研究ノート

音波探査で見る堆積層の形[†]

佐藤任弘*, 岩淵 洋**

The Form of Sedimentary Layers Revealed on the Continuous Seismic Profiling Records [†]

Takahiro SATO* and Yo IWABUCHI**

Abstract

Hydrographic Department of Japan has been carring out continuous seismic reflection profiling surveys of the Japanese waters since 1967. These surveys cover continental margin and ocean floor of the Western Pacific. Various kinds of sedimentary layers form are revealed to these records.

The deposition process of sedimentary particles is grouped into two types; (1) blanket layers covering submarine relieves as snow fall, and (2) depression filling layers as dammed up water.

These two types are however basic forms which change features from difference of submarine topography, sedimentary supply, crustal movement, sea level changing, etc. Moreover, these original forms are often modified by later deformation and dislocation.

1. はじめに

これまで日本周辺でなされてきた音波探査記録 を見ていると、堆積層の形は二つの単純なパター ンの組み合わせとその変形に分類出来るように思 われる。一つは海底の地形を覆うブランケット状 のパターン、もう一つは地形的凹部を水平に理め 立てている洪水状あるいはアバット状のパターン である.これが、基盤の隆起・沈降や海水準の変 動によって修飾を受け、あるいは、一旦形成され た堆積層が地滑りなどの変位・変形を受け、複雑 な地層の形状をもたらしている. このほか, 堆積 後の地層の変形作用があるが、これについても後 に述べる.

2. 堆積時の形

(1) ブランケット堆積

河川で運搬されてきた堆積物の多くは、河口付

近で沈積するが、懸濁した細粒の粒子は沖合へ流 されて海水中を沈下して堆積する.また遠洋では 浮遊性生物の遺骸が海水中を沈下して堆積する. これはあたかも雪か降るような堆積で、海底の凹 凸を毛布で覆うように、起伏に沿って厚さの一様 な堆積層を形成する. このような堆積は大洋底の 珪質軟泥や石灰質軟泥に特徴的であるが、大陸縁 辺部でも基本的にはこの堆積様式である。Fig.1 は紀伊水道東部における音波探査記録である.海 底下の基盤がなす起伏の上に、音響的に透明な層 が堆積している.

(2) アバット堆積

海底の凹地には水平な層理を持つ堆積層があ り、これが堆積盆の周囲の斜面と直接接している のが、大陸縁辺部ではよく見られる。これは海底 地形をブランケット状に覆った堆積物が、移動し て凹地を埋めた堆積であると考える. 安息角を越 えた斜面に積もった不安定な堆積物は、地震など

 [†] Received 1998 December 9th; Accepted 1999 January 18th.
* 日本水路協会, 元水路部長 Japan Hydrographic Association, ex-Chief Hydrographer.
* 企画課 Planning Division.

Fig. 1 Seismic profle in the eastern Kii channel (by Sono-probe).

Fig. 2 Seismic profle in the Kumano Nada (by air-gun).

のショックによって地滑りを起こし移動し,再堆 積する.後に述べるように,大陸斜面にはこのよ うな地滑り跡の堆積構造が音波探査記録にとらえ られている.この地滑りを契機として細粒粒子が 海水に懸濁して混濁流を形成し,海底の斜面に 沿って流れ下り,凹地があれば広がって懸濁粒子 を沈積する.これがアバットをもたらす.Fig.2は 熊野灘における音波探査記録である.ここには水 深2000m付近にきわめて平坦な海底が見られる が,その内部には褶曲によって生じた構造的な凹 地を堆積物が水平に埋め立てているのがよく見え る.

以上二つの構造が堆積層の基本的形で,これら を修飾する堆積構造について次に述べる.

Fig. 3 Line drowing of the goelogical profile on off Sanriku (after Sato and Mogi, 1975).

- (3) いろいろな堆積構造
- イ)オンラップ構造

堆積中に基盤が沈降しているかあるいは海水準 が上昇していると、堆積層は斜面上にすでに堆積 した堆積層を乗り越えて堆積して行くのでオン ラップ構造が生ずる.Fig.3は三陸北部沖におけ る音波探査記録である.三陸地域は陸部が隆起し 海部が沈降する曲隆をしていることが分かってい る.この音波探査記録は,大陸斜面から深海平坦 面にかけての断面である.深海平坦面では水平な 堆積層が,大陸斜面上ではブランケット堆積と なって斜面上部にはい上がったように堆積してい るように見えるオンラップ構造を示している.

Fig.4は山陰沖の隠岐トラフにおける音波探査 記録である. 隠岐堆と若狭海丘列の間にある隠岐 トラフの堆積物は,本来アバット堆積物であるが, 地形的凹みが相対的に沈下しているため,中央部 はアバット構造を残すものの,周辺部,特に隠岐 堆側はオンラップ構造となっている. 海底の活褶 曲(堆積と褶曲が同時に進行するもの.後述)に 堆積が重なると,背斜部で堆積層が薄く向斜部で 厚い構造となり,中央部の水平層は目立たなくな る.

Fig.5は三陸の宮古沖における音波探査記録で ある.ここでは大陸斜面上部が海食により平坦化 された上に堆積が起きている.この間に三陸地域 の曲隆によって海部が沈下して海水準の相対的上 昇が起こった.このため大陸棚上の堆積層は、下 位の(古い)堆積層を覆うような形で海岸に向かっ てオンラップしている.これは coastal onlapの 構造である.この構造を大きく見ると、大陸斜面 をはい上がる堆積層の頂部を浸食して、水平な堆 積層が覆っている.この構造を top lap 構造とい う.すなわちここでは頂部の top lap 堆積層に coastal onlap が起こっている.

ロ)地滑り堆積

斜面に堆積した堆積層は不安定で、地震などの ショックにより容易に海底地滑りを起こす考えら れる.山陰沖では地滑り跡と見られる音波探査記 録が多く得られている.Fig.6は大和海盆西端部 の南北断面である.大陸斜面上部の堆積層が滑り 落ちている状況が明瞭に読みとることができる. Fig.7は隠岐トラフ西端部の南北断面である.大 陸斜面上部の堆積層の大部分が失われている.こ れは堆積層がトラフに向かって(東北方向,記録 上では向こう側)滑り落ちてしまったものであろ う.海底地滑りが起きると、細粒粒子を懸濁した

Fig. 4 NNW-SSE seismic profile and its line drowing to the north of Echizenmisaki (after Sato and Katsura, 1999).

Fig. 5 Seismic profile and its line drowing to the east of Miyako, off Sanriku (after Hydrographic Department of Japan, 1984).

Fig. 6 N-S seismic profile and its line drowing to the north of Tottori (after Sato and Katsura, 1999).

Fig. 7 N-S seismic profile and its line drowing to the east of Oki islands (after Sato and Katsura, 1999).

Fig. 8 WNW-ESE line drowing of the seismic profile to the off Sakata, easten Japan sea (after Geological Survey of Japan, 1979).

混濁流が起こり,斜面を下って凹地を埋め立てて 深海平坦面を形成する.山陰沖には大陸斜面の麓 に隠岐トラフ・大和海盆があり,そこでは厚い堆 積物の存在が知られている.

ハ)深海チャネル堆積物

富山湾と大和海盆の間には,厚い堆積物をもつ 富山トラフがある.このトラフの表面を,富山湾 の海底谷群の末端から続く富山深海チャネルが刻 んでいる.Fig.8は富山トラフの断面で,チャネル はトラフ中央部を北へ延びて大和海盆に続く.富 山トラフの北端は大和海盆につながり,ここに海 底扇状地を形成している.チャネルは盛り上がっ た高まりの頂上にあり,その周囲のトラフ底は平 坦である.チャネルから溢れた混濁流は,流路の 両側に自然堤防をつくって周囲の堆積面に広がっ て堆積する.この地形は沖積平野の氾濫原とその 表面を流れる天井川に似ている.海底谷を流下し たを混濁流は,懸濁して運搬した堆積粒子の大部 分を海底谷の末端部に沈積させ海底扇状地を形成 する.しかし一部はさらに深海平坦面の上を蛇行 しながら流下し,深海チャネルを形成する.チャ ネルはさらに北へ延びて大和堆東方から日本海盆 に達するが,この付近ではチャネルの比高は小さ く,音波探査記録では追跡するのが困難となる.

ニ)埋積谷

東京湾・伊勢湾・大阪湾など沖積平野に面する 内湾の海底には、陸上河川の延長部の海底に、堆 積物に埋もれた谷がある(Fig.9).古東京川・古 木曾川・古淀川などの存在が知られている.これ らは氷期の海面低下によって陸化した大陸棚上に 刻まれた谷地形が,海水準の上昇によって沈水し, 堆積物で埋積されたものである.こうした沖積平 野沖の埋積谷は,志布志湾・石狩湾・北見沿岸な ど日本各地で知られている.

青森県六ケ所村沖合の大陸斜面上部にも,多数 の埋積谷の存在が知られている(Fig.10).これら は前述のように海水準低下期の陸上河川が埋積さ れたものではなく、大陸斜面を刻むガリが埋積さ れたもので、海面下で形成された地形である.

ホ) 深海平坦面のタービダイト

大陸斜面を刻む海底谷の末端には、構造的凹地 を埋める深海平坦面があることはすでに述べた. この堆積物は混濁流堆積物(タービダイト)と考 えられる.凹地を水平にアバットして埋積し、凹 地を充填しているものである.八戸沖の深海平坦 面では、音波探査記録上では縞模様(音響層理)

Fig. 9 Seismic profle in the Ise bay (by Sono-probe).

Fig.10 Seismic profile to the east of Rokkasho Village, Aomori prefecture (after Hydrographic Department of Japan, 1982).

が発達した堆積物がある.この縞は沖合に向かっ て不鮮明になり、しかも縞の平面的な広がりは海 底谷の出口を要とした扇状になっている(Fig. 11).ここでは混濁流のつくる海底扇状地の形成過 程をよく示しているように思われる.断面46・49・ 52は海底谷の地形と埋積谷を示している.断面 41・G-H-Jは縞が沖に向かって不鮮明になってい ることを示している.これは、沖合に向かって同 時異相として砂泥互層から泥層へと漸移していく 様子を示すものであろう.

ト) サンドウエーブ

狭い水道では、表層から海底までの海水全部が かなりの流速で移動するので、海底の堆積物を運 搬移動させる.この時、堆積物の移動は堆積物の 粒子の粒径と流れの強さによって変化する.最も 動き易いのは砂粒子で、最小限界掃流力で動き始 め、砂粒は転動し、逆走斜面を登り、順走斜面を 滑り落ちるので砂漣全体が下流方向へ移動する. 流速が大きくなると砂漣の波高・波長とも増大し て砂堆を形成する.さらに流速が増すと砂堆は不 安定になって消失したり、反砂堆(アンチデュー ン)を形成する.Fig.12は五島列島西方における音

Fig.11 Deep-sea fans and its line drowing of seismic proliles off the Shimokita peninsula (after Sato and Sakirai, 1974). 1. submarine canyon, 2. Burried canyon, 3. Inner margin of deep-sea plain, 4. Distribution of deep-sea fans (S1-S5). 41, 46, 49, 52, G, H and J indicate location of the profiles. 波探査記録である.表層の堆積物にのみ波状の地 形が形成され,下位の堆積物は水平である.ここ は水深が100m以上と深く,おそらく海水準が低下 していたときに形成されたサンドウエーブが残っ ているのであろう.サンドウェーブの頂部の形状 はFig.12のように丸いものだけでなく,尖った波 状のものもある(Fig.13).いずれも表層堆積物に のみ認められる構造である.

3. 堆積後の構造

堆積層は海底に堆積した後,構造的な力,主に 圧縮力と張力を受けて変形する.圧縮力によって 褶曲や逆断層が形成される.また,褶曲が発達し た場合にも逆断層が形成される.張力によっても 断層ができるが,この場合の断層は正断層となる. 日本周辺の海底は圧縮の場にあり逆断層が多い. ただし、逆断層においても、表層部に限ってみる と正断層が形成されていることがある。断層には 横ずれ断層(横ずれ成分)もあるが、音波探査記 録だけでは複数の断面から地質図を作成して平面 的な分布を調べたとしても、横ずれ断層の判定は 難しい.

(1) 断層・褶曲

イ)逆断層

音波探査記録では垂直方向の誇張率が大きいの で、断層面は垂直に見えてしまい、断層が正断層 であるか、逆断層であるのかの判定が出来ないこ とが多い.このため、断層で相対的に隆起する地 塊上の堆積層が背斜構造を示していれば逆断層と 考えるのがよい.多くの場合、この褶曲は同時に

Fig.12 Seismic profile to the west of Goto islands (after Hydrographic Department of Japan, 1979).

Fig.13 Seismic profle in the Naruto channel (by Sono-probe).

堆積を伴なうので、堆積層は相対的に沈降した地 塊では厚く、隆起した地塊では薄くなっている. また、断層崖の麓の堆積物が圧縮変形を受けてい る場合は、逆断層と判断できる(Fig.14).

垂直方向の誇張率が小さいマルチチャンネル音 波探査記録では、断層面の傾きが小さい場合には 音波探査記録から正逆の判別が出来ることもある (Fig.15).

口) 正断層

Fig.14 Seismic profle to the east of Hatsushima, Sagami bay(by air-gun).

小堆積盆の堆積物が,堆積盆の中心に向かって 向斜構造をなしている場合は,堆積盆の周縁に存 在する断層は正断層と考えて良い.逆断層でも正 断層でも同じであるが,こうした判定には,地域 全体の地質構造を考慮して判断することが重要で ある.Fig.16は男女海盆における音波探査記録で ある.本記録では西部の堆積層には向斜が認めら れ,堆積盆の縁をなす断層崖にアバットしている.

Fig.16 Seismic profle in the western margin of Danjyo basin (by air-gun).

Fig.15 Multi-channel seismic profle in the Shikoku basin, far off of Kumano Nada (after Kato et al., 1983).

この断層は正断層であろう.

ハ)褶曲

堆積層は, 圧縮によって波状に変形して褶曲す る. このとき地層の厚さが変化しないで同じ厚さ のまま変形していれば, 堆積後に起きた変形であ る. Fig.17の右側の下位の層準に認められる褶曲 がこの例である. これに対し, 堆積層の厚さが背 斜で薄く向斜で厚い場合は, 褶曲が堆積と同時に 進行したことを示している. Fig.2 に認められる 褶曲がこの例である.

ニ) 活断層

活断層とは、将来活動する断層のことである. ここで、将来の動きが予測できる論拠は、「今まで 繰り返し動いてきたのだから、今後も同じように 動くに違いない」というものである.断層が活断 層かどうかを判別するのは、最近まで(地質学的 にみて最近まで)、繰り返し動いているかどうかを 判別すればよい.最上位の堆積層は現在の堆積面 なので、表層付近の堆積物が断層変位を受けてい れば、地質学的に見て最近断層が活動したと言え る.断層は一回で大きな変位を起こすのではなく、 何回も同じ断層が変位を繰り返すことにより大き な変位となる.この時,下位の層準は多くの断層 活動を経験するので大きくずれ,上位層は断層変 位を受ける回数が少ないので変位量は小さい.こ れれを断層変位の累積性と言う.Fig.18は伊予灘 における音波探査記録である.沖積層にまで変位 を及ぼし,かつ,累積性を示す断層が明瞭に認め られる.

(2) 不整合

堆積層が形成されて後に陸化して浸食を受け, 再び沈水して上に堆積層が形成されると,その境 界は不整合面となる.下位の地層が上位層の堆積 以前に構造運動を受け,上位の水平な地層と接し ていれば,斜交不整合という.このように,陸化 した間の削剝だけでなく,海底で出来る不整合も ある.音波探査記録では上下2つの層が平行して 接していたとしても,ボーリング等によって試料 を分析すると,両者の間に大きな堆積時代の間隙 がある場合がある.これを平行不整合と言う.

また,海底の斜面に水平な堆積層がぶつかるように堆積するアバットも,不整合の一つである.

Fig.17 Seismic profle to the norteast of Kinka-san (by sparker).

Fig.18 Seismic profle in the southern Iyonada (after Tsutsumi et al., 1990).

アバットは,陸上の地層の露頭規模では境界部で 地層の構成物が溶け合っており良く判らないが, 音波探査では一般的に良く見られる不整合であ る.

これら不整合に共通するのは時間間隙であり, 不整合の定義は時間間隙があるということであ る.Fig.17は三陸沖における音波探査である.表層 堆積層と下位堆積層の間に傾斜不整合が認めら れ,両者の間には時間間隙があることが読み取れ るであろう.

4. まとめ

初めに述べたように、堆積層の積もり方は、海 水表層から雪のように降り積もる堆積パターン と、海底斜面を流れ下る雪崩に似た混濁流がもた らすアバット堆積パターンに大別出来る.しかし 個々の海底地形や堆積物供給の違い、地質構造の 隆起や沈降などの違いによって種々の堆積形態が 生じる.さらにこの堆積層が堆積中あるいはその 後の変位・変形を受けて様々な形を呈しているこ とを述べた.ここでは音波探査に見られる形を基 に記録例をあげて説明したが、実際の堆積物がど うなっているかは海底下の試料を採取して検討す べきである.これは将来の課題となるであろう.

追記

本論は、筆頭著者である故佐藤任弘博士が執筆 した原稿をもとに、第二著者がまとめたものであ る。第二著者が故佐藤任弘博士から本原稿を受け 取ったのは、1998年1月23日の午前であった。故 佐藤任弘博士はその日午後突然倒れられ、意識が 回復しないまま1998年6月19日に還らぬ人となっ た。このため、本論は筆頭著者とは十分な議論を 経ないまままとめられている。本論の記述に不適 切な点があるとすれば、筆頭著者の意図を十分に 理解できなかった第二著者の責任である。

故佐藤任弘博士は,海洋地質学に幾多の貢献を なさった偉大な先輩であり,かつ,第二著者のよ うな浅学の者にも懇切にご指導・教示下さるなど, 研究者の育成にも労を払われた.本論も,海洋地 質学を志す者にとって音波探査記録の解析の参考 となるようにとの思いで執筆されたものと第二著 者は理解している.佐藤任弘博士の業績に心から 敬意を表するとともに,故人のご冥福を心からお 祈りします.

参考文献

- Geological Survey of Japan : Geological investigation of the Japan Sea. Cruise report 13, Geological survey of Japan, (1979)
- 海上保安庁水路部:海底地形地質調査報告書「白 瀬」,5万分の1沿岸の海の基本図,6347-4, (1979)
- 海上保安庁水路部:海底地形地質調査報告書「山 田湾」,5万分の1沿岸の海の基本図, 6370-4,(1984)
- 海上保安庁水路部:海底地形地質調査報告書「む つ小川原」,5万分の1沿岸の海の基本図, 6372-1,(1982)

- 加藤茂・佐藤任弘・桜井操:南海・駿河・相模ト ラフのマルチチャンネル反射法音波探査, 水路部研究報告, 18, 1-23, (1983)
- SATO, Takahirio and SAKURAI, Misao: Deep-Sea Fans off the Shimokita Peninsula, Northeast Japan. La mer, 12, 137-144, (1974)
- 佐藤任弘・茂木昭夫:日本周辺の海底 II,科学, 48,622-629,(1975)
- 佐藤任弘・桂忠彦:山陰沖の大陸棚,水路部研究 報告,35,1-13,(1999)
- 堤浩之・中田高・小川光明・岡村真・島崎邦彦 伊予灘北東部海底における中央構造線,活 断層研究, 8, 49-57, (1990)