水路部研究報告 第35号 平成11年3月10日 REPORT OF HYDROGRAPHIC RESEARCHES No.35 March, 1999

研究ノート マルチビーム音響測深機 SeaBeam 2000でみる海底地形 (2)プレート境界域の精密海底地形と浅発地震の震央分布[†]

西澤あずさ*

(2) Seafloor Topography and Epicenter Distribution of Shallow Earthquakes [†]

Azusa NISHIZAWA*

Abstract

Epicenter distribution of shallow earthquakes was projected on the SeaBeam 2000 bathymetric maps around Japan. Among these maps, the one in the Japan Trench region is suggestive. The north-south variaion in seismicity associated to the Pacific plate subduction beneath the landward plate seems to be related to characteristics of the seaward topography of the trench.

1. はじめに

以前より海底地形と浅発地震の震央分布の関連 性が指摘されており、日本近傍においては田 (1968)が太平洋側における深海平坦面(または海 段)の分布との相関を示している。同様に Baer (1984/85)は、日本海溝北緯38-41度の領域におい て M ≥6.0以上の地震の震源域の分布を調べ、陸 側斜面下に様々な強度をもつバリアーの存在を示 唆した. このバリアーは線状に配列しておりその 走向が沈み込むプレートの地磁気異常のリニエー ションに直交することから,海洋地殻生成時に起 因するものであると推定した.彼の提案するよう に,バリアーの起源が堆積物に埋もれたトランス フォーム断層とするならば、海溝海側の海底地形 に反映されている可能性がある.また、日本海東 縁部では、海底地震観測により得られた1983年日 本海中部地震(M_{IMA}7.7)および1993年北海道沖南 西沖地震(M_{JMA}7.8)の余震分布は海底地形との明 瞭な相関を示す(Nosaka et al., 1987;水路部北 海道南西沖地震震源海域緊急調查班1994;日野等

1994).

このように海底地形と浅発地震の震央分布との 関連性を示す例はいくつかあげられるが,最新の 精密地形データを用いて系統的にまとめられたも のはない.ここでは,水路部における SeaBeam 2000 で得られたデータの存在する領域(Fig.1)に関し て10秒間隔のグリッドデータを作成し,得られた 海底地形図上に浅発地震の震央分布(気象庁デー タ)をプロットした図をまとめたので報告する.

2. データ

海底地形については,西澤等(1997)によって 作成された10秒間隔のグリッドデータをもとに, 水路部の海洋測量によってこれまでに新たに得ら れたデータを加えてグリッドデータを作成し直し た.SeaBeam 2000のデータのない領域について は,海域においては浅田及び沖野(1998)による 500mメッシュデータを,陸域においてはGTOPO 30のデータを追加した.Fig.1に示したように,日 本周辺海域を南西諸島海溝・南海トラフ及び相模 トラフ(A0-A5),日本海東縁部(B0-B4),千島

[†] Received 1998 December 18th; Accepted 1999 February 1st.

^{*} 海洋研究室 Ocean Research Laboratory.

Bathymetry & JMA epicenters(1926-1997, M>=4)

110

Fig. 1 left : Epicenter distribution with M≥4 by Japan Meteorological Agency during 1926-1997 Sep. on the bathymetry derived by Smith and Sandwell (1996). Red and white dashed lines are positions of plate boundaries. right : Map showing the data coverage of the SeaBeam 2000 obtained by Hydrographic Department, Japan (HDJ). Shading indicates where the bathymetry was collected. EU : Eurasia, PA : Pacific Ocean, ST : Sagami Trough. 海溝及び日本海溝(C0-C3)に分割して,それぞれ の領域について10秒間隔のグリッドデータを作成 した.また,全体像を把握するための30秒間隔の グリッドデータを用いた小縮尺の図も作成した (Figs.2 and 9).

一方,震源データは気象庁による1926年から 1997年9月までの震源の深さ50km以浅のものを使 用した.海域の震源位置は,近傍に観測点がない ため,陸域から遠ざかるにつれて精度が落ちるの で,海底地形との相関を調べるときには注意する 必要がある.

3. 結果

30秒間隔のグリッドデータを用いて作成した海 底地形図(陰影図)上に震央をプロットしたもの を Fig. 2 及び Fig. 9 に, 10秒間隔のグリッドデー タの海底地形図を Figs. 3 - 7 及び Figs.10-18に 示した.

南西諸島海溝 A0領域における地震活動はその

多くが1995年奄美大島近海地震(*M*_{JMA}6.7)の余震 である.Fig.3ではほとんどの地震が水深3,000 m 以浅で発生しており,余震域の東縁は水深3,000 m の等深度線に沿っている.この領域では1995年奄 美大島近海地震直後に海底地震観測による余震観 測が行われ,より精密な震源分布が得られた(山 田等,1997).彼らの結果によれば,震央の位置は 陸上の観測点のデータのみを用いて決定されたも のに比較して系統的に陸側に移動するが,その東 端は水深2,000 m の等深度線に沿うようになり,こ の場合も海底地形との相関があるようにみえる. また余震域の南北端も地形の高まりの位置にほぼ 一致している.

南海トラフ域におけるフィリピン海プレートの 沈み込みによる通常の地震活動は、太平洋プレー トの沈み込む日本海溝域と比べて非常に低く、浅 発地震の震央分布と海底地形との間に相関関係は 存在しないようにみえる (Fig. 2, Figs. 4-8). ただし例外として銭洲海嶺に沿う地震活動は明瞭

Fig. 2 Epicenter distribution (solid circles) with $M \ge 4$ and depth ≤ 50 km by JMA during 1926-1997 Sep. on the bathymetric map of the Nankai Trough region. Focal mechanisms of the earthquakes shallower than 50km during 1977-1998 June are by the Harvard centroid-moment tensor (CMT) catalog. The bathymetric data include not only the SeaBeam 2000 data but other multibeam data, for example, obtained by S/V Takuyo.

Fig. 3 Epicenter distribution (solid circles) with $M \ge 2$ and depth \le 50km by JMA during 1926-1997 Sep. on the SeaBeam 2000 bathymetry of the region A0 in Fig.1. Shaded relief plot. Illumination angle is from the west -northwest.

- 114 -

である (Fig.7).

日本海東縁部における顕著な地震活動は,北緯 40度から41度25分の範囲の1983年日本海中部地震 および北緯41度45分から43度15分の領域における 1993年北海道南西沖地震の余震である(Fig.9).

日本海中部地震の余震域の西端は水深3,000mの 等深度線とほぼ一致する(Figs.12 and 13).一方 北海道沖南西地震の余震分布の形状は 2,000-3,000mの等深度線の形状に類似している ようにみえる(Figs.11 and 12).2つの地震の余 震域の間には北緯41度30分付近に地震活動の空白 域が存在し,渡島大島近傍の地形の高まりがそこ に位置している.

千島海溝釧路沖には陸側海溝斜面下に海溝軸に 沿う明瞭な線状構造が存在するが,地震活動との 関係はないようにみえる (Fig.15).日本海溝域 (Figs.16-18) については次の章で詳細に議論す る.

4. 日本海溝域における浅発地震活動と海底地 形

日本海溝は海側太平洋プレートと陸側プレート の境界にあたり、ここではしばしばプレートの沈 み込みに起因した巨大地震の発生により大きな被 害が引き起こされる. 地震の起こり方は海溝軸に 沿って一様ではなく、海溝北部の三陸沖ではマグ ニチュード8クラスの地震が起こるが、南部の福 島県沖~茨城県沖に至ると M8級の歴史地震は知 られておらず, M7級が群発的に発生する. Fig.9 からもみてとれるように震央分布のパタンは、ほ ぼ北緯38.5度で変化しているように見える.この 変化をさらに見やすくするために, Fig.19には北 緯35.5度から40.3度の範囲の海溝軸近傍の海底地 形図に気象庁の M ≥2.0かつ深さ50km以浅の震源 データをプロットしたものを3次元的に示した. この図から、北緯38.5度以北では海溝軸海側にも 地震活動が見られるが,以南では地震活動度は低 いことがわかる.同様に、海溝陸側では北緯38.5 度以北では海溝軸近傍から海岸線までの領域で地 震が起こっているが、以南では海溝軸より陸側約 100kmまでは地震活動が低い.これは海底地震観測 からも確かめられており、三陸沖では陸側斜面水 深 6-4 kmに,すなわち海溝軸から陸側50km以内に 地震活動の低い領域がある(例えば,Kasahara et al., 1982, Hirata et al., 1983, Nishizawa et al., 1992)が、福島沖では水深 2 km以深で、海溝軸か ら陸側100kmの領域において低い(例えば,Urabe, 1987, Nishizawa et al., 1992).また、Fukao and Kanjo (1980)は日本海溝陸側斜面下に低周波地震 の活動域があることを指摘したが、その幅は北部 の約80kmに対して南部ではおよそ30-80kmとなっ ている.

さて、プレート境界の地震の発生はプレート境 界のまさつ状態と密接に関係し、プレート境界面 の形状はこのまさつ状態を決める主要な要素であ ると考えられる.ここでプレートが沈み込む直前 に、その下盤側プレート境界面の形状を観測する ことができる場所が海溝軸海側であることから、 上述した地震活動の海溝南北における変化が海溝 海側の微細な海底地形の地域性と関連しているか どうかを調べることは興味深い.

まず海溝海側斜面域であるが, Kobayashi et al. (1998) によれば、ホルスト・グラーベン構造 を形成している多数の正断層の走向は北緯40度以 北では海溝軸に平行で地磁気異常縞模様に斜交し ているが、北緯40度以南では正断層の走向がジグ ザグになっていることを指摘してる. この傾向を より直観的に見られるように Fig.20には三陸沖 と宮城県沖の海溝海側の海底地形を3次元的に表 示した. さらにいくつかの東西断面をとったもの を Fig.21に示す. 北緯38.5度付近において海底地 形の特徴が急激に変化しているわけではないが、 北部では断層崖段差が大きく最大値は500mを越 えるのに対し、南部では300m以下であり系統的に 変化している. また, Fig.19においてホルスト・グ ラーベンの存在範囲は北部では海溝軸から海側へ 80km以上追跡できるが、南部では海溝軸から約70 kmの範囲までしか検出できない.

海溝周辺隆起帯では,北緯38度以南では多くの 山体状の凹凸が見られる(Fig.20).これらの比高

116 -

Fig. 9 Epicenter distribution (solid circles) with $M \ge 4$ and depth ≤ 50 km by JMA during 1926-1997 Sep. on the bathymetric map around Tohoku region. Focal mechanisms of the earthquakes shallower than 50km during 1977-1998 June are by the Harvard centroid-moment tensor (CMT) catalog.

Fig.10 Epicenter distribution (solid circles) with $M \ge 2$ and depth ≤ 50 km by JMA during 1926-1997 Sep. on the SeaBeam 2000 bathymetry of the region B0 in Fig.1. Shaded relief plot. Illumination angle is from the west -northwest.

Azusa NISHIZAWA

-117-

- 118 -

Fig.15 Epicenter distribution (solid circles) with $M \ge 2$ and depth ≤ 50 km by JMA during 1926-1997 Sep. on SeaBeam 2000 bathymetry of the region C0 in Fig.1. Shaded relief plot. Illumination angle is from the west-northwest.

Fig.17 Same as Fig.15 but for region C2.

120

Azusa NISHIZAWA

Fig.19 3-Dimensional view of the Japan Trench. Epicenters (solid circles) with $M \ge 2$ and depth ≤ 50 km by JMA during 1926-1997 Sep. are projected on the bathymetry.

は200-400mで規模は5km以内である.北部においては、データは充分ではないが、南部でみられるような山体状の微地形は存在しないようにみえる.

上述の特徴を表にまとめた.日本海溝域におけ る地震活動および海溝海側の海底地形のいずれに も南北間における差異が見られる.ここで地震活 動の特徴と海底地形の特徴を定性的に関連づける ことを試みる.北部では海溝軸を越えて太平洋側 の地震活動が活発である.これは南部に比べてホ ルスト・グラーベン構造を生ずる地震活動が存在 することに対応しているであろう.

南部では地震の規模が小さい.南部の方がホル スト・グラーベン構造の走向がジグザグであると いうことは,地震断層の海溝軸に平行な方向の長 さを短くするセンスに働くことから,大きな地震 を起こしにくくしているかもしれない.また,南 部の小規模山体の存在は破壊の進行を妨げるバリ アーとなりやはり大きな断層を形成しにくくして いる可能性がある.

5. 将来の課題

上述したことは定性的であり、今後シミュレー ションを行うなど定量的な議論をする必要があ る.岩石実験で確かめられている断層面の凹凸と 地震すべりの関係では、断層面上の凹凸がすべり 量のオーダーであるのに対し、今回調べた海底面 の凹凸と地震のすべり量のオーダーは10-100倍程 度も異なる.またプレート境界に起こる断層面と しては片側、すなわち下盤側の凹凸しか見ていな い.さらには断層を構成する物質の性質や温度・ 圧力条件等も考慮する必要がある.将来に多くの 検討課題を残すが、地震活動に関連するような海 底地形の四凸は断層モデルを推定するときの重要 なパラメタの1つになると考えられる.

-121 -

Fig.20 3-Dimensional view of the seaward slope of the Japan Trench. Off Sanriku (upper) and off Fukusima (lower).

謝 辞

海底地形データは水路部海洋調査課の方々およ び測量船の乗組員の方々による調査結果の蓄積に より得られたものです.ここに記して謝意を表し ます.なお地形図の作成には GMT graphic package (Wessel and Smith, 1991)を使用しました.

参考文献

- 浅田昭・沖野郷子:日本周辺海域の500mメッシュ 海底地形データの作成,海洋調査技術学会 講演要旨集,15-16 (1998).
- Baer, M. : Asperities and barriers along the Japan Trench of Tohoku from the distribution of earthquake source areas, *PAGEOPH*, **122**, 863-877 (1984/85).
- 田望:海底地形と浅発地震の震央分布、北大地球

物理学研究報告, 20, 111-124 (1968).

- Fukao, Y and Kanjo, K.: A zone of lowfrequency earthquakes beneath the inner wall of the Japan Trench, *Tectonophysics*, 67, 153-162 (1980).
- 日野亮太・金澤敏彦・末広潔・佐藤利典・島村英 紀:海底地震計群列による北海道南西沖地 震の余震分布,月刊地球,7,35-42(1994).
- Hirata, N., Yamada, T., Shimamura, H., Inatani, H and Suyehiro, K.: Spatial distribution of microearthquakes beneath the Japan Trench from ocean bottom seismographic observations, *Geophys. J. R. astr. Soc.*, 73, 653-670 (1983).
- Kasahara, J., Nagumo, S., Koresawa, S. and Nishi, Y.: A linear trend of hypocenter distribution in the outer slope region of the Japan Trench revealed by OBS array-preliminary result, 地震研究所彙 報, 57, 83-104 (1982).
- Kobayashi, K., Nakanishi, M., Tamaki, K., and Ogawa, Y.: Outer slope faulting associated with the western Kuril and Japan trenches, *Geophys. J. Int.*, 134, 356-372 (1998).
- Nishizawa, A., Kanazawa, T., Iwasaki, T. and Shimamura, H.: Spatial distribution of earthquakes associated with the Pacific plate subduction off northeastern Japan revealed by ocean bottom and land observation, *Phys. Earth Planet. Int.*, **75**, 165–175 (1992).
- 西澤あずさ・中川正則・沖野郷子・泉紀明:マル チビーム音響測深機 SeaBeam2000でみる 海底地形(1)沈み込み帯の海底地形の統計 パラメタを推定する試み,水路部研究報告, 33, 61-83 (1997).
- Nosaka, M., K. Suyehiro and T. Urabe : Aftershock distribution of the1983 Japan Sea

Fig.21 Enlarged shaded bathymetry (left) and east-west water depth profiles accross the seaward slope of the Japan Trench (right).

	地震活動の特徴	海底地形の特徴	
		海溝海側斜面	海溝周縁隆起帯
北緯 38.5 度以北	 ・ M8 級の地震が起こる。 ・ 微小地震活動は海溝陸側斜面 水深 4 km 以浅の領域で活発。 : 低活動域 陸側斜面下水深 6-4km (e.g. Kasahara et al., 1992;Hirata et al., 1983; Nishizawa et al., 1992) ・ 海溝軸海側にも活発な地震活動。 ・ 陸側斜面下水深 6-4km に低周波地 震活動域がある。幅:約 80km (Fukao and Kanjo, 1980) 	 ・北緯 40 度以北では,正断層 (ホルスト・グラーベン)の走 向は海溝軸に平行で地磁気異 常縞模様に斜交している. (e.g. Kobayashi et al, 1998) ・断層崖段差:最大値>500m ・ horst & graben の存在範囲 海溝軸から 80 km 以上. 	・データは少ないが,山体 状の微地形は存在しない ように見える.
北緯 38.5 度以南	 M8 級の歴史地震はなく, M7 級が群発的に発生する。 、微小地震活動は海溝陸側斜面水深 2 km 以浅の領域で活発。 (e.g. Urabe 1987; Nishizawa et al., 1992) 海溝軸海側の地震活動は低い。 陸側斜面下の低周波地震活動は低い。 活動域幅:約 30-80km? (Fukao and Kanjo, 1980) 	 ・北緯 40 度以南では,正断層 (ホルスト・グラーベン)の走 向がジグザグである. (Kobayashi et al, 1998) ・断層崖段差:300m 以下 ・horst & graben の存在範囲 海溝軸から約 70 km 以内. 	・多くの小さな山体状の凹 凸(比高 200-400m, 規模 5km 以内)が存在する.

表	日本海溝域におけ	る浅発地震活動と海底地形
---	----------	--------------

Earthquake revealed by ocean-bottom and land-based station, *J. Phys. Earth*, **35**, 209–224 (1987).

- Smith, W. H. F. and Sandwell, D. T. Bathymetric prediction from dense satellite altimetry and sparce shipboard bathymetry, J. Geophys. Res., 99, 21803-21184 (1996).
- 水路部北海道南西沖地震震源海域緊急調査班:北 海道南西沖地震震源海域の緊急調査結果, 水路部研究報告, **30**, 395-412 (1994).
- Urabe, T.: Seismological regionality of the

middle Japan Trench (Fukushima-oki) revealed by ocean bottom seismography, Ph. D. thesis, University of Tokyo (1987).

- Wessel, P. and Smith, W. : Free software helps map and display data, *EOS*, **441**, 445-446 (1991).
- 山田知朗・日野亮太・西澤あずさ・塩原肇・佐藤 利典・後藤和彦・笠原順三・金澤敏彦・島 村英紀;海底地震観測による1995年奄美大 島近海地震の余震分布,地学雑誌,106, 514-524 (1997).