 11 20 32 42
126 30 —16 42 4 —25 —86
127 30 —-35 —51 —29 —34 —26
128 30 —5b8 -7 —86 —81 —58
129 30 —-17 —65 —16 —11 24
122 30 —27 —27 33 —79 —34
123 30 47 40 30 49 71
124 30 36 38 49 46 9
122 30 —64 —29 —124 -3 —101
123 30 —58 —43 -2 —111 —74
124 30 —54 —18 —31 —74 —94
121 30 2 8 5 1 - 5
122 30 4 —41 19 27
123 30 —-29 —101 -30 —14 31
124 30 0 —17 —19 21 15
120 30 —-10 -3 -5 —29 -3
121 30 12 — 3 13 —18 56
122 30 11 0 34 —10 18
123 30 3 — 6 21 —25 22
124 30 22 23 27 18 21
120 30 —26 —28 -12 —24 —40
121 30 38 —45 105 —16 109
122 30 - 6 13 —15 2 —23
123 30 3 —22 21 — 8 21
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LAT. LONG. 1°x1° 30" x30 30" X307 30" X 30 30" X 30
e/ o/ mGal mGal mGal mGal mGal
24 30 125 30 8 48 —22 —13 19
24 30 126 30 -1 —30 9 54 =37
24 30 127 30 —53 —27 —70 —84 —31
24 30 128 30 -9 —34 - 7 -5 13
24 30 129 30 26 16 34 23 30
23 30 125 30 —50 —25 —18 —93 —63
2330 126 30 -39 —56 —57 —31 —10
23 30 127 30 1 —21 — 1 6 19
23 30 128 30 8 -7 15 13 11
23 30 129 30 21 21 22 17 25
22 30 1256 30 2 —19 —10 20 17
22 30 126 30 8 2 6 10 15
22 30 127 30 9 5 9 5 17
22 30 128 30 16 14 11 23 17
22 30 129 30 10 17 14 9 0
21 30 125 30 19 24 18 17 15
21 30 126 30 14 14 11 16 14
21 30 127 30 15 1 13 17 18
21 30 128 30 20 17 12 27 25
21 30 129 30 4 7 -1 9 1
20 30 125 30 17 12 17 21 18
20 30 126 30 14 13 10 21 10
20 30 127 30 10 10 10 10 10
20 30 128 30 11 12 12 10 10
20 30 129 30 9 10 10 9 6
29 30 130 30 —33 19 —43 —14 —93
29 30 131 30 —56 —76 —41 —65 —41
29 30 132 30 -1 2 2 -11 3
29 30 133 30 21 11 16 5 53
28 30 130 30 ~71 —61 ~72 —64 —87
28 30 131 30 -5 —-30 —10 —19 40
28 30 132 30 46 17 29 63 74
28 30 133 30 11 1 — 1 44 1
27 30 130 30 —72 —61 —85 —81 —61
27 30 131 30 —10 —22 18 —32 -6
27 30 132 30 16 48 23 -1 -5
27 30 133 30 1 13 -7 -2 -3
. 26 30 130 30 - 8 —57 —16 1 42
26 30 131 30 22 2 8 58 20
26 30 132 30 -1 - 4 — 4 1 2
26 30 133 30 -1 3 — 1 -2 )
25 30 130 30 11 - 8 —10 30 31
25 30 131 30 8 16 32 14 —29
25 30 132 30 28 67 67 —29 7
25 30 133 30 0 22 —13 22 —32
24 30 130 30 35 40 55 25 21
24 30 131 30 43 62 12 47 51
24 30 132 30 - 6 —29 —36 21 19
23 30 130 30 11 23 —13 28 6
23 30 131 30 10 5 19 6 9
23 30 132 30 7 16 9 2 1
22 30 130 30 — 4 4 -7 — 4 - 8
22 30 131 30 -1 -1 1 — 4 0
22 30 132 30 6 2 10 3 10
21 30 130 30 2 -3 2 4 5
21 30 131 30 5 3 7 5 5
21 30 132 30 5 6 4 4 4
20 30 130 30 5 5 5 5 5



170 Y. GANEKO

LAT. LONG. 1°X1° 30" x 30’ 30’ X307 30" %30 30" X 30

° ! e/ mGal mGal mGal mGal mGal
20 30 131 30 5 5 5 5 4
20 30 132 30 5 5 5 5 5
19 30 122 30 4 23 —18 39 —30
19 30 123 30 8 3 12 3 16
19 30 124 30 17 13 12 24 19
18 30 122 30 —25 19 —61 7 —67
18 30 123 30 1 —13 27 —31 23

18 30 124 30 32 39 27 36 28
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Abstract

Trigonometric series for approximate positions of some objects in the solar system are
developed. These give geocentric positions of the Sun and the Moon and heliocentric and geo-
centric positions of the inner planets with a precision of 0/1, which corresponds to the precision
in the Nautical Almanac,

Key Words : trigonometric series-coordinates of celestial objects

1. Introduction

The spread of electronic calculators has made it quite easy to carry out some
astronomical calculations such as obtaining the altitude and azimuth of a celestial object
from its right ascension and declination. In that case, the right ascension and declination
still have to be obtained from an almanac, interpolated if necessary and put into the
calculator as data. Some calculators, however, have an ability of programmed calculation
as well as a fairly large number of memories. With such calculators, if a proper formula
giving the position of the celestial object is available and programmed, the user will be
able to obtain the position by himself. And if it is combined with the program calcula-
ting the horizontal coordinates, the altitude or the azimuth will be obtained only by
giving the time for which the user desires to calculate them.

In order to provide users of such calculators or mini or personal computers with
compact formulas giving approximate coordinates of the objects in the solar system, some
trigonometric series have been developed. They consist of the series for geocentric
positions of the Sun and the Moon both in ecliptic and equatorial coordinate systems and
the heliocentric ecliptic and the geocentric equatorial coordinates of the inner planets.

The formulas are intended to be correct for the years 1970 to 2030, to the precision
of 0/1 which is the same as in the Nautical Almanac published by the Hydrographic
Department of Japan.

As for the outer planets, the present ephemerides are computed by a numerical
integration and there exists no analytical formula to represent the result of the integration.
This makes the derivation of similar trigonometric series for the outer planets somewhat
difficult. However, a new method valid in such a case is being developed and the series
will appear in a coming volume of this report.

*  Astronomical Division
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2. Method of Derivation of the Series

Series for the geocentric longitude, latitude and distance of the Sun and the helio-
centric longitudes, latitudes and radius vectors of the inner planets are first derived,
based on the respective Tables by Newcomb (1895a, 1895b, 1895c, 1898) amended by Ross
(1917) for the elements of Mars. Also those for the longitude, latitude and horizontal
parallax of the Moon are derived from Improved Lunar Ephemeris (Eckert, Jones,Clark,
1954), etc. In deriving the series only the terms of the perturbations greater than 17
or the equivalent amount for radius vector are taken into consideration. The results are
Fourier series with numerical coeflicients and arguments consisting of linear combinations
of the mean anomalies of planets and so on.

Then,the transformations from heliocentric to geocentric coordinates for the planets
and from ecliptic to equatorial coordinates are carried out. Further the effects of nutation
and aberration are considered. Throughout these procedures, all the calculations are
carried out retaining the form of Fourier series, thus giving apparent geocentric equa-
torial coordinates also as Fourier series. The operations have been performed using a
Fourier series processor for computer developed by the author. At the final stage the
arguments are reduced to the form of a7-+b by substituting numerical values for the
mean anomalies and so on.

3. Structure of the Series
i) General
The formulas give the coordinates of the celestial objects at any time referred to
the ecliptic or equator and the equinox of dafe. As for the rectangular coordinates of
the Sun, those referred to the equator and equinox of any epoch can be also obtained.
T is the desired time for which the position is to be calculated, measured from
J2000.0 in Julian ephemeris centuries, or

o _JED —2451545.0
36525 ’

JED being the Julian ephemeris date of the desired time.

In the terms with coefficient multiplied by 7, the cosine function is not printed
but replaced with double commas (,,) to show it is the cosine function having the same
arguments as immediately above.

ii) Sun

The series for geocentric ecliptic coordinates are given in Table 1. They are
referred to the mean equinox and do not undergo aberratoin. The latitude is zero with
the present precision. In order to get apparent longitude, —0°0057-+0°0048 cos (1934° 7'+
145°) must be added to the mean longitude.

In Table 2, the series for apparent right ascension and declination are shown. Related
to the right ascension of the Sun, Greenwich mean and apparent sidereal times are given by

GMST=12"+UT +an
and
GAST =122 + UT +an+p
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respectively, where UT is the universal time,
am = 18169735 2400005130 7"

and

Table 1.
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0.0005 Co0S ¢
4 C0S (
4 Cos (

DISTANCE

AU

1,000140 cO0S
0.016706 (0S
427

13
3
1
1

9
1
-]
]
5
5

¢0s
cos
cos
cos
c0s
cos

ascension and declination

H

+ 0.00003 C0S (
3 CoSs (
3 €08 (

DECLINATION

+
+

R R SR R BRI AR B AR B BE BE BE 2 BN BE N BE N B IR B J

o

23,2643 COS
1277
0,3888 (08

127
3886 €0S

LRV RV RV RV RV R -1

(
4
(

P e e R e e e R e e e e R e D o e

173
(Latitude is zero)
] . L]

2281 T+ 221 )
29930 T ¢ 48 )
31557. T + 161 )

o e
( 0 T + 0
( 35999,05 T + 177,53
,e
( 71998 T + 175
( 445267 T + 298
( 32964 T + 68
¢ 45038 T + 164
( 22519 T + 233
( 33718 T + 226
9 °
3 T + 296 ]
29930 T + 48 )
31557 T + 161 )
L) o
36000476967 + 19044602 )
.
172 T ¢+ 12494 )
’
71999482 T + 18799 )
',
108002,3 T + 211e4 )
‘e
72003 T+ 34 )
144001 T + 209 )
107999 T + 186 )
180004 T + 232 )
37935 T+ 65 )
35997 T + 345 )
68965 T ¢+ 78 )
3036 T + 123 )
481268 T + 128 )
35982 T + 121 )
36020 T + 80 )
409266 T + 287 )
13482 T 4 293 )
9037 T + 332 )
180000 T + 206 )

In Table 3, the series for equatorial rectangular coordinates are shown. The

coordinates are free from aberration and are referred to the mean equator and equinox

of date.

However, the series give those referred to the equator and equinox of any

epoch, if —1°3963 ¢ is added to the arguments of cosine functions, r being the time

interval from the epoch to the desired time in Julian ephemeris centuries.
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Table 3. Sun: Equatorial rectangular coordinates

X AU ° °
+ 0.,000096 €OS ( 107999 T + 186 )
AU e ° + 32 COS (35997 T + 165 )
+ 0,999860 €0S ( 36000,7696T + 280,4659 ) + 28 C0S ( 481268 T + 128 )
+ 25063 0§ ( 1,720 T + 102,941 ) + 23 ¢0S ¢ 3036 T+ 123 )
- 63T ’e + 20 €OS (9037 T+ 334 )
+ 8354 C0S ¢ 71999,82 T # 277,99 ) + 14 COS ( 35982 T+ 121 )
- 217 ’e + 14 C0S (346020 T+ 80 )
+ 105 €05 ( 107999 T+ 276 ) + 13 ¢0S ( 13482 T+ 293 )
+ 35 ¢O0S ( 35997 T+ 75 ) + 9 c0S ( 58520 T+ 279 )
+ 31 €OS ( 481268 T o+ 218 ) + 9 ¢OS ( 68965 T+ 78 )
+ 26 €OS ( 3036 T+ 213 ) + 6 ¢0S ( 2282 T o+ 324 )
+ 21 €08 (9037 T+ 246 ) + 6 €OS ( 29928 T+ 125 )
+ 16 €0S ¢ 35982 T+ 211 ) + 6 €0S ¢ 101930 T+ 326 )
+ 16 €0S ( 36020 T+ 170 ) + 6 €0S ( 39035 T+ 30 )
+ 14 €05 (13482 T+ 23 ) + 6 €OS ( 32966 T o+ 174 )
+ 10 ¢0S ( 58520 T+ 9 ) + 6 €0S (45039 T + 345 )
+ 9 €OS ( 68965 T + 168 ) + 6 €OS (26962 T o+ 216 )
+ 7 ¢0S (2282 T+ 54 ) + 5 c0S ¢ 81038 T+ 175 )
+ 7 €0S ( 101930 T+ 56 ) + 4 €OS ( 36156 T+ 38 )
+ 7 €08 ( 29928 T+ 35 ) + 4 COS ( 35846 T+ 163 )
+ 6 €OS (32966 T+ 261 ) + 4 €0S ( 33720 T+ 59 )
+ 6 €OS ¢ 39035 T+ 120 ) + 4 €OS ( 38281 T o+ 142 )
+ 6 COS ( 26962 T + 306 )
+ 6 €OS { 45039 T+ 75 ) 7
+ 6 C0S ¢ 81038 T o+ 265 )
+ 5 ¢0S ( 36156 T+ 128 ) AU ° °
+ 5 C0S ( 35846 T + 253 ) + 04397721 €08 ¢ 36000,7696T + 190,4659 )
+ 4 ¢Os ( 33720 T+ 149 ) - 2087 ’
+ 4 cOS ( 38281 T + 232 ) + 9970 QS ¢ 1,72 T + 12.9¢ )
+ 4 €COS (6071 T o+ 323 ) - 307 '
+ 4 €O0S (65931 T+ 58 ) ) 3323 €0S ( 71999.82 T + 187,99 )
+ 4 ¢0S ( 67558 T+ 172 ) . 10T ’
+ 4 C0S ( 4bke T + 209 ) + 42 €05 ¢ 107999 T + 186 )
+ 14 €0S ( 35997 T + 165 )
Y + 12 €08 ( 481268 T+ 128 )
+ 10 c0S (3036 T+ 123 )
AU ° ¢ + 8 c0S ¢ 9037 T 4 334 )
+ 0,917354 ¢OS ¢ 36000,76967 + 190,6659 ) + 6 ¢0S ( 35982 T o+ 121 )
+ 91T Ny + 6 €OS ( 36020 T+ 80 )
+ 22995 €05 ( 1,720 T+ 12,941 ) + 6 €OS ¢ 13482 T + 293 B)
- 56T s + 4 €OS ( 58520 T o+ 279 )
+ 7666 €OS ( 71999.,82 T + 187,99 ) + 4 COS ( 68965 T+ 78 )
- 197 ’?
iii) Moon

The series for the Moon are given in Tables 4 and 5. Both the ecliptic and equa-
torial coordinates are referred to the true equinox of date and suffer aberration, though
it is very small.

iv) Mercury, Venus and Mars

The series for these planets are listed in Tables 6 through 11. The heliocentric
coordinates are referred to the mean equinox of date and do not suffer aberration. Series
for apparent right ascension, declination and geocentric distance are not given for these
planets because they are too lengthy. Instead, the series giving the geocentric equatorial
rectangular coordinates are shown. They are referred to the true equator and equinox
of date and suffer aberration. Therefore the apparent right ascension and declination
are obtained directly by

-z
VXY

R.A.=tan"! }1; and - Dec. =tan"!

Also,
d= VXFXYi+Z%

gives the geocentric distance, though it is not the true distance but suffering aberration.
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SERIES FOR COORDINATES OF SOLAR SYSTEM OBJECTS

Table 4.
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Table 5.

RIGHT ASCENSION
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+ D.41925
16358

191

8494
7104

&Y
7048
4Y

4389
1818

21
1795
21

1424
1235
778
773
743
392
383
381
355
348
345
306
305
295
273
268
232
223
203
203
160
159
154
149

cos
cos

cos
cos

oS

cos
cos

cos

cos
cos
os
cos
cos
cos
cos
cos
cos
cos
oS
cos
cos
Ccos
Cos
€os
Cos
cos
cos
cos
cos
cos
Cos
cos
cos
cos
cos
Cos
cos
tos
cos
Cos
Cos
cos
Cos
<os
<os
cos
cos
cos
Cos
cos
¢os
cos
€os
cos
€oSs
cos
cos
{os
€os
cos
¢os
cos
oS
<os
cos
Cos
cos
cos
<os
€os
cos
cos
cos
cos
cos
€os
Cos
cos
€os
cos
€os
cos
€os
cos

( 477198,868 71
{ 962535,762 1
s
( 413335,35 7
( 1934414 7
s

¢ 964469,90 T

~
~

( 890534,22
{ 485336,89

(1639734,63

¢ 954397,74
(. 35999,05
¢ 48727140
(144166848
¢ 96640440
¢ 43863,5
( 5492004
( 377336,3
(1367733,1
(1925071,5
(13758711
( 9606016
( 854535,2
(1927005,7
( 441199,8
(. 73935,7
¢ 4452671
(1853070,0
( 88860041
¢ 513197.9
(1916933,5
( 55113445
¢ 72001,5
(13778053
¢ 75870
(1855004
(1928940
(1443603
(1447873
(2402270

( 489205
(1303870
(1918868
(1431597
(1449807
(2404205
(1026399

¢ 826671

( 449334

( 998535

( 926537

¢ 926533
(2330269
(8138

¢ 31932

¢ 483403
(1437800

(- 3868

( 481266

¢ 411401
¢1331734
(1844932

< 133
(1781068

( 541062

( 898672
(1028333
(1365799
(2406139

( 918399
(1403736
(2332203
(1511736

( 585199

( 99863
(1339872
(1379739

( 922466
(1513670
(1817071

( 818536
(1451741
(1475734
(2338407

( 990397
(1930874

~ o~
B B R R R e R e e R I R e R B R e R I e R R B R R e e R R B R R e R R e R e B R e R e I B R R R I I B e R R RN N

+
+

-

+ +

+

B i I e S e i S e R i I e b b S S S S R R I S I SR R S e Y

°

444963
1664633

10474
324496

41459

145,470
211.67

301.460

179,93
87453
8646

17646

27645

12442

24549
13.2

280,7
63.3

26744

29147

148,2

29842
4744

345,9
2749
423
9047

22245
7646

12049

110,49

1423
41

277

173
52

108

198

142

246

312

315

343
73
21

111

188

344

169

323

177

257

107

337
67

200

205

136

283

M e e N M A A M W M M S W e e M e e e e S A e e e A e e e S S A e e e A S e e S A A M A S A s A N e et A S A i e e S et

Y. KUBO

B I i S e (T T R o e e kT 2 T LIk ok 25 a2 T i O A o A R A S

AN A A NN RN AN RN A WA A A NN AN A WA WD S SR EESERNENLPVANVN UL VUVTUIVIVIO O OO D O 08 O =~ =~~~ ~J 00 00 GO 00 08 09 0

cos
cos
cos
cos
cos
cos
cos
cos
Cos
<os
cos
cos
cos
cos
€os
€os
¢os
€os
oS
<os
cos
cos
oS
oS
cos
cos
cos
<os
cos
cos
cos
cos
cos
€os
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
<os
Cos
cos
cos
Cos
<os
<os
€os
cos
cos
cos
o8
cos
cos
cos
cos
cos
cos
cos
€os
cos
cos
oS
cos
cos
tos
cos
cos
€os
cos
€os
{os
cos
cos
cos
€os
cos
€os
cos
cos
oS
cos
€os
cos
Cos
€os
€os

( 71998
( 341337
(1000469
(1036471
(2394132
(1923137
( 109935
{ 928471
(2889541
(2340341
( 401329
(2815606
(2879469
( 108001
(1856938
(2887607
( 517269
(1407803
(2881403
{ 900606
( 952464
(2817540
( 34065
{ 37933
( 852601
{ BB6666
( 475265
(1373937
(1267871
(1920802
(2266405
( 587134
(2891476
( 547266
¢ 10072
( 473331
(1341806
(1405670
(1503598
(1819005
( 970674
(1789206
( 858602
¢ 521336
(2396067
(1477668
(1403732
{ 405197
(28074638
¢ 405201
( 485333
¢ 37937
(1301935
( 27864
( 972608
(1034537
( 790672
{ 958667
(1409737
{ 924599
(2342275
(2412343
(3366740
(1988935
{ 519203
(1851136
(1411870
(1515604
(2408073
(2268339
(2410408
(3364806
(1908795
¢ 111869
(1445939
¢ 523270
(2400336
(2743604
(1791141
(1914999
(2258267
( 994468
( 449338
(1745069
(1861208
(2294270
( 349472
(1779134
(1990869
(1961071
(1889072
(1842998

B e o e R e B B e e I B T B B B B B B B I B B B B R I B B R R R R e o B R B R B B B B B B B I B i Tl B e e e B e B B e R e B R R R e e |

Moon : Apparent right ascension and declination
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SERIES FOR COORDINATES OF SOLAR SYSTEM OBJECTS

Table 5.

H
0,00002 Cos

Moon : Apparent right ascension and declination (Continued)
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Table 6.

LONGITUDE

°

252.2502 + 149474,0714 T
L] a2

+ 23,4405

0.5258
1796
1061

850
760
256
230
81
69
52
23
19
11

O T I Tk 2 I A S I

-
WiW SO QO

Table 7. Mercury:
X
AU .

+ 04999860 €0S ( 36000,76947T
+ 377489 CO0S ( 149474,07147
+ 118956 €0S ¢ 1455617
+ 127 I xs
+ 38402 €0S ( 298944,587 T
+ 25063 €0S ¢ 1.720 7
- 637 ’’
+ 8354 €OS ( 71999,82 T
- 2171 4
+ 5860 €OS ( 448419,10 7
+ 2068 COS ( 149470,96 71
+ 1414 €0S ( 149471.,70 T
+ 1060 €OS ¢ 597891.6 T
+ 446 €OS ( 0,8 T
+ 211 €OS ( 747364,1 T
+ 144 €0S ( 298944,2 T
+ 141 €0S ( 298943,5 T
+ 105 €0S ( 107999 T
+ 45 COS ( 896837 T
+ 42 €0S ( 34067 T
+ 42 €OS ( 37935 T
+ 35 ¢0S ( 35997 T
+ 31 €COS ( 481268 T
+ 26 COS ( 3036 7
+ 25 COS ( 262947 T
+ 22 €05 ( 44B417 T
+ 21 €05 (9037 ¥
+ 16 €OS ( 448416 T
+ 16 €OS ( 77473 T
+ 16 €OS ( 147540 T
+ 16 €0S ( 151408 T
+ 16 €O0S ( 35982 T
+ 16 COS ( 36020 T
+ 14 €OS ( 13482 T
+ 10 €05 (1046309 T
+ 10 €08 ( 58520 T
+ 9 €0S ( 68965 T
+ 9 €0S ( 412420 T
+ 8 €OS ( 113475 T
+ 8 €OS ( 149473 T

2371
249818
67

cos
cos
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cos
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cos
Cos
€os
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€os
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cos
cos
cos
Cos
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(
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(
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(
(
(
(
(
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(

Mercury

149472451537

’
298945,031

448417,55
298945,77
59789041
14947343
44841843
597890,8
747362.6
747363
1
896835
896836
6356

(1046308

¢

32437

( 143403
( 155828
(1046308
Cos ( 143117
€os ( 181909
€os ( 123392
CoS ( 448419

’
T

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

+
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8447947 )
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137.84
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6440
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°

280,4583 )
252,2228 )
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102.941

277499
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97434
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23144
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264
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23
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194

)
)

- e e N A W N A N e e e N N A A N e N NS A N e Nl N N s N

+
+
+
+
+
+
+
%+
+
+
+
+
+
4
+
+
+
+
+
+
+
+

4+ 1 + 3 41 4+ 4+ +4+ 44+ ++

LATITUDE
o o
67057 C0S ( 149472.886 7
177 ry
144396 C0S ( 037 1
5T ’
1.3643 C0S ( 298945440 7
57 ‘s
003123 C0S ( 448417492 7T
753 €0S ( 597890.4 T
367 C0S ( 149472414 T
187 €0S ( 747362,9 T
SO0 €C0S ( 298945 T
47 CoS ( 896835 T
28 C0S ( 448419 T
23 C0S ( 298946 T
20 COS ( 597891 T
12 €0S (1046308 T
9 C0S ( 747364 T
9 €0S ( 448417 T
S €0S ( 149474 T
3 CoS ( 896836 T
RADIUS VECTOR
AU .
0.395283 €O0S ( o T
27 Iz
78341 €0S ( 149472,515 7
87 e
7955 €0S ( 298945,03 T
27 g
1214 €0S ( 648417,55 7
218 ¢0S ( 597890,1 T
42 €0S ( 747363 T
6 €0S ( B96835 T

: Heliocentric longitude, latitude and radius vector
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346339 (¢OS

327
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29928
143118
155830
32966
39035
26962
45039
81038
1936
1933
36156
35846
72000
33720
38281
597889
65931
6071
67558
4444

B e e B T e R e R R e e e R

36000476967
,
149476,07147
r’

1.556 T

>
298946,587 T
,’

1.720 7

’
169472,886 T
r

71999.82 T
’e

0,37 71
448419,10 7

£ IR S SR N0 I S R A R B I IR S R A 4

+

»
190,4583
162,2228
167,452
336,995
124941
293,894
187,99

299412
151,77

N s N N N N N

A A N A N N e N N A N N N N N s s

)
)



SERIES FOR COORDINATES OF SOLAR SYSTEM OBJECTS 179

Table 7. Mercury: Apparent geocentric equatorial rectangular coordinates (Continued)

AU ° ° z
+ 0.001897 €0S ( 149470,96 T + 187,34 )
+ 1870 €OS ( 298945.40 T + 108,71 ) AU, ° °
+ 1297 €0S ( 149471,70 T + 245,59 ) + 0,397721 €05 ¢ 36000,7694T + 190,4583 )
+ 973 €0S ( 597891,6 T + 326,6 ) - 2087 ,e
+ 409 ¢0S ¢ 0.8 T + 109,2 ) + 150156 €0S ( 149474,07147 + 162.2228 )
+ 285 €OS ( 448417,9 T 4+ 283,5 ) - 80T ’
+ 193 €O0S ( 747364,1 T+ 14144 ) + 47318 €05 1,556 T ¢ 167,453 )
+ 132 €0S ( 298944,2 T + 60,4 ) - 20T ,e
+ 129 €0S ( 298943,5 T+ 2.1 ) + 42395 €OS ( 149472,886 T + 113,89 )
+ 101 €0S ( 149472 T+ 56 ) + 157 ’e
+ 96 ¢OS ( 107999 T + 186 ) + 15275 €0S ( 298946,587 T + 336,996 )
+ 52 ¢0S ( 597890 T+ 98 ) - 7T ,e )
+ 47 €O0S ( 34067 T o+ 136 ) + 13360 ¢0S ¢ 0,371 T + 119,124 )
+ 41 ¢0S ( 896837 T + 316 ) + 6T ,e
+ 32 ¢0s ( 35997 T + 165 ) + 9970 €OS ( 1,72 T + 12,94 )
+ 29 ¢0S ( 37935 T + 65 ) - 307 ,e
+ 28 €0S ( 481268 T + 128 y + 4393 €OS ( 298945.,40 T + 288,66 )
+ 23 ¢0S ( 3036 T o+ 123 ) + 3323 .¢0S ¢ 71999.,82 T + 187,99 )
+ 23 C0S ( 262947 T+ 46 ) - 10T Y
+ 20 €0S ( 448417 T o+ 235 ) + 2331 €0S ( 448419,10 T + 151,77 )
+ 20 ¢0S ¢ 9037 T+ 334 ) K 823 ¢0S ( 149471,0 T + 187,3 )
+ 18 €0S ( 147540 T + 107 ) + 658 €05 ( 448417,9 T + 103,5 )
+ 15 €O0S ¢ 448416 T+ 177 ) + 562 €0S ( 149471,7 T + 245,6 )
+ 15 €OS ( 77473 T+ 231 ) + 422 €0S ( 597891,6 T + 326,6 )
+ 14 €0S ( 35982 T+ 121 ) ¥ 232 €0S ( 149472,1% T + 235,7 )
+ 14 €0S (36020 T+ 80 ) + 177 €08 ¢ 0,8 T+ 109,2 )
+ 13 ¢0S ( 13482 T + 293 ) + 119 €0S ( 597890,4 T 4+ 278,3 )
+ 11 ¢0S ( 151408 T+ 37 ) + 84 COS ( 747364 T+ 141 )
+ 10 €0S ¢ 747363 T o+ 273 ) + 57 COS ¢ 298944 T %+ 60 )
+ 9 €0S (1046309 T o+ 131 ) + 56 €COS ( 298943 T+ 2 )
+ 9 ¢0S ( 58520 T+ 279 ) + 42 €O0S ( 107999 T + 186 )
+ 9 €0S ( 68965 T+ 78 ) + 37 ¢OS ( 37935 T+ 65 )
+ 8 €05 ( 113475 T+ 49 ) + 24 €OS ( 747363 T+ 93 )
+ 8 €O0S ( 412420 T+ 219 ) + 18 €0S ( 896837 T + 316 )
+ 7 €OS ( 149473 T ¢+ 104 ) + 16 €COS ( 298945 T + .50 )
+ 7 €0S ( 298945 T + 230 ) + 14 €0S ( 151408 T 4+ 37 )
+ 6 €0S ( 2282 T + 324 ) + 14 €0S ¢ 35997 T + 165 )
v 6 €O0S ( 29928 T + 125 ) + 12 €0S ( 481268 T + 128 )
+ 6 €05 ( 101930 T + 326 ) + 11 €0S ( 262947 T + 44 )
+ 6 0SS ( 143118 T + 155 ) + 10 €05 ( 3036 T + 123 )
+ 6 €c0S ( 155830 T + 350 ) + 9 CO0S ( 448417 T + 235 )
+ 6 c0S ¢ 39035 T+ 30 ) + 8 ¢c0s ( 9037 T + 334 )
+ 6 €0S ( 32966 T+ 171 ) + 7 €COS ¢ 77473 T o+ 231 )
+ 6 05 ( 1933 T + 248 ) + 6 €COS ( 448416 T o+ 177 )
+ 6 ¢0S ( 45039 T + 345 ) + 6 €0S ( 35982 T+ 121 b}
+ 6 €08 ¢ 26962 T + 216 ) + 6 €0S ( 36020 T+ 80 )
+ 5§ €0S ¢ 81038 T + 175 ) + 6 €0S ( 13482 T + 293 )
+ 4 €0S ( 36156 T+ 38 ) + S €0S ( 896835 T + 268 )
+ 4 ¢0S ( 35846 T+ 163 ) + 4 €0S (1046309 T+ 131 3
+ 4 €0S ¢ 72000 T ¢ 123 ) + 4 €0S ( 58520 T+ 279 )
+ 4 ¢0S ( 33720 T+ 59 ) + 4 €OS ( 34067 T o+ 316 3
+ 4 £OS ( 382814 T 4+ 142 ) + 4 COS ¢ 68965 T+ 78 )
+ 4 €0S ( 597889 T+ 50 ) + 4 €0S ( 113475 T4+ 49 )
+ 4 €0S ( 1936 T+ 42 ) + 4 €0S ( 412420 T+ 219 )
Table 8. Venus: Heliocentric longitude, latitude and radius vector
LONGITUDE LATITUDE
° L] 9 * o
181:9793 + 58519.?_122 T . 4 343939 €0S ( 585184312 T + 15299 )
+ 107 2,
+ 0,7761 C0S ( 58517,81 T + 320441 ) + 0.0230 Cos ( 0¢5 T + 144,49 )
- SAT ‘e + 230 C0S ¢ 117036,1 T+ 6547 )
+ 503 €0S ( 11703646 T + 30046 ) + § C0S ( 175555 T + 46 )
+ 33.0S ( 117036 T+ 1 )
+ 32 Cos ( 45038 T + 254 ) RADIUS VECTOR
+ 20 €0S ( 67556 T+ 159 )
+ 14 CoS (22519 T+ 172 ) AU o o
+ 10 Cos ( 9038 T o4 244 ) + 0,723348 (0S¢ 0 T+ Q )
+ 8 CoS ( 55483 T + 239 ) + 4899 €0S ( 58517,81 T + 230,41 )]
+ 8 Cos ¢ 955 T + 303 ) - 34T y
+ 7 Cos ( 58519 T+ 70 ) + 17 ¢0S ( 117036 T + 2819 )
+ 7 €0S ( 175554 T + 351 ) + 16 €0S ( 45038 T o+ 164 )
+ 5 €oS ¢ 3035 T + 110 ) + 14 €0S ( 67556 T+ 69 )
+ 4 C0S (54076 T+ 34 ) + 4 €OS ( 55483 T+ 121 )
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Table 9. Venus:

X

AU
+ 0,999860 cOS
722680 cOS
25063 ¢O0S
637
8354 0§

cos
cos
cos
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cos
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91T
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1.41 7
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37935
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58520
68965
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3036
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29928
0
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39035
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49481
126075
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58364
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35846
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X33

~
B T B B T e e I T T B R B B e B B i Ho I IRV IR I IR IR I A G R R

°

36000,76967
x4
58519421267
r’

1,720 7

’
58518,312 71

.’

71999,82 T
,r

1e41 7
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Iy

5851744 T
0,5 T
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Apparent geocentric equatorial rectangular coordinates
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58520
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0
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LONGITUDE

Table 10.
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Table 11.
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Mars: Heliocentric longitude, latitude and radius vector
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Mars : Apparent geocentric equatorial rectangular coordinates
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Table 11.
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Mars : Apparent geocentric equatorial rectangular coordinates (Continued)
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Table 12. Distributions of the differences between the values by the series and the rigorous ones

series — rigorous

Coordinates Unit less —10 —8 —6 —4 -2 0 42 44 46 48 410 more
Sun

longitude 17 141 453 1298 1247 398 116

distance 107°AU 46 1796 1788 23

right ascension 051 75 276 1540 1395 362 5

declination 17 91 477 1163 1357 464 90 11

X1950.0 107 AU 18 1748 1887

Y1950.0 1073 AU 80 1757 1654 162

Z1950. 0 1077 AU 1788 1795 70
Moon

longitude 17 11 42 92 295 617 880 917 553 191 47 6 2

latitude 1” 7 32 141 427 910 1165 710 228 29 3 1

parallax 0”1 ) 1817 1836

right ascension 0%1 27 55 145 351 544 806 742 538 279 118 29 19

declination 17 71 67 158 336 477 617 600 500 365 236 126 100
Mercury

longitude 17 6 17 50 144 547 1102 1067 456 178 65 21

latitude 17 7 178 1631 1523 301 13

radius vector 1072 AU 1760 1893

right ascension 081 42 491 1391 1306 380 43

declination - 17 6 34 69 423 1444 1135 416 90 32 4
Venus

longitude 17 66 593 1578 1207 209

latitude 17 1516 2137

radius vector 107° AU 1693 1960

right ascension 051 46 63 92 95 390 1502 1086 287 24 15 15 38

declination 17 65 355 1204 1134 452 206 83 55 99
Mars

longitude 17 36 75 495 997 1180 619 228 23

latitude 17 14 286 1746 1485 122

radius vector 107° AU 417 1583 1190 387 76

right ascension 051 43 103 276 502 801 1371 447 74 12 24

declination 17 75 61 92 148 448 1414 837 361 98 99 20
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4. Precision

In order to evaluate the precision of the series presented above, the differences
between the values calculated by them and the rigorous values tabulated in the Japanese
Ephemeris are examined. The comparison is made for every 0 ET from 1972 January
1 to 1981 December 31 (3653 points in total), and the distributions of the differences are
shown in Table 12, Since the series are constructed so as to fit best at J2000.0, the
precision reprsesnted by the distributions is considered to be retained throughout the 60
years centering at 2000.
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Abstract

A computer program for automatic drawing of an eclipse map by an XY-plotter has been
developed. The present paper describes the process of the analysis for the program, showing some
difficulties which have arisen in the course of the analysis, and the solutions which were adopted.

Examples of eclipse maps produced by this program are seen in the supplements to the
Japanese Ephemeris for 1980 and 1981.

By combining this program with those for computing the coordinates of the Sun and the
Moon, which are already available at the Hydrographic Department of Japan, the eclipse map can
be drawn automatically for any eclipse in the past or in the future.

The time necessary to complete one eclipse map is at most 80 minutes, including both

computing and plotting times.
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HIGH-STABILITY PHASE-LOCKED RECEIVING SYSTEM
OF THE DOUBLE PHASE-LOCKED CIRCUIT
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Abstract

In the cases of the conventional types of receivers designed for the highly accurate
measurement of phase by receiving standard radio waves or waves for a radio navigation aid system,
it has been customary to depend on the phase-lock receiving method using only one VCO (Voltage
Controlled Oscillator) ; however, the receivers depending on this method are known to have some
common shortcomings that are inescapable theoretically. In other words, in the conventional type
of receiver, the received wave tends to become unstable, especially after the reception has been
interrupted by some cause.

In the phase-locked receiving method introduced here, two phase-locked oscillators (one for
a high-sensitivity VCO used in the conventional receiver and the other for a high-stability VCO
of low control sensitivity) are used so that, even when the receiving conditions are poor, the
performance of the receiver can be kept stable, because the Doppler frequency of the received
wave can be corrected for automatically by the second VCO depending on the velocity of motion
of the receiver, without adverse effect on the high-speed tracking ability of the receiver.

The principle of this phase-locked receiving method has been applied to the conventional
Loran-C automatic tracking receiver as a means for improving its capability. Its accuracy and

stability have been improved to almost five times those of the conventional receiver.
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Figure 1 Simplified diagram of the phase-locked receiving system
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Figure 5 Simplified diagram of double phase-locked receiving system
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Figure 9 Cruising trail of the sea current observation by GEK
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