1993年7月から1994年5月の四国沖暖水域における海面高度変動

木下秀樹*

Time change of dynamic height from July 1993 to May 1994 in the warm water region south off Shikoku.[†]

Hideki KINOSHITA*

Abstract

The mooring observation with Inverted Echo Sounder (IES) in the central vicinity of a warm water region south off Shikoku was carried out from July 8, 1993 to May 12, 1994. Time change of dynamic height of more than 4 days was analyzed. Travel time (τ) from bottom to sea surface which was measured with IES was compared with dynamic height calculated from temperature and salinity data measured with CTD/XBT observation by the survey vessels belonging to Maritime Safety Agency and research vessels belonging to the universities and some other agencies. As a result, the relation between them was almost linear with correlation coefficient of 0.76. A comparison between dynamic height from IES and the sea surface height near the IES mooring point with micro wave altimeter mounted on the satellite TOPEX/POSEIDON shows good correlation (Correlation coefficient is 0.84.). It is suggested that a decrease of τ in November 1993 was caused by movement of a warm water region south off Shikoku.

1. はじめに

1980年代に盛んに行われた ENSO イベントや 大気-海洋相互作用の研究により,熱帯域の大気・ 海洋変動が、大気のテレコネクションを通じて 中・高緯度の気候に影響を及ぼしていることが明 らかとなった.一方海洋においても,最近, Jacobs et al. (1984) によって、1982-83年の El Nino 時に 赤道域で発生した海洋変動が、東進してアメリカ 大陸西海岸に達した後, 北上し, ロスビー波となっ て太平洋中緯度域を西進し、発生から約十年後に 日本付近に達するという結果を,数値モデルと衛 星海面高度計データを使用して示している.これ らの例のように中緯度の海洋における変動の中に も,全球規模,大洋規模の変動と密接に関わり合っ たものは,多く存在する.

亜熱帯循環域の海洋変動を考える場合において も、大洋規模で変動の伝播メカニズムを探る必要 がある.そこで, 亜熱帯循環域において, 副循環 系及び北赤道海流域における海洋変動エネルギー の伝播速度及び方向を明らかにすることを目的と して、水路部では、1993年から亜熱帯循環系内の 観測点において底置式音響測深機(Inverted Echo Sounder:IES)による音波往復時間の連続観測 を実施している。音波往復時間の変動は現場の力 学的海面高や、貯熱量の変動とも相関が高いとい われているため, IESは, 海洋変動エネルギーの伝 播等の解明のための一手段としての力学的海面高 変動の観測に有効であると期待される.

1993年7月8日に四国沖の暖水渦の中心付近 (北緯30°, 東経134°36') (Fig.1) に設置された IES は約10ヶ月の観測を行い1994年5月12日に回

[†] Received 1996 February 16th Accepted 1996 February 19th *海洋調査課 Ocean Surveys Division

Fig. 1. IES mooring point and TOPEX/POEIDON ground track 112.

収された(木下, 1995).本研究では,この IES 観 測データと,他の海洋観測手法(CTD, XBT, TOPEX/POSEIDON Altimeter)による力学的 海面高の測定値とを比較し,IES による力学的海 面高変動観測の有効性と問題点を検討する.

2. IES の測定原理とデータ処理

IESは、海底に係留して海面に向けて音波を発 射し、海面での反射波が戻ってくるまでの時間を 計測する測定機である.この音波の往復時間は海 水中の音速に依存するが、音速は主として水温に よって決定されるため、水温分布の変化に応じて 観測される音波の往復時間が変化することにな る.IESを設置した海域で力学的海面高が概ね水 温によって決まるという仮定が妥当であれば、音 波往復時間と力学的海面高の間に高い相関があ り、IESによって設置点における力学的海面高の 時間変動を捉えることが可能であると期待され る.

今回設置した IES は、測定部、ブイ、切り離し 部が一体の構造であり、測定時の海底から音響ト ランスポンダまでの距離が最小(約2m)になる ように設計されたものである. IES の設置模式図 を Fig. 2 に示す. 設定条件は、10.24kHz の音波を 毎正時に15秒間隔で24回発射し、海面での反射波 が返ってくるまでの時間を測定するものとした. 海面に到達するまでの途中の散乱が無いとすれ

Fig. 2. Schematic view of IES.

ば、海面に直角に入射した音波が最短時間で返っ てくることになる。実際には途中の散乱もあると みられ、IESの観測値は全体的にはレイリー分布 に良く従うことが知られている(Watts and Rossby, 1977).

生の測定値から音波往復時間の最確値を求める 計算は、Watts and Rossby (1977)の方法に従っ て、次の方法により統計的に行った.

IESによって測定された音波往復時間を τ ,最 確値を τ_m とし、 τ はレイリー分布に従うものとす る.このとき、ある τ の測定値の集合の平均・分 散はそれぞれ次のように表される。

$$\overline{\tau} = \mu + \left(\frac{\pi}{2}\right)^{\frac{1}{2}} \alpha$$
 (a)

$$\overline{(\tau-\overline{\tau})^2} = \left(2-\frac{\pi}{2}\right)\alpha^2$$
 (b)

この時, 最確値 元は,

 $\tau_{\rm m} = \mu + \alpha \tag{c}$

で表される. (a), (b)を連立方程式として, μ , α に ついて解き, (c)に代入することで, 最確値を求め ることができる.

実際のデータ処理は、まず測定値に含まれる観 測エラー(ノイズ)を除去するために、処理に採 用するデータの窓領域を設定した.すなわち、全 測定値の度数分布図(Fig.3)を0.1msec 刻みで描 き、ある class の度数が最頻度数の0.5%以下であ る場合、その class に含まれるデータは全てノイ

Fig. 3 . Frequency distribution of the all travel time data which was measured with IES.

ズとして除去した.この基準により,データの有 効領域は音波往復時間で6.1625秒以上6.2383秒以 下となった.最確値の計算では統計計算を行うた めに,97時間分(2328個)の測定値を1つのブロッ クとし,上記基準によって除外されずに残った測 定値の数が400個以上となる場合について最確値 を計算した.処理結果の τ の時系列をFig.4に示 す.1993年8月中旬を除けば、ほぼ全期間で最確 値が計算できた.この観測期間における比較的長 周期の変動では、11月初めの τ の減少と1月の τ の増加が特徴である.以下の解析では、この処理 結果をIESの基本データとする.

3. CTD/XBT 観測結果との比較

CTD/XBT 観測データ

IES 係留点は、大学関係者を中心としたグルー プが行っている文部省国際共同研究「海洋観測国 際共同研究計画(GOOS)」において、黒潮の流量 と熱流量を測定するために設けられた集中観測線 上に位置する.この観測線上では、IES 係留期間中 に十数回の CTD 観測が行われている.この共同 研究の中で収集、解析されている CTD/XBT データの提供を受け、測量船「昭洋」による CTD 観測データも含めて IES 観測との比較データと

Fig. 4. Time series of travel time measured with IES.

Table 1. CTD observations which was used in comparison with IES data.

Station	Ship	Instrument	Depth of meas.	Latioude	Longitude	date
SY9307C	Shoyo	CTD	4650	29-59.90N	134-35.90E	1993/7/31
SH9309C	Syunpumaru	CTD	1236	29-59.00N	134-36.00E	1993/ 9 /25
KE9310X	keitenmaru	XBT	1000	30-0.015N	134-35.83E	1993/10/27
TE9311C	Tenyomaru	CTD	1010	29-59.96N	134-35.93E	1993/11/19
IY9401C	Kaiyomaru	CTD	4659	30-00.00N	134-36.00E	1994/1/10
SY9401C	Shoyo	CTD	4714	19-59.80N	134-36.10E	1994/1/19
KT9401X	Tanseimaru	XBT	1000	30-00.07N	134-35.83E	1994/1/30
KH9402X	Hakuhomaru	XBT	1000	29-59.95N	134-36.22E	1994/ 2 /27
TA9402C	Takuyo	CTD	4603	30-00.30N	134-36.30E	1994/3/9
BO9405CD	Boseimaru	CTD	4506	30-01.09N	134-33.97E	1994/5/2
BO9405CS	Boseimaru	CTD	1260	30-00.50N	134-35.45E	1994/5/2

した. Table 1 に IES データとの比較に使用した 観測船, 観測日時等をまとめた.「昭洋」によるも のを含め, 11個の観測データを使用した. 提供さ れたデータは, 今脇等 (1994)によって, 同一の 基準により力学高度偏差 (ΔD)の計算まで行われ ている.

 ΔD の計算は、水温・塩分・圧力の鉛直連続測定 値をもとにしているため、本来 XBT 観測からは 算出することはできない。そこで、今脇等(1994) は XBT データについては、その測点付近又はそ の観測の前後の CTD 観測結果をもとに推定して いる.すなわち、CTD 観測による T-S 関係を用い て塩分を推定し、XBT データから800db までの ΔD を計算し、さらに CTD データから求めた $\Delta D_{600/800} \ge \Delta D_{800/1000}$ の関係をもとに800db~1000 db までの ΔD を推定している。ここで、 $\Delta D_{a/b}$ は、 $\Delta D_{a} - \Delta D_{b}$ を表す。今脇等(1994)によれば、 $\Delta D_{600/800} \ge \Delta D_{800/1000}$ の間には高い相関があり

(Fig.5),推定値は妥当と考えられるため,本研 究においても XBT 観測値から推定した ΔD を使 用することとした.

(2) 比較結果

CTD/XBT 観測データから計算(推定)された ΔDは, XBT については1000db まで, CTD につ いては1200db まで計算されたものから底上まで

Fig. 5. Relation between $\Delta D_{600/800}$ and $\Delta D_{800/1000}$ calculated from CTD data. The correlation coefficient is 0.99 and rms is 0.003 dyn. m. (after Imawaki et al. 1994)

計算されたものまである. Fig. 6 は, 1992年11月か ら1994年11月までの2年間に係留点付近で行われ た CTD 観測データから,力学計算により算出し た $\Delta D_{0/1000} \ge \Delta D_{0/3000}$ の相関をとったものである. Fig. 6 によれば, $\Delta D_{0/1000} \ge \Delta D_{0/3000}$ は,相関係数が 0.99であり,非常に良い相関関係にある. Fig. 6 か ら,係留点における ΔD の変動に注目して解析す る場合,その計算が1000db準拠であっても3000 db準拠であっても解析結果には大きな影響を及 ぼさないと判断し,本研究においては, $\tau \ge$ 比較す る ΔD は XBT 観測によるデータも含め, 1000db 準拠の値を採用した.

Fig. 7 は、CTD/XBT 観測による $\Delta D_{0/1000}$ と CTD/XBT 観測の行われた時間における IES 計 測による τ との関係である。相関係数は0.76であ り、良い相関である.rms は0.12dyn・m であった。 この結果は、IES によって係留地点の力学的海面 高の時間変化を捉えることができるという、当初 の期待が妥当であったということを示している。

4. 衛星海面高データとの比較

(1) 衛星データ

Fig. 6 . Relation between $\Delta D_{0/1000}$ and $\Delta D_{0/3000}$ calculated from CTD data which was observed at the vicinity of the IES mooring point. The correlation coefficient is 0.99 and rms is 0.02 dyn. m.

Fig. 7 . Relation between τ measured with IES and $\Delta D_{0/1000}$ calculated from CTD data. The correlation coefficient is -0.76and rms is 0.12 dyn. m.

衛星リモートセンシングデータは、マイクロ波 高度計を搭載した TOPEX/POSEIDON (T/P) によって取得された力学的海面高度のデータであ る.T/P 衛星は、IES 係留点直上を約10日に一度、 直下の海面と自身との距離を計測しながら通過す る.本研究では、米国ジェット推進研究所が解析 に必要な補正値とともに CD-ROM に納めて配布 しているデータセットをから、T/P 衛星が係留点 直上を通過する軌道 (軌道番号112) を切り出して 使用した.

高度計による計測データから力学的海面高度を 算出する際に必要な補正は、全て CD-ROM 付属 のものを、標準の方法で施した。ジオイド補正に ついては、CD-ROM 付属の平均力学的海面高を 使用し、潮汐補正は、Cartwrite and Ray (1990) を使用した。

CD-ROM 付属のジオイド,あるいは平均力学 的海面高は、その精度が数10cmから1mと見積も られている.しかし、ジオイドが変化する時間ス ケールは、海流や渦などによる力学的海面高変動 の時間スケールに比べ、非常に長いと考えられる ため、力学的海面高度の時間変化のみをみる場合、 ジオイドの誤差は問題にならない.力学的海面高 度の時間変動成分については、軌道誤差と同程度 の誤差で見積もることができるとされている(今 脇、1995).T/P 衛星の軌道高度は、世界各地に配 置されたレーザー測距網によるレーザートラッキ ングによって決定され、その誤差は3.5cmと見積も られている(Fu et al., 1994).

(2) 比較結果

Fig. 7 の関係を利用して rから ΔD_{IES} を算出 し, T/P 衛星によって観測された海面高度計デー タから計算した力学的海面高 ($\Delta D_{T/P}$) と比較を 行った.ここで, ΔD_{IES} , $\Delta D_{T/P}$ はともに IES 観測 期間の平均からの偏差である.

Fig. 8 は、 $\Delta D_{IES} \ge \Delta D_{T/P}$ の相関関係を表す.相 関係数は0.84であり、IES によって海底から測定 した海面高と衛星から測定した海面高はよく整合 している.しかし、 ΔD_{IES} は $\Delta D_{T/P}$ に比べやや過小 評価している.これは、 $\Delta D_{T/P}$ には含まれている変 動の順圧成分が ΔD_{IES} には含まれていないことが その原因の一つと考えられる. $\tau \ge \Delta D_{IES}$ に変換 する際、海洋変動の傾圧成分のみに基づいた値で ある $\Delta D_{0/1000}$ との関係に寄ったためであると考え られる.

Fig.9は、 ΔD_{IES} と $\Delta D_{T/P}$ を時系列を描いたもの

Fig. 8 . Relation between ΔD_{IES} and $\Delta D_{\text{T/P}}.$ The correlation coefficient is 0.84 and rms is 0.12 dyn.m.

である.両者の変化傾向はほぼ一致しているが, 10月中旬,11月後半,12月終わりから1月初め等 IESによる観測結果と,T/Pによる観測結果がや や異なる期間もある. $\Delta D_{IES} - \Delta D_{T/P}$ の時系列を Fig.10に示す.Fig.10によれば,両者の差には1993 年12月を挟んでそれ以前は正,以後は負となるト レンドが存在する.

この原因は、季節変動による加熱・冷却の効果 であると考えられる.この steric effect は、黒潮 続流域で行った IES 観測結果と T/P 観測結果を 比較した研究(Teague et al., 1995)でも指摘さ れている.

5. 1993年11月の海面高変動

この節では、1993年11月の海面高の変動につい て T/P 衛星の軌道に沿った海面高の連続データ を利用してその解釈を試みる.使用したデータは IES 係留点直上を通過する軌道番号112の海面高 の観測データである. 前節でも述べたとおり, T/ Pによる ΔD の時間変動については, 5 cm以下の 良い精度で得られるといわれている(今脇, 1995, Fu et al., 1994).

しかし、衛星軌道に沿った $\Delta D_{T/P}$ のプロファイ ルについては、その導出の過程で使用したジオイ ドの精度に大きく依存する.衛星軌道直下で、衛 星と同期して実施された CTD 観測結果から計算 された ΔD を真の値とした場合、現在利用できる ジオイドモデルは最小でも20cm以上の誤差が含ま れる(木下等、1995).そこで、本研究では112軌道 直下で、衛星と同期して実施された CTD 観測結 果から求めた $\Delta D_{0/3000}$ を真の値として T/P デー タを補正し、得られた $\Delta D_{T/P}$ のプロファイルを時 間方向に並べることにより、IES 係留点近傍の海 面高度の変動を時空間的にとらえた.T/P データ の具体的補正方法については木下等(1995)によ る.

Fig. 9. Time series of ΔD_{IES} (solid line) which was calculated using the relation of Fig. 7. and $\Delta D_{T/P}$ (dashed line) measured with TOPEX/POSEIDON altimeter.

Fig.10. Time series of $\Delta D_{IES} - \Delta D_{T/P}$. The trend which is decreased toward winter from summer appeared. Both are the deviation from the average value within IES observation period.

Fig.11. Latitude-time section of dynamic height anomaly along TOPEX/POSEIDON ground track 112.

Fig.11は, T/P衛星の軌道番号112に沿った $\Delta D_{T/P}$ の時空間変動を表す図である. 図9から, IESにより測定された1993年10~11月の ΔD の変 動は,係留点のみではなく四国沖の北緯29度付近 から北緯32度まで達する広い範囲での現象である ことがわかる.(今脇等,1994)によれば,同期間 にT/Pの軌道112に沿う観測線を横切る地衡流 量が,前後の期間の約2倍の70Svに達していたと 報告されており, IESにより観測された ΔD の変 動と四国沖の暖水渦の位置の移動,あるいは強化 との関連が示唆される.

6. まとめ

本研究では、足摺岬沖で長期係留観測を行った IESによる音波往復時間と、他の観測手法により 測定された海面力学高度 ΔD との比較を行った.

IESによる音波往復時間 $r \ge CTDによる$ $\Delta D_{0/1000}$ は、相関係数が0.76であり、良い相関関係 にあった。 $\Delta D_{0/1000} \ge \Delta D_{0/3000}$ の関係が、相関係数 0.99と非常によい相関であったことから、 $\Delta D_{0/1000}$ は現場の傾圧成分を代表する値であり、IES は現 場の傾圧的変動成分を良く捉えているといえる。 しかし、これは海洋の変動の順圧成分による IES 測定値への影響を否定するものではなく、今後、 順圧成分を同時に測定することが必要であると考 えられる。 ΔD の変動の順圧成分を見積もるため には、高精度の圧力センサを取り付けた IES によ る観測が必要である.

 $\Delta D_{\text{IES}} \ge \Delta D_{\text{T/P}}$ の変動はよく整合していたが (Fig. 9),期間によっては両者の間に最大で20cm を超える差もあった (Fig.10).その原因として, 季節変化による海洋の加熱・冷却の効果 (steric effect)が考えられる.他に, $\Delta D_{\text{T/P}}$ を導出する際 に使用された潮汐補正値に含まれる誤差等も一因 と考えられる.IES 測定現場の圧力値の変動を調 べることによって,海洋潮汐による効果を見積も ることができると考えられ,この意味でも圧力セ ンサ付きのIES による観測は重要であると考え られる.

5節の結果より, IES は, 渦の移動等の中規模の 変動による海面高の変動について捕捉可能である ことがわかった. 今後, 観測地点を絞って IES の 係留系列による観測を行うことで, 海洋における 中規模変動の伝播について, その方向, 速度, 周 期等の解明に資することができると期待される.

謝 辞

本研究は、科学技術庁の海洋開発及地球科学技 術調査研究促進費によって行われている. IES係 留点における CTD 観測データを提供して下さっ た九州大学の今脇教授、内田裕氏他、ASUKA グ ループの皆様に感謝します.

引用文献

- Cartwrite, D. E. and R. D. Ray, Oceanic tides from Geosat altimetry., J. Geophys. Res., 95, 3069-3090, (1990)
- Fu, L. L., E. J. Christensen, C. A. Yamarone Jr., M. Lefebvre, Y. Menard, M. Dorrer and P.Escudier, TOPEX/POSEIDON mission overview., J. Geophys. Res., 99 (C12), 24, 369–24, 381, (1994)
- Jacobs G. A., H. E. Hurlburt, J. C. Kindle, E. J. Metzger, J. L. Mitchell, W. J. Teague and A. J. Wallcraft, Decade-scale trans-Pacific propagation and warming effects of an El Nino anomaly., *Nature*, 370, 360–363, (1994)
- 今脇資郎・内田裕・寄高博行・吉岡典哉・美澄篤 信・市川洋・見元孝一・奥田邦明・深澤理 郎,四国沖の黒潮・黒潮反流の流量と熱流 量の測定(III)-CTD/XBT データを基に した黒潮の傾圧場の解析,1994年度日本海

洋学会秋季大会 講演要旨集, 3-4, (1994)

- 今脇資郎,衛星アルティメター,海の研究,4, 487-508,(1995)
- 木下秀樹, IES による力学的海面高変動観測―そ の1 データ処理手法について, 平成5年 度 黒潮の開発利用調査研究成果報告書, (1996)
- 木下秀樹・道田豊・西田英男・寄高博行,日本南 方海域における TOPEX/POSEIDON 軌 道下のジオイドの高精度化,海洋理工学会 論文集 Vol.2 (印刷中),(1995)
- Teague, W. J., Z. R. Hallock, G. A. Jacobs, and J. L. Mitchell (1995), Kuroshio sea surface height fluctuations observed simultaneously with inverted echo sounders and TOPEX/POSEIDON., J. Geophys. Res., 100 (C12), 24 987-24 994, (1995)⁷
- Watts, D. R. and H. T. Rossby, Measuring dynamic heights with inverted echo sounders: Results from MODE, J. Phys. Oceanogr., 7, 345-358, (1997)