海洋情報部研究報告 第 44 号 平成 20 年 3 月 28 日 REPORT OF HYDROGRAPHIC AND OCEANOGRAPHIC RESEARCHES No.44 March, 2008

西太平洋の地形と磁・重力異常から求めた 海洋地殻構造と海山の地球物理パラメーター^{*}

植田義夫*1, 岩淵 洋*2, 春日 茂*3

Crustal structure and geophysical parameters of seamounts in the western Pacific as derived from topography and potential field anomalies^{\dagger}

Yoshio Ueda^{*1}, Yo Iwabuchi^{*2}, Shigeru Kasuga^{*3}

Abstract

Hydrographic and Oceanographic Department of Japan has conducted geophysical surveys by multi-beam soundings, KSS-30 type ship gravity meter, and sea-surface proton magnetometer in the western Pacific as a part of continental shelf surveys since 1992. The surveyed area includes Jurassic Magnetic Quiet zone and a large number of seamounts were confirmed. Using the topographic depth soundings and potential field data (free-air gravity and magnetic anomalies), Bouguer gravity anomalies on the assumed density values of 2300 kgm⁻³ and 2700 kgm⁻³ were compiled. The effective elastic thickness was estimated for the several seamounts. These values ranging from 5 km to 30 km, with the largeset occurrences in 10 km are consistent with the thermal rejuvenation due to mantle plumes occurred in Middle to Late Cretaceous time. Geophysical parameters (volume, density, magnetization) of 85 seamounts were calculated. A volume histogram indicates bi-modal pattern, one peek is around $1000 \sim 2000$ km³, and the other 5000 km³. This bi-modal pattern may be related with the different scale of magma plumes forming these seamounts. Density values of the seamounts were estimated from the correlation between calculated and observed free-air gravity anomalies. These density values show a mono-modal peek around a mean density of 2694 ± 253 kgm³. Magnetizations of the seamounts are also estimated by the least square inversion method using a topographic model and a gravity basement model derived from Bouguer gravity of the assumed density of 2300 kgm³. The precision index parameters (GFR) on the topographic model give usually larger values than those on the gravity basement model. This may suggest the depressed structure observed in the gravity basement is not real but artificial resulting from filtering process. Histogram of magnetization intensities of the seamounts shows considerable wide range distribution ,contrary to the density pattern. This may be ascribed to differences in magnetic field intensity at the origin or in metamorphoses of magnetic minerals composing seamounts. The Virtual geomagnetic poles (VGPs) of these seamounts generally coincide with the VGP curve estimated from DSDP and ODP results (Sager, 2006), however, Hanzawa and Katayama seamount (4, 6) and seamount D 4 (48) show considerable

[†]Received December 11, 2007; Accepted February 27, 2008

^{*1} 日本水路協会 Japan Hydrographic Association

^{*2} 航海情報課 Chart and Navigational Information Division

^{*3} 技術·国際課 Technology Planning & International Affairs Division

displacement from the VGP. The origin of this misfit may arise from tilting effects of the seamounts , non-dipole components of magnetic field, or the older seamount's formation ages in comparison with radiometric age of 80 Ma. Stage Euler poles derived from hotpot tracks (Koppers et al.,2001) failed to the reproduction of the APWP estimated by paleomagnetic method. Stage Euler poles reproducing the paleomagnetic APWP and South Pacific Isotopic and Thermal Mantle Anomaly (SOPITA) origin of West Pacific seamounts, are calculated and listed in this article for the consideration of the plate motions.

1 はじめに

西太平洋の海域は海洋底年代学から言うと最も 古いジュラ紀の形成年代を示し、地形的には数多 くの海山が存在することが知られている(徳 山、1980). この地球の最も古い海洋底の構造を 明らかにすることは、プレートテクトニクスを包 含して新たな地球観として提唱されている、プ ルームテクトニクスの検証とその発展にとっても きわめて重要な課題である.海洋情報部では大陸 棚の調査の一環として西太平洋の海域の地形・地 磁気・重力の調査をおこなってきており、その成 果は海洋情報部研究報告や技報に断片的に掲載さ れている. これらの成果は西太平洋のテクトニク スの構築にとっても重要な貢献が期待されるが, ここでは、2005年末までに実施された地形・重 力・地磁気の測量成果からテクトニクスの構築に とって基礎的な情報となる西太平洋の地殻構造と 海山の地球物理学的パラメータを求めたのでその 結果を紹介する.

2 データ

今回用いたデータは1992年1月から2003年 12月までの大陸棚調査のうち,測線に沿った毎 10分値のデータである(Fig1).実際の海洋測量 の方法は水路部技報(山内ほか,1992,鬼丸ほ か,1994,速見ほか,2001)に各航海毎に報告さ れているが,それらを要約すると,測位はGPS とロランCによる複合測位,水深はナローマル チビーム測深機,重力はKSS-30型海上重力計, 地磁気は曳航式海上磁力計により観測されてい る.その他の項目としては深海用音波探査装置 (マルチ及びシングル)による地質構造調査も同 時に実施されている.また,地震波速度構造を調 べるための精密地殻構造調査を目的とした調査も 行われている.後者の調査成果は現在解析段階に あり地殻構造の詳しい内容はまだ公表されていな いが,処理の完了した成果の一部は学会等でも発 表されている(金田他,2006 a, b;渡邊奈保子ほ か,2006).

2.1 地形

Fig.2は今回の測量データと人工衛星水深デー タ (Smith and Sanwell, 1994) を用いて作成した 地形図である.海域の西側には小笠原海台からほ ぼ東西に伸びるリッジ状の地形が際立っている が、何といっても目に付くのは海山の多さであ る. 西太平洋に分布する海山の特徴を,「海の星 座」になぞらえて語られたこともあるが、詳しい 調査ではさらにその数が増えたようである. 今 回,解析対象とした海山の総数は85におよぶ. 海山の多くは正式名称が付与されていないものが 多く,ここではとりあえず ID 番号で海山を識別 することとした. これらの海山群はマーカス・ウ エイク海山群と呼ばれているが、より詳しくみる といくつかの群に区分できる (Koppers et al., 2003). それらは、小笠原海台の東端から南にほ ぼ直線状に配列する Typhoon 海山群 (smt 9, 10, 11,14,15), 小笠原海台東端から東南東方向に配 列する Northern Wake 群 (smt 19, 20, 45, 52, 54, 67,80,83), Northern Wake 群の南側で, ほぼそ れに平行に配列する Southern Wake 群 (smt 28, 43,55,63,68,79,85) である. また, 海山 32 や海 山 42 付近から北ないし北東方向へ配列するもの も認められる。これらの海山のいくつかについて は放射年代が測定されているが (Ozima et al, 1977; Ozima et al.,1983; Koppers et al, 2003), 配

Fig. 1 Target area and track lines surveyed by S/V Takuyo and Syoyo during the continental survey project .

Contour line interval is 1000 m. An altimeter satellite depth data are also used for the area where is not included in surveys. Numbers are used for identification of analyzed seamounts. OGP: Ogasawara Plateau, NWPB: North Western Pacific Basiin. ODP sites 800, 801, and 878 are shown by star marks.

列と年代との間にはハワイホットスポットにみら れるような明瞭な関連は認められない.

2.2 重力

対象海域のフリーエア重力異常を Fig.3a に示 した. また、本海域での堆積層(炭酸岩塩層を含 む)および海山の基盤の平均的密度については幅 はあるものの,前者では 2200~2300 kgm³,後者 の基盤岩層の密度は2600~2800 kgm³の値が一 般的に用いられている (Wolfe and McNutt, 1991; Sager, 1995). ここでは石灰岩を含めた堆 積層の平均密度として 2300 kgm³を, また, 海 山の基盤岩層の密度を 2700 kgm⁻³と仮定しそれ ぞれの仮定密度のブーゲー重力異常を植田 (2003)の方法により計算した (Fig. 3 b, 3 c). なお,及川・金田(2007)は仮定密度 2670 kgm⁻³ のブーゲー重力異常を報告しているが、本論文は それとは独立に求めたものである. 仮定密度 2300 kgm³のブーゲー重力異常は堆積層を取り除いた 基盤の起伏を、そして仮定密度2700 kgm³の ブーゲー重力異常には海山の基盤深部に存在する であろう深成岩体の分布に対比できる.フリーエ ア重力異常図では比較的大きい海山の周辺部の異 常が負異常で囲まれている様子が認めらる.この ような構造は規模の小さい海山では認められず. 地殻を含めたリゾスフェアーの弾性により支えら れていると考えれれる.

ブーゲー重力異常(仮定密度 2300 kgm³)の異 常図でも、大きい海山のまわりは凹状の重力異常 となっている.この凹状の異常は、海山の基底部 を構成する海洋地殻の層厚変化と、もう一つは、 海山の荷重で海洋地殻を含めたリゾスフェアーの 湾曲がその原因と考えられる.実際にはこれら二 つの効果が重畳しているものと推察されるが、そ の判定には音波探査断面や地磁気異常からの解析 が必要である.仮定密度 2700 kgm³のブーゲー 重力異常図では、小笠原海台東側の部分と西側と で密度構造が異なり、西側はほぼ仮定密度に近い 密度であるのに対し、片山海山(6)とその東側 (12)および半沢海山(4)から南に張り出してい るリッジ部分は仮定密度よりも高密度の岩体で形 成されていることが推察される.また,海山 1,2のように,地設構造が小笠原海台から連 続性を有する構造などが認められる.一部の海山 (6,9,11,12,14,19,20,27,31,45,48,63,64,66,68, 69,74,83,85)では高密度な岩体が海山の基底部 に貫入していることが推察される.

2.3 地磁気異常

Fig.4 は今回の成果からとりまとめた西太平洋 海域の地磁気全磁力異常図である.本海域の北西 部及び北東部にはジュラ紀の地磁気編異常(M 29) が存在する.本海域の南西部にも M 26 から M 36 の 編異常が 確認 されている (Nakanishi et al., 1992; Sager et al., 1998). これらの編異常域 に囲まれてジュラ紀の地磁気静穏帯が分布する が、白亜紀の地磁気静穏帯とは異なり、短波長で 振幅の小さい縞異常の存在することが深海曳航式 プロトン磁力計の観測により明らかとなった.こ のようなジュラ紀の地磁気静穏帯の成因について は、地球磁場強度の短周期変動が海底地殻の磁化 強度の変化となって短波長の編異常を形成してい るとの考え (Sager et al., 1998) が提唱されてい る. 最近の観測成果でも地球磁場の強度の低下と 短周期の地球磁場強度変動もしくは頻繁な磁極の 反転現象が短波長地磁気編異常の原因であること が報告されている (Tivey et al., 2006). 地磁気縞 異常から同定される海洋底の年代は155 Myから 164 My で (Cande and Kent, 1995), 海山の年代 と比べ 40~80 Mv 程度古い.

本海域の北西部には縞異常にずれを生じさせて いる2列の断裂帯が北西から南東方向へのびてお り,その延長は海山19,20付近にまで及んでい る.個々の海山に対応した地磁気異常の様相はこ の図では判別しづらいが,おおむね山体の中央部 に負異常が卓越した分布を示すものが多く,磁化 方向が非常に浅いかむしろ上向きの方向を示唆す る.

Bouguer Anomaly(p=2300kgm⁻³)

Free-air Anomaly

Fig. 4 Total intensity magnetic anomaly of the western Pacific Contour interval is 50 nT.

3 重力異常から推定される地殻構造と海山の構造

3.1 Wiener-filter による地殻構造の推定

重力異常に見られるモート状の異常について は、海山の荷重に伴う基盤の変形とモホ面の起伏 にその原因がもとめられるのが一般的である.こ こでは Smith and Sandwell (1994) による wiener -filter により、重力異常を基盤の変形に起因する 部分(短波長領域)とモホ面の起伏に起因する部 分(長波長領域)に分離し、その短波長成分から 基盤の起伏を求めた.用いたフィルターの波長特 性を Fig.5 に、また、海山4、19、および海山45 の各南北断面に沿った地形と重力基盤の断面を Fig.6 に示した.

この結果では,海山の周辺の基盤が著しく落ち 込んでいることが認められる.このような基盤の 落ち込みを示す構造は,音波探査では捉えられて おらず,そのような構造が実際の構造を反映した ものか,もしくは重力のフィルター処理による見 かけ上の構造かについての別のデータからの判別 が必要とされる.ここでは,後に述べる地磁気異 常の解析結果から,この問題について言及するこ ととする.

3.2 リゾスフェアーの有効弾性厚の推定

本海域でのフリーエア重力異常が示すモート状 の負異常の原因を,海山の荷重に伴うリゾスフェ アーの弾性変形とみなした場合の有効厚を Watts (1978), Wolfe and McNutt (1991)の方法を用い て求め,その結果を Table 1 にまとめた.また,

Table 1 Effective thickness of the lithosphere sustaining seamount loads

Effective thickness (TE)	ID of Seamounts
5 km	4, 32
10 km	6, 20, 31, 42, 43, 45, 46, 47, 48, 64, 83
30 km	55,79

Used parameters : Young's modulus 6.5 x 10¹⁰Pa Poisson's Ratio 0.25 Water density 1030 kgm⁻³ Crust density 2800 kgm⁻³ Mantle density 3300 kgm⁻³

Fig. 5 Amplitude factor of the Wiener-filter against the s parameters with A = 9500. A Wiener-filter, used for gravity inversion is the product of a high-pass filter $w_1(k) = 1 - \exp[-2(\pi ks)^2]$, and a low-pass filter $w_2 = \{1 + Ak^4 \exp((4\pi kd))\}^{-1}$, where, k is a wave number and d is a depth of 6 km respectively (Smith and Sandwell, 1994).

Fig. 6 Bouguer gravity anomalies (2300 kgm^{-3}) and derived gravity basement depths of the seamount 4, 19, and 45.

(a) : Smt 4, profile between $(23.42^{\circ} \text{ N}, 147.05^{\circ} \text{ E}) - (28.83^{\circ} \text{ N}, 147.05^{\circ} \text{ E})$

(b)Smt 19, profile between (21.61° N, 150.10° E) - (27.03° N, 150.10° E)

(c)Smt 45 profile between (20.71° N, 153.46° E) - (26.13° N, 153.46° E)

Upper: Bouguer gravity anomalies (2300 kgm^{-3}) , and wiener-filtered anomalies (s=30 km, A=9500) are shown by solid and broken lines. Parameters s and A define the wavelengths for high-pass and low-pass filter giving amplitude factors of 0.5 (Smith and Sandwell, 1994).

Lower : Topography and gravity basement profiles are shown by solid and broken lines. A gravity basement is derived from wiener-filtered Bouguer gravity anomalies under the density contrast of 400 kgm⁻³.

Fig. 7 N-S profiles of the observed and calculated free-air gravity anomalies under the assumed effective thickness of 5 km, 10 km, 20 km, 30 km are shown for three seamounts of 4, 45, and 55.

Parameters used for calculations are listed in Table 1.

Upper : observed free-air gravity anomalies (thick solid lines) and derived free-air anomalies for assumed effective thickness (TE) are shown by broken lines.

Lower : Topographic sections are shown.

Fig.7 はその結果の代表的な解析結果を図に示し たものである.この結果から、本海域での有効弾 性厚は10kmのものが多く、海洋地殻の年代か ら予想される厚さに比べ非常に小さいことが認め られる. この結果は Smith et al. (1989) や Wolfe and McNutt (1991)の結果とほぼ一致しており 海洋地殻形成後に大規模な火成活動による地殻の 再加熱があったことを示すものである. このよう な有効厚の非常に小さい値は南太平洋の French-Polynesia 海域にも多く存在することが確認され ており、それとの類似性から北西太平洋で認めら れる有効厚15km以下の海山もこの海域で形成 され、その後のプレート運動で現在の場所へ移動 したものと考えられている (Smith et al., 1989). リゾスフェアーの弾性変形による解釈では、モホ 面の変形は、Fig.8に示すように有効弾性厚が30 kmの場合には1~2km,有効弾性厚が10kmで は4~5kmにも及ぶ.海山の周りでは海山の荷 重変形により基盤が落ち込む構造となるが、その 落ち込みは海山を形成している玄武岩質の溶岩や 噴出物が埋積して海山の裾野を形成している.弾 性補償モデルでは, モホ面の起伏と海山の沈降量

とがほぼ一致することになる.海洋底の堆積層を 除いた水深と海洋底の年代との関係からは(Parsons and Sclater, 1977),本海域沈降量は 3000 m 程度にも及ぶが、本海域ではリゾスフェアーの再 加熱のため、沈降量はこの値よりも小さいと考え られる. 海底地形から推定される沈降量としては 平頂海山の場合には第一近似的にはその頂面深度 と考えられるが、その量は1.5kmから最大でも 2km 程度である.この沈降量には先のリゾス フェアーの冷却過程に伴う沈降量の寄与も考えら れるので、海山の荷重変形による沈降量はそれら の推定量よりも小さいと考えるのが妥当であろ う.以上のことから、海山の荷重変形を説明する ためには、有効厚としては 30 km の方が沈降量 を説明するには都合がいい.このように、弾性モ デルにもとづく沈降量と海山の地形から推定され る沈降量とは必ずしも調和的でないが、この原因 を説明するには、モホ面の形成が単にリゾスフェ アーの弾性的沈降によるものだけでなく、上部マ ントル物質の分化にともなう地殻の形成を考える ことが必要であろう.いいかえれば、海山の 「根」の形成である.このように考えると、西太

Fig. 8 N-S profiles of Free-air gravity anomalies and derived Moho boundaries for the effective thickness of 10 km(a) and 30 km(b), respectively. Parameters used for calculations are listed in Table 1.

Upper : Observed free-air anomalies and gravity anomalies due to Moho-boundary are shown by solid and broken lines.

Lower: Topography and Moho depths are shown.

平洋の有効弾性厚が年代に比べて小さいことは確 かであるが、その解釈においては海山の「根」の 形成を考慮する必要があろう.この問題は本海域 の地殻構造の解明にとって極めて重要であると考 えられるが、本論文では問題点の指摘にとどめ、 その本格的議論は今後の課題としたい.

3.3 海山の基底部の高密度層

仮定密度 2700 kgm³のブーゲー重力異常には 既にのべたように,海山基底部に高密度層の存在 を示唆する高重力異常域が規模の大きい海山に多 く認められる.地震波速度構造の解析結果でも, 海山中心部に高密度層の存在を示唆する基底部か らの隆起状の構造が認められており、重力異常か らの推論を支持するものとなっている (Kaneda et al., 2007). この高密度層の起伏の規模は周囲との 密度差の仮定により異なる. ここでは密度差を試 行錯誤的に100 kgm³毎で変えて起伏を計算し, そのうちから、地震波速度構造から求められた海 山内部での高速度層の隆起量と一致するものをも とめた.この結果,密度差としては,300~400 kgm³で,比較的よい一致が得られることを確認 した. この結果を海山4, 19 および海山45 の南 北断面について Fig.9 に示した. このことから, 海山の中心部には密度 3000~3100 kgm³ に及ぶ 高密度岩体の存在が推察される. この密度はマン トル上部の密度 3300 kgm⁻³よりは小さいが,一 般的な深成岩体と考えられるハンレイ岩の密度と ほぼ一致するものである.

4 海山の地球物理パラメーター

4.1 体積

海山の基底部は堆積層で覆われているが、ここ では海山周辺の海底部を基底とした海山の体積を 見積もる.海山の裾野は堆積層で覆われていうた め、この量は体積の最小の見積もりに相当する. 西太平洋の海山を取り除いた際の平均的な海底の 起伏を求めるため、ここでは、GMTの median-filter (Wessel and Smith, 1991) を水深データに適 用し,その出力から大洋底の水深分布を求めた. そのようにして求めた水深値を参考として Fig. 10 に示す. この平均的水深を基底部とし, それより浅い部分の海山の体積を求めた.地形 データは2kmメッシュに変換し、ここのメッ シュの積和として体積を計算した.得られた海山 の体積のヒストグラムを Fig. 11 に示す.特徴と して、(1) 島弧火山フロントでの火山の体積に くらべ、対数スケールで1~2桁程度海山の体積 は大きい,(2)体積の分布には1000-3000 km³ 付近の大きさのものが最も多く, その他には 5000 km³付近やさらにそれ以上の体積を有するものが 認められ、その分布パターンの特徴としてはバイ

Upper: solid line; Bouguer gravity anomalies (2700 kgm⁻³)

broken line ; high-pass filtered Bouguer gravity anomalies

Lower : topographic sections (solid), high density gravity basement layers (dot line), and Moho boundaries (solid line) derived from long-wavelength components of Bouguer gravity are shown. The high density layer is calculated from high-pass filtered Bouguer gravity anomalies under the density contrast of 400 kgm⁻³, and Moho-boundary from low-pass filtered ones on the assumed density contrast of 500 kgm⁻³, respectively.

Fig. 10 N-S profiles of topography and general depth trend transecting the seamount 45 are shown. The general trend of depth is derived by medianfilter of GMT free-soft.

モーダル型の分布を示すようである.ここでの体 積は海山内部や頂上付近の堆積層や炭酸岩塩層を 含めた堆積であり,必ずしもすべてが火山起源と は言えないが,堆積層は厚くても1km未満と推 察されるので,オーダー的には概ね火山起源で形 成されたと考えて差し支えないと考えられる.体 積のヒストグラムにみられた特徴の(1)につい

てはたとえば富士山の体積が約1100 km³である ことを考えれば明らかである.海山の規模とその 原因となるマグマ供給源の規模とはなんらかの相 関があると考えるのが自然である. このことか ら,(2)については海山を形成した個々のプ リュームの規模を反映しているものと推察される が,小規模プリュームについては主プリュームか ら枝別れした分岐プリュームの規模を表現してい る可能性も考えられる.海山の体積のヒストグラ ムとそれを形成したマグマの規模との相関につい ては、北西太平洋以外の海山についても検証して いくことが必要であるが、そのためには少なくと も小海山を捉えることのできる測線間隔での地形 データが必要であり,残念ながら現時点ではその ようなデータは限られており、北西太平洋全域で の検証は今後の課題である.

Fig. 11 Histogram of volumes of seamounts

4.2 海山の密度

単位密度を有する地形の起伏に伴う重力異常は 波数領域では次式で関係づけられる (Parker, 1973).

$$R(g) = 2\pi\rho_0 G_c \cdot exp(-wz_0) \cdot \sum_{n=1}^{\infty} \frac{(-w)^{n-1}}{n!} \cdot R(z^n)$$
(1)

ここで R(g) は重力異常のフーリエ変換, ρ_0 は仮定密度で単位密度の場合は 1 kgm⁻³, G_c は万 有引力定数, z は平均水深 z_0 からの起伏値, λ_x , λ_y は x, y 軸方向の波長, u, v は x, y 方向の波数で $u = \frac{2\pi}{\lambda_x}, v = \frac{2\pi}{\lambda_x}, w$ は 合成 波数 で $w = \sqrt{u^2 + v^2}$ で与えられる.

ここで得られた重力異常の逆フーリエ変換から 計算重力異常を求めることができる.このように して求めた重力異常と観測された重力異常の2次 元の相関解析から次式により海水に対する海山の 密度差 $\Delta \rho$ と解析精度パラメーター (goodness of fitting ratio (GFR) を次式により求める (Grauch, 1987, Uyeda and Richards, 1966).

$$\Delta \rho = \left(\sum_{i=1}^{NX} \sum_{j=1}^{NX} Obs_{ij} \cdot Cal_{ij} / \sum_{i=1}^{NX} \sum_{j=1}^{NX} Cal_{ij}^2 \right) \cdot \rho_0 \qquad (2)$$

$$GFR = \sum_{i=1}^{NX} \sum_{j=1}^{NY} \left| Obs_{ij} \right| / \sum_{i=1}^{NX} \sum_{i=1}^{NX} \left| Obs_{ij} - Cal_{ij} \right|$$
(3)

ここで, i, jはx, y軸方向のi, j番目のグ リッド位置, NX, NYは解析範囲の最大グリッ ド位置, Obs, Cal はそれぞれ観測異常値, 計算 異常値, を意味する. 海山の密度は求めた密度差 Δρ に海水の仮定密度 1030 kgm⁻³を加えることで 求める.

本方法の精度を検証するため,密度を1000 kgm⁻³と仮定し,海山の地形に伴う重力異常を入 力し,海山の密度を逆に求めた.その結果5つの 海山(12,40,45,46,63)を除いてすべて10%以 内の密度推定誤差に収まることを確認した.ちな みに誤差の大きさの平均は3%以内(0.028)で ある.ここではフリーエア重力異常と地形の相関 から海山の密度を求めた.Fig.12(a)はGFR 値が 2.5以上で求まった結果をもとに作成した海山の 密度ヒストグラムである.密度の平均値とその標 準偏差は2694±253 kgm⁻³である.この値はブー ゲー重力異常の計算で用いた海山の基盤の平均密 度 2700 kgm⁻³と誤差の範囲内でほぼ一致してい る.

Fig. 12 Histograms of densities and magnetization intensities of seamounts.

- (a) : density
- (b): magnetization intensity

5 海山の磁化と古地磁気

西太平洋海域の海山の起源を推定する重要な情 報の一つは、これらの海山の磁化強度と磁化方向 から推察される海山の古地磁気に関する情報であ る.海山の磁化を決定する最も一般的な方法は、 海山が均一に磁化していると仮定し、最小二乗法 により磁化を決定する方法である.ここでは、海 山の地形モデルを仮定した場合及び、重力基盤を モデルとして採用した場合について、地磁気異常 から推定される海山の磁化について述べる.

用いた方法の精度検証のため、海山が磁化強度 5.0 A/mで $D_r=0^\circ$, $I_r=-10^\circ$ に磁化していると してその時の測線上のデータ分布点における全磁 力異常を計算し、そのデータを入力した場合の解 析結果から,その再現性を求めた.その結果,磁 化強度の推定値の平均及び標準偏差は4.81± 0.21 A/m, 大圏角度での磁化方向のずれの平均 及び標準偏差は2.2±1.7°で概ね仮定値を再現し ていることを確認した.なお、磁化強度が10% 以上の誤差を示すものや,磁化方向の再現角度に 大圏角度 5°以上の値を示す海山(26,30,45,53, 75)は、入力データのデータ数が少ない場合や、 他の海山が隣接する場合、及び海山の規模が大き い場合などに認められる.これらの大きな推定誤 差を伴う海山については以下の議論においては用 いないこととした.

5.1 均一磁化モデルによる磁化の推定

海山の磁化を決定する場合には、海山のモデル を地形的起伏にするか、重力基盤の起伏とするか によって,解析結果も異なる.ここでは,第一近 似として海山が均一に磁化しているものとして, そのモデルを地形とした場合と重力基盤とした場 合との比較結果を示す. ここで用いる重力基盤 は、仮定密度 2300 kgm⁻³のブーゲー重力異常に Smith & Sandwell (1994) のバンドパスフィル ター処理 (S=30 km, A=9500 km, 1/2 減衰波長 =160 km)を行い、その出力異常をもとに2次 元波数領域の収束法(Ueda, 1994)で求めたも のである.これらの解析結果をTable 2 に示す. なお、表中で網掛けしてあるのは地形モデルと重 力基盤モデルのうち GFR 値が大きい方の結果で 且つ GFR 値が 2.0 以上の結果である.均一モデ ルでの解析結果でGFRが2.0以下は一般に解析 結果の信頼度が低く、その結果は古地磁気的な考 察には用いられない(Sager, 1987). ここでは GFR 値が低い例として, MIT 海山(No. 31)と南鳥島 海山(No.51)を, GFRが3.0以上の高い例とし て海山 67 の例を Fig. 13 に示した. MIT 海山に

ついては ODP による 掘削が行われており、 海山 上部の火山岩の伏角から逆向き磁化(M1)の存 在が推定されている (Nakanishi and Gee, 1995). 今回の地形モデルでの解析結果では磁化 は $D_r = 41.7^\circ$, $I_r = 55.3^\circ$, J = 3.28 A/mとなる が, その GFR 値は 1.77 で信頼度の低い結果と なった. その原因としては Fig. 13 a に示すよう に測線間隔が粗く、山体の磁気異常を表すだけの 観測データ数が少ないことが原因と考えられる. 一方,南鳥島海山(No.51)の場合は観測磁気異 常と計算磁気異常との比較からわかるように地形 モデルでは表現できない非均一な磁気構造が大き いために、均一モデルでの GFR 値が小さくなっ たものと考えられる.一方,海山67の場合はほ ぼ均一モデルで観測磁気異常が説明できており GFR も 3.54 と高い値を示す.

Table 2 の網掛け表示した 52 の解析結果では, 地形モデルを用いた方が重力基盤よりも GFR 値 が大きい場合の割合は 38/52 であった.特に GFR 値が 2.5 以上の場合に限定すると,該当する 26 個の海山のうち重力基盤を用いた方が GFR 値が 大きいのは海山 35,77,84 の3海山だけであ る.このことから,本海域の海山の磁化の推定で は基盤の落ち込みを伴う重力基盤よりも,海山の 裾野が比較的平坦な地形モデルの方が実際の海山 の磁気基盤を近似していると考えられる.このこ とは,海山周辺の負重力異常の原因は基本的には モホ面の起伏に起因し,海底地殻表層部分での落 ち込みは海山からの溶岩などで埋積されているた めと推察される.

5.2 2層モデルによる海山の磁化の推定

5.1 で述べた結果は海山のモデルが一様に磁 化していると仮定した場合の結果であるが,実際 にはブーゲー重力異常から推定されたように海山 の基盤部分には高密度層の存在が示唆されてい る.海洋地殻の一般的な構造では,枕状溶岩など の玄武岩に代表される第2層とその下位のハンレ イ岩から構成される第3層の存在が知られている (Banerjee, 1984).ブーゲー重力異常から推定さ Table 2 Magnetizations of the seamounts derived based on the topographic and gravity basement models and other geophysical parameters (volume, density, age etc).

	F	Position	Μ	agnetiza	tion (1)				VGP		Μ	agnetization (2)	VGP								
ID	Lon	Lat	Dr	Ir	J	Lon	Lat	Plat		Dr	Ir	J Lon	Lat	Plat	Ι	Density		Vol M	ΛD	Age Name	Reference
	E°	N°	(°)	(°)	A/m	E°	N°	N°	GFR 1	(°)	(°)	A/m E°	N°	N°	GFR 2 1	0°kgm ⁻³	GFR 3	km ³		Ma	Age
2	145.20	27.23	-8.2 7.6	-0.8	1.96	342.5 313.8	61.3 50.9	-0.4	1.49	-8.5	-0.6	2.43 343.04 4 61 353 38	61.29 51.01	-0.3	1.78	2.47 2.78	2.7 3.43	4280 5791	D b	Matsubara^	
3	146.72	28.58	1.0	20.4	2.02	515.0	50.5	10.5	1.20	10.0	10.1	4.01 333.30	51.51	0.0	1.47	2.61	9.65	740	U	Fujibakama*	
4	146.98	25.80	12.9	-11.2	5.68	303.5	56.1	-5.7	2.33	1.1	-13.2	4.80 324.88	57.48	-6.7	2.20	2.72	6.27	5607	а	83 Hanzawa*	4
5	147.62	28.00	10.6	53.8	3.69	200.2	79.0	34.3	1.95	14.3	40.2	3.71 255.84	76.15	22.9	2.17	2.58	4.89	1015	b	Kikyou*	
6	147.80	25.72	3.1	-13.1	6.12	322.0	57.5	-6.6	2.74	7.1	45.0	0.85 228.88	83.61	26.5	1.25	2.90	6.43	7474	а	85 Katayama*	4
7	148.28	28.39	14.5	5.0	3.18	297.7	60.7	2.5	1.72	8.3	9.0	5.64 308.49	64.88	4.5	2.02	2.11	3.32	1139	b	Nadesiko*	
8	148.30	28.75	-16.2	-17.8	2.50	353.2	49.0	-9.1	1.30	-39.8	7.0	8.40 32.02	44.58	3.5	1.35	1.91	2.92	602	b	Susuki*	
9	148.53	22.93	-0.6	39.0	6.21	357.9	89.0	22.0	3.24	4.8	45.2	2.59 196.53	84.23 59.01	26.7	3.12	2.80	9.50	3020	a L		
11	148.56	25.44	-18.4	-29.0	4.45	338.7	48.9	-15.5	2.15	-16.3	-12.0	2.05 357.63	55.06	-6.1	2. 54	2.00	7.23 5.39	2640	D a	Hotokenoza*	
12	148.55	25.75	-72.9	1.8	10.70	51.8	15.8	0.9	1.34	-70.6	0.0	4.42 49.83	17.43	0.0	1.43	3.34	3.45	2248	b	Hotokenoza	
13	148.68	27.01	-9.7	-7.0	8.88	347.2	58.1	-3.5	3.22	-7.7	-3.4	8.80 344.32	60.34	-1.7	2.96	2.23	1.71	3109	а	Tyoyo*	
14	148.75	23.80	20.2	8.5	4.63	280.6	62.4	4.3	1.35	22.2	0.0	3.32 283.52	57.92	0.0	1.70	2.92	7.81	2021	b 1	14-139 Seth	3
15	148.90	23.18	-0.1	-28.1	12.19	329.0	51.9	-15.0	4.46	-5.7	-11.1	19.75 340.61	60.68	-5.6	2.30	2.72	2.86	391	а		
16	149.10	25.13	41.4	34.1	6.48	240.2	51.2	18.7	2.60	32.6	53.7	4.14 213.42	60.36	34.3	2.33	2.89	6.39	580	а	Gokyo*	
17	149.46	25.48	-14.3	9.3	3.74	5.2	65.1	4.7	1.72	-7.9	-0.2	4.66 347.23	63.31	-0.1	2.03	2.78	5.75	759	b	Nazuna*	
18	149.64	25.81	-4.0	-2.5	5.97	338.4	62.7	-1.3	1.68	9.1	-28.9	14.16 316.51	47.82	-15.4	2.19	2.61	3.66	493	b	Seri*	0
19	150.07	24.14	-4.5	-10.2	7.80	339.3	50.4	-5.1	2.47	8.4	-3.8	5.08 311.56	62.70	-1.9	2.22	2.80	6.27 7.09	6964 5220	a	113 Seirin*	3
20	150.65	20.32	11 1	-7.3	10.46	305.0	59.5 63.7	-0.0	2.20	- 33. 3	-2.1	4 40 337 55	56.45 67.96	-1.6	1.04	2.69	6.00	3156	a		
22	150.00	27.85	29.8	-25.2	3, 12	291.9	39.8	-13.2	1.55	1.6	30.5	37.94 323.25	78.44	16.4	1.44	2.39	4.25	349	a		
23	151.20	20.44	-18.7	-19.6	6.79	4.0	54.3	-10.1	1.59	-24.5	-30.1	4.85 6.31	46.20	-16.2	1.93	3.00	4.05	2434	b		
24	151.25	27.05	39.1	38.7	1.21	240.9	54.2	21.8	1.56	-55.8	38.5	1.96 68.07	39.28	21.7	1.39	2.31	4.69	703	а		
25	151.50	27.00	-51.7	87.5	3.06	146.9	30.1	84.9	3.03	-57.5	21.2	21.91 56.72	33.77	11.0	1.67	2.36	5.87	833	а		
26	151.68	20.02	-13.4	-10.4	7.84	0.5	61.5	-5.3	2.48	-24.8	-16.9	7.68 14.47	52.35	-8.6	2.28	2.86	8.93	2485	а		
27	151.69	19.70	-11.4	-31.2	5.05	349.6	51.8	-16.8	1.62	-50.7	-36.0	3.03 26.02	26.47	-19.9	1.55	2.91	7.55	4672	а	100 Hemler	3
28	151.76	21.54	-7.3	45.9	1.94	104.3	81.2	27.3	1.69	-22.3	69.0	2.39 128.16	54.64	52.4	1.96	2.55	6.23	1062	b	120 Himu	3
29	151.78	25.07	33.1 25.1	27.5	3.10	234.1	50.5	14.0	1.52	75.0	0.3	11 77 247 26	12 06	2.7	1.17	2.19	3.18 2.15	322	ь		
31	151.83	23.20	41.7	55.3	3.28	213.3	53.7	35.8	1.03	88.0	73.0	2.35 186.69	24.04	58.5	1.93	2.72	6.25	5389	b 1	20-123 MIT	3
32	151.89	23.61	-4.2	-10.9	3.35	340.5	60.6	-5.5	2.01	-7.2	-33.8	4.20 341.94	47.28	-18.5	2.16	2.69	6.82	3903	b	Smt 948	0
33	152.12	22.82		0	0											2.05	1.69	289			
34	152.20	26.50	55.7	44.9	2.66	228.9	40.6	26.5	1.19	52.7	32.1	6.02 241.46	40.66	17.4	1.46	2.73	6.37	2166	b		
35	152.32	24.20	7.0	39.1	3.16	258.9	83.2	22.1	2.84	-27.8	42.3	5.39 68.73	64.73	24.5	2.88	2.52	5.91	1348	b	78 D 1	2
36	152.33	27.13	-9.9	11.5	3.09	358.0	66.7	5.8	2.79	-27.1	16.7	3.50 31.51	58.32	8.5	2.52	2.61	6.06	1132	а		
37	152.43	25.79	4.2	51.1	2.78	183.4	83.0	31.8	2.29	-63.3	31.0	11.22 67.28	30.81	16.7	1.36	2.41	4.19	192	a L		
38 20	152.00	21.00	15.2	-4.4	4.00	304.0	50.9 66 2	-2.2	1.89	-24.5	-11.0	0.84 332.32	50.00 67.74	-5.9	2.01	2.41	8.15	844 1560	D		
40	152.07	19 20	-17 7	-21.4	4.03	4.2	55.0	-11 1	1.73	-16.6	-12.6	5.02 6.89	59.65	-6.4	1.41	3 12	6.03	4124	a h		
41	152.85	27.65	89.3	19.5	5.98	234.3	5.2	10.0	2.54	74.6	22.3	8.34 239.35	18.87	11.6	1.68	2, 58	8.17	1270	a		
42	153.00	23.37	-10.0	-20.5	6.43	350.2	54.7	-10.6	1.45	14.2	-8.5	3.71 304.56	59.07	-4.3	1.20	2.65	8.19	7662	а		
43	153.24	21.29	-9.9	-23.9	3.65	350.2	54.8	-12.5	2.31	-24.4	-18.5	3.32 13.55	51.03	-9.5	1.92	2.82	3.20	4205	а	102 Golden Dragon	3
44	153.31	25.63	19.1	19.1	3.64	281.0	65.9	9.8	1.59	74.1	48.3	7.65 221.41	25.29	29.3	1.16	2.54	7.52	1856	а		
45	153.36	22.90	21.6	-44.7	1.77	309.2	36.5	-26.3	1.07	67.8	-67.7	0.31 297.29	-4.65	-50.7	1.06	3.14	6.10	6862	а		
46	153.42	28.03	-8.3	19.4	6.15	358.3	70.4	10.0	1.45	-13.2	8.6	6.16 3.79	63.15	4.3	1.53	3.18	2.69	4499	b		
47	153.50	29.48	-8.5	5.1 -22.4	8.79	351.8	61.9 51.6	2.6	3.47	-5.0	-25.0	7.25 344.15 5 99 257 9	62.06 47.17	-10.0	2.85	2.83	5.47 0.77	5203	a	94 Makarov 78 D 4	1
40	153.55	23 72	-8.4	-24 5	7 81	315.0	52 5	-12.8	3 79	0.5	-28.9	13 81 332 9	50 84	-15.4	2 84	2.62	4 80	573	a	78 D 4	4
50	153.70	24, 19	13.9	-24.8	13.65	312.2	50.4	-13.0	2, 30	34.8	-24.5	40.94 287.39	39.74	-12.9	2.04	5.42	2.56	330	a		
51	154.03	24.23	18.8	-10.6	2.77	299.8	55.2	-5.3	1.26	44.7	-10.3	2.76 272.07	37.51	-5.2	1.27	2.70	6.90	2164	b	Minami-torisima'	*
52	154.48	22.52	1.7	-22.2	7.09	331.6	55.9	-11.5	2.55	0.7	-24.2	7.47 333.30	54.78	-12.7	1.83	2.74	8.16	1659	а		
53	154.50	24.40	-0.1	-15.5	8.18	334.8	57.7	-7.9	1.98	1.0	-27.7	9.79 333.03	50.86	-14.7	2.38	2.78	6.44	1439	b		
54	154.63	22.12	1.9	-2.5	3.01	329.7	66.5	-1.3	2.32	18.9	10.7	2.70 284.27	65.20	5.4	1.59	2.59	5.09	1149	а		
55	154.85	21.07	-8.3	-25.8	6.24	348.8	54.4	-13.6	2.34	-11.3	-29.3	5.10 352.47	51.60	-15.7	1.70	2.70	11.97	11847	a	97 Missy	3
57	155.05	18 55	-9.7	-9.5	2.39	320.7	63 5	-4.0	5.20 2.72	-5.5	-17 0	2 60 332 08	62 25	-4.9	2.12	2.00	12 00	2378	a		
58	155.33	22,06	7.5	48.1	2. 98	197.7	80.2	29.1	1.46	0.3	59.7	1.97 156.01	71.47	40.6	1.52	2. 72	7.81	1582	a b		
59	155.53	23.03	18.5	-4.1	3.54	297.3	59.1	2.1	1.24	20.4	21.1	3.25 273.91	67.07	10.9	1.36	2.70	4.92	1218	b		
60	155.89	23.19	-33.0	-36.3	1.09	15.1	36.0	-20.2	1.05	55.2	-69.1	0.99 306.01	0.33	-52.6	1.11	2.62	5.36	1478	b		
61	156.00	20.40	42.5	-49.9	4.96	296.3	24.6	-30.7	2.02	31.0	-13.9	5.19 284.81	48.94	-7.1	1.46	2.71	5.72	2533	а		
62	156.10	23.57	10.6	-20.9	13.28	318.1	54.1	-10.8	4.99	3.3	-28.6	22.73 330.96	51.07	-15.2	1.40	2.67	8.68	501	a	100 T -	
63	156.32	20.84	19.1	20.3	7.62	272.8	68.9	10.5	1.19	31.8	-10.1	7.59 282.50	49.44	-5.1	1.80	2.60	1.58	3956	b	103 Jennings	3
04 65	100.01	20.20	-12.8	-23.3	9.65	358.Z	56 1	-13.3	2.14	- 20.7	9.3 -95.9	0.79 58.51	33.48 40 61	4.7	1.04	3.00 2.01	2.01 1 90	0273 9259	a		
66	156.78	21.00 19.68	-0.3	-41.4	5. 43	337.2	46.5	-23.8	3. 14	1.7	-34.8	7.26 334 16	40.01 51.14	-19.1	2.02	2.70	4.98	2332 1206	a a		
67	156.90	22, 98	-2.2	-17.6	8.39	341.0	57.9	-9.0	3.54	-1.9	-27.5	6.54 339.93	52.41	-14.6	2.53	2.82	6.58	2718	a		
68	157.24	20.92	-12.5	-26.4	13.13	357.6	53.0	-14.0	3.09	74.7	23.0	1.77 241.11	18.37	12.0	1.21	3.18	5.06	5025	a	101 Maloney	3
69	157.30	23.60	-0.2	-13.6	7.90	337.7	59.5	-6.9	2.49	26.6	-1.7	0.84 286.94	54.38	-0.9	1.09	2.79	7.55	6993	а	-	
70	157.30	24.50	-16.9	-39.3	12.08	358.0	40.5	-22.2	3.47	-10.2	-10.3	24.95 357.13	58.69	-5.2	1.89	2.68	5.13	167	а		
71	157.45	20.00	-1.7	-34.8	8.11	340.1	50.8	-19.2	1.93	-5.0	-46.4	4.12 343.43	42.09	-27.7	1.25	2.97	4.04	1813	а		
72	157.51	26.90	-14.6	-14.2	4.45	2.1	53.1	-7.2	2.10	-28.8	-3.2	12.66 26.39	50.21	-1.6	2.11	2.57	6.57	1328	b 1-		
73	157.00	21.15 10 55	13.5	-9.5 -15.6	5 10	309.1 399.7	61.7	-4.8	1.93	-7.1	-21.6 1 G	8.20 350.53 3 34 959 54	22.62	-11.2 9.2	1.99	2.67	8.20 8.79	1810	D		
74	157.90	19.00 22.74	-5.0	-16.4	5.48 4 11	349 1	58 4	-7.9	2.55	-18-9	4.0	5.54 258.54 4.17 17 05	55.03 60.84	-0.4	1. 58	5.07 2.51	0.12 8.44	4730 734	a a		
76	158.03	23.20	6.4	-8,1	11.31	324, 3	62.0	-4.0	2.34	-17.4	-7.7	10.02 12.38	58.06	-3.9	1.63	2.65	4.25	3852	a		
77	158.15	23.75	0.9	0.9	6.95	336.0	66.7	0.4	3.26	-3.2	-13.3	8.02 344.45	59.34	-6.8	4.51	2.66	9.35	1911	b		
78	158.26	19.20	-13.3	-21.1	3.55	2.9	57.2	-10.9	3.94	-9.0	-23.6	3.10 354.65	57.26	-12.3	3.26	2.81	12.44	2112	a		
79	158.40	21.09	-17.0	-19.8	8.19	8.1	54.6	-10.2	1.94	-19.7	-20.5	5.65 11.77	52.86	-10.6	2.26	2.88	8.58	7426	b		
80	158.40	23.65	6.2	-17.9	5.89	327.2	56.6	-9.2	3.72	-11.3	1.6	11.34 5.63	64.67	0.8	3.17	2.71	8.59	1050	а		
81	158.85	24.62	-11.5	-14.5	5.64	359.5	56.1	-7.4	3.98	8.5	-20.8	13.83 324.61	53.65	-10.8	2.93	2.63	6.40	1051	a		
82 82	150.37	22.00	-3.5	-7.8	12.78	347.Z	66.6	-3.9	2.43	9.0	-33.U 6 0	5.14 326.27 5.07 10.00	49.06	-18.0	1.44	2.84	5.20 5.09	3839	a	09 Sories	1
83 84	109.39	23.7Z	-5.6	-10.8	8.00 2.81	336 7	60.4	-10.2	2.45	-15.4 9.7	0.8 -3/ /	0.97 18.00	04.81 51.60	3.4 -18 0	1.35	2.9Z	5.92 10.54	1047Z 1974	a b	30 Scripps	1
85	159.60	21.41	13.8	-32.3	5.02	319.5	48.8	-17.5	1.50	73.0	-8.0	2.26 259.82	14.24	-4.0	1.15	2.03	4.96	7088	a 8	2-87 Lamont	1,3

The results giving greater GFR values are hatched on the condition of GFR = 2.0. Age References: (1) Ozima et al. (1977) ; (2) Ozima et al. (1983) ; (3) Koppers et al. (2003) ; (4) 石油公団 (2000) The name of seamonts with * marks show the formal names and others are temporary names used in research papers. Magnetization (1) means the results derived from topographic models and Magnetization (2) the results from gravity basement models, respectively.

Fig. 13 Results of uniform magnetization models. Observed , calculated anomalies and residuals are shown with contour intervals of 100 nT. Topographic contours at the depth of 2000 m and 4000 m are also shown.

- (a) : MIT seamount (No. 31)
- (b) : Minami-Torishima seamount (No. 51)
- (c): Seamount No. 67

れる高密度層については屈折法地震探査の結果で 6.0から 6.5 km/sec が求められており、これら の結果を考慮すると, 高密度岩層は主に, ハンレ イ岩体から構成されると考えられる. ハンレイ岩 の磁化の測定例では、玄武岩に比べて熱残留磁化 は1桁程度小さく,また,自然残留磁化の誘導磁 化に対する比(Q値:Konigsberger ratio) は対 数スケールで10⁻¹~10¹までの幅広い値が報告さ れている (Kent, et al., 1978; Gee et al., 1989). ここでは深成岩体の磁化は海山の表層部の磁化と は異なり、誘導磁化成分が強く、磁化方向も現在 の磁場方向と仮定し、海山の地形モデルの部分 と、深部高密度層に対応した部分のそれぞれの磁 化を求めた.なお、高密度層はブーゲー重力異常 (2700 kgm⁻³) から密度比を 400 kgm⁻³ と仮定して 求めたものである. その結果から GFR 値が 2.0 以上の結果を示す51の解析結果をTable3に示 す.2層モデルの場合には計算機メモリーの関係 から地形モデルのメッシュ間隔は2.5kmのもの を使用しており、均一モデルの場合に比べて地形 モデルの精度はやや低いが、ここに示した 51 例 の解析結果では、2層モデルの方が高いGFR 値 を示すのは 34 例, 逆に低い例は 15 例, どちらと もほぼ同じ結果が2例であった.このことから, GFR 値そのものも2層モデルの方が高い値を示 すことが認められる.2層モデルの解析結果には 高密度層の磁化強度が負の値を示すものが含まれ ているが、このような磁化は現在の誘導磁化の考 えや粘性残留磁化モデルでは受け入れられない結 果であり、それらの海山の磁化構造はより複雑な 非均一磁化モデルでの考察が必要であろう.

5.3 海山の磁化強度のヒストグラム

Table 2 に示した網掛け表示した結果から海山 の磁化強度のヒストグラムを作成した(Fig. 12 (b)).また,密度と磁化強度の相関図を Fig. 14 に 示した.海山の基盤岩は一般的には玄武岩質の塩 基性岩体と考えられる,そのような岩体は比較的 一様な磁化強度が予想されるが,実際には磁化強 度の分布は密度と異なり 2.0 から 14.0 A/m まで

とバラツキが大きく、ヒストグラムに顕著なピー クは存在しない.磁化強度と密度との相関係数は 0.17 で両者に顕著な相関は認められない。海山 の体積と磁化強度の相関図(Fig. 15)では、全体 的に見て体積の規模が小さい海山ほど磁化強度の バラツキが大きい傾向が認められる.一般的には 体積の大きい海山はその形成期間が長く、小さい ものは比較的短期間に形成されたと考えられるの で、この傾向は地球磁場強度の時間的平均の違い を示唆しているものと考えられる. 白亜紀の 100 ~80 Maの時期は地球磁場強度の変動が激しかっ たことが報告されており (Juarez and Tauxe, 1998; Tauxe and Staudigel, 2004) 今回明らかと なった海山の磁化強度の大きなバラツキは海山の 組成の差にもとめるよりもむしろ海山の形成時点 での地球磁場強度の変動による熱残留磁化の差に よるものと考えられる. それ以外の可能性として は、海山の磁化を担う磁性鉱物の変成作用の程度 の差が考えられるが、現時点では、これを実証す るデータが極めて少ないのが現状である.この問 題については掘削による個々の海山の基盤岩石に よる検証が必要であり,今後の検証課題であろ う.

5.4 西太平洋の海山の起源と古地磁気

Fig. 16 a は Table 2 に示した海山の磁化方向か ら求めた古地磁気極を,また Fig 16 b には Table 3 に示した 2 層モデルの結果から求めた古地磁気 極を,又 Fig. 17 には Table 3 の結果のうち放射 年代が求まっている海山の VGP を示した.それ ぞれの図には海山の地磁気異常と DSDP や ODP などの深海掘削の海底玄武岩の古地磁気から求め られた古地磁気極移動曲線およびオントンジャワ 海台の古地磁気極を示した (Sager, 2006).

全体的に見れば今回求めた海山の古地磁気極は 最新の Virtual Geomagnetic Pole (VGP) モデル にほほ含まれることが認められるが,一方では半 沢海山(4),片山海山(6),海山48のように 有意なずれを示す海山も認められる.これらの海 山の年代は83 Ma,85 Ma (Takayanagi et al.,

Yoshio Ueda, Yo Iwabuchi, Shigeru Kasuga

ID	Positi	ion		Magneti	zation		VG	Р	Plat	GFR
	Lon	Lat	Dr	Ir	J 1	J 2	Lon	Lat		
	E°	N°	$(^{0})$	$(^{0})$	A/m	A/m	E°	N°	N°	
4	146.98	25.80	4.7	-23.8	5.59	2.22	319.59	51.48	-12.4	2.499
6	147.80	25.72	6.8	-18.4	5.57	0.50	316.35	54.23	-9.4	2.790
9	148.53	22.93	-4.8	51.5	3.33	1.62	124.75	79.84	32.1	3.478
10	148.57	23.44	-26.3	2.9	4.02	1.50	21.65	56.31	1.4	2.186
13	148.68	27.01	-7.6	-10.9	8.50	-1.61	342.54	56.66	-5.5	3.167
15	148.90	23.18	-5.4	-22.5	14.59	-9.47	338.15	54.69	-11.7	4.485
16	149.10	25.13	27.7	10.2	6.57	2.83	271.50	56.81	5.2	2.923
17	149.46	25.48	-37.1	-65.6	3.56	10.42	353.72	9.49	-47.8	2.398
18	149.64	25.81	-6.1	-12.0	4.97	10.54	340.97	57.59	-6.1	2.237
19	150.07	24.14	-5.4	-18.8	7.05	2.43	339.53	55.82	-9.6	2.604
20	150.63	23.85	-5.4	-15.3	11.67	-0.18	340.79	57.90	-7.8	2.294
25	151.50	27.00	47.4	51.7	3.63	-5.57	222.26	48.76	32.3	3.260
26	151.68	20.02	-4.3	-5.1	8.51	-1.81	342.74	67.05	-2.5	2.677
28	151.76	21.54	-10.4	30.3	1.93	-5.16	35.44	78.81	16.3	2.198
30	151.83	23.26	45.7	-0.1	3.28	-5.72	262.97	39.88	-0.1	2.138
35	152.32	24.20	27.5	30.7	2.98	-4.80	253.66	63.18	16.6	3.503
36	152.33	27.13	-10.0	5.2	3.26	-0.59	355.37	63.65	2.6	2.983
37	152.43	25.79	3.7	54.0	2.71	0.09	171.94	80.72	34.5	2.192
41	152.85	27.65	84.2	25.4	4.89	1.32	233.52	11.23	13.4	2.178
43	153.24	21.29	-3.4	-21.7	3.90	-2.20	339.35	57.30	-11.2	2.403
47	153.50	29.48	-10.5	-5.8	8.51	4.06	352.59	56.08	-2.9	3.591
48	153.53	19.61	10.5	-27.7	8.79	0.14	316.00	54.14	-14.7	2.022
49	153.67	23.72	-8.7	-35.6	7.68	2.66	345.46	45.79	-19.7	4.474
50	153.70	24.19	18.4	-18.4	16.58	-6.36	303.44	51.86	-9.5	2.486
52	154.48	22.52	4.1	-21.1	7.21	-0.87	327.21	56.33	-10.9	2.550
53	154.50	24.40	-2.2	-13.6	8.76	-3.39	338.62	58.65	-6.9	2.023
54	154.63	22.12	6.7	-6.5	3.40	-2.12	319.30	63.80	-3.2	2.323
55	154.85	21.07	-7.3	-22.1	6.34	-0.29	347.90	56.70	-11.5	2.323
56	155.05	22.80	-23.6	-14.9	2.37	-3.13	15.06	51.82	-7.6	3.484
57	155.25	18.55	0.4	-13.3	2.55	1.07	334.37	64.69	-6.8	2.731
61	156.00	20.40	37.5	-42.9	5.29	0.94	295.47	31.85	-24.9	2.092
62	156.10	23.57	8.5	-17.3	13.86	-3.09	320.70	56.53	-8.8	5.441
65	156.69	21.65	-7.9	-15.4	10.79	-1.27	352.28	59.53	-7.8	3.096
66	156.78	19.68	1.2	-37.4	5.74	2.38	335.13	49.38	-20.9	2.731
67	156.90	22.98	-3.0	-19.6	8.78	0.93	342.33	56.81	-10.1	3.481
68	157.24	20.92	-18.8	-27.7	11.80	1.02	6.19	49.86	-14.7	3.388
69	157.30	23.60	-1.4	-16.5	7.48	0.94	339.97	57.95	-8.4	2.501
70	157.30	24.50	87.8	-67.7	12.93	14.06	295.74	-17.38	-50.7	3.428
71	157.45	20.00	-3.3	-27.3	9.51	-1.23	343.03	55.38	-14.5	2.031
72	157.51	26.90	-20.9	-23.6	4.31	-9.48	7.54	45.82	-12.3	2.458
73	157.66	21.15	31.2	-8.2	7.20	-5.44	283.55	50.31	-4.1	2.249
75	157.98	22.74	-0.1	-12.2	4.51	-2.57	338.15	61.10	-6.2	2.607
76	158.03	23.20	-3.9	-7.3	11.69	-11.02	346.66	62.87	-3.7	2.850
77	158.15	23.75	-2.4	-3.6	7.10	2.01	343.75	64.31	-1.8	3.646
78	158.26	19.20	-14.1	-16.5	3.78	-0.16	6.17	59.07	-8.4	4.765
79	158.40	21.09	-24.2	-22.9	8.17	1.91	16.41	49.29	-11.9	2.060
80	158.40	23.65	0.6	-16.0	4.25	6.82	337.23	58.16	-8.2	4.447
81	158.85	24.62	-0.7	-19.9	5.21	-3.28	340.01	55.11	-10.3	4.185
82	159.37	22.00	-4.3	1.6	12.43	-1.95	351.18	68.36	0.8	2.834
83	159.39	23.72	-4.8	-0.6	8.65	-2.62	351.02	65.53	-0.3	2.517
84	159.55	19.31	0.4	-15.9	3.35	-0.26	338.75	62.58	-8.1	2.449

Table 3 Magnetizations of the seamounts derived by 2-layers model.

J $1\div$ Magnetization intensity of the uplift of the seamounts ; J $2\div$ Magnetization intensity of the high density layer beneath the seamount uplift

Magnetization direction of the high density layer was assumed to be polarized in the present magnetic field.

Fig. 14 Correlation between densities and magnetization intensities.

Used data are listed in Table 2. A calculated correlation coefficient is 0. 17.

Fig. 15 Correlation between volumes and magnetization intensities. Used data are listed in Table 2.

2007), および 78 Ma (Ozima et al., 1983) という 値が報告されている.又,半沢海山から南へ延び る尾根から採取された玄武岩の放射年代は 47~ 48 Ma を示す(桂ほか, 1994).これらの海山の 古地磁気極の位置は 80 Ma の位置から 20 度ほど 南にある 112~123 Ma の極に近い.このような 結果は 2 層モデルで求めた古地磁気極にも認めら れ,磁化の決定誤差に原因をもとめるのは困難と 考えられる.Sager and Koppers (2000) は, 84 Maの海山の古地磁気極はその位置的偏差が大き く, 西側と東側に極位置が求められることを述 べ、その原因を白亜紀後期の急激な極移動に原因 を求めたことがある. 今回の海山(4,6,48)の古 地磁気極は Sager and Koppers (2000)の分類に よれば西側の古地磁気極に属することになる.こ れらの海山の VGP が 80 Ma の平均的古地磁気極 から大きくずれる原因としては、真の極移動のほ かにも非双極子磁場効果や、海山形成以後の傾動 的な構造運動なども原因に考えられる. 半沢海山 や片山海山付近のリソスフェアーの有効厚は5~ 10kmと異常に薄く、海山の荷重に伴う沈降にお いて南北に違いがあれば、このような傾動運動の 可能性はありうると考えられる。また、これらの 海山の活動時期は放射年代で与えられる年代より も 20 Ma 程度さかのぼる可能性も考えられる. 例えば Seth 海山(14)から採取された岩石の放 射年代は114 Maから139 Maの非常に幅広い年 代値を示しており、海山の形成過程が20 My に も及ぶ可能性を示唆している(Koppers et al., 2003). この原因の解明のためには、これらの海 山の掘削による直接的検証が重要であり、その実 施が望まれる.

このような海山とは別に,海山9や37のよう にそのVGPが極の位置に近接している海山も存 在する.これらの海山の磁化が熱残留磁化による とすれば,新第三紀以降までこれらの海山の火山 活動があったと考える必要があるが,一方,これ らの海山の磁化強度は2~3 A/m と比較的低い値 であることからこれらの海山の磁化が誘導磁化も しくは粘性残留磁化によるとも考えられる.この 場合,熱残留磁化が何故獲得されなかったのかが 問題となる.

2 層モデルから求めた古地磁気極は均一磁化モ デルから求めた古地磁気極と比べ,所々で多くの 海山の VGP が集中している様相を示す.とくに 57°N,340°E付近には11個の海山(13,15,18, 19,20,43,67,69,71,80,81)の古地磁気極が集中 することが認められる.この中で高密度層の磁化 強度が正の値に限るとその数は5個の海山(18,

Fig. 16 Virtual geomagnetic poles (VGPs) derived by uniform-magnetization models (Table 2) and two-layers models (Table 3) are shown in (a) and (b), respectively.

Apparent polar wander path linking VGPs for 123 Ma, 92 Ma and 80 Ma (Sager, 2006) are shown by heavy broken lines. Ellipses mean the 95% error ranges of the VGP at the center. A paleomagnetic pole derived from Onton -Jawa plateau with mean age of 122 Ma (Sager, 2006) is also shown.

- (a) : VGPs listed in table 2 are shown with solid triangles for the results (GFR ≥ 2.5) and open triangles for those (2.5 >GFR ≥ 2.0).
- (b): VGPs listed in table 3 are shown with solid triangles for the results (GFR ≥ 2.5) and open triangles for those (2.5 >GFR ≥ 2.0).

Fig. 17 Virtual geomagnetic poles (VGPs) of the dated seamounts listed in Table 3.

The age data of the dated seamounts are shown within parentheses.

Apparent polar wander path linking VGPs for 123 Ma, 92 Ma and 80 Ma (Sager, 2006) are shown by heavy broken lines. Ellipses mean the 95% error ranges of the VGP at the center.

19,67,69,80) となるが. ちなみにこれらの古地 磁気極のフィッシャー統計でもとめた古地磁気極 は56.7°N,340.6°E, α₉₅=1.3となり,きわめ て平均誤差の少ない古地磁気極の値が求められ る.年代値としては海山43が102.1 Ma,海山 19,20が112.7 Maであることから,前期白亜紀 (Albian 期)の時期にこれらの海山が同時に形成 された可能性が考えられる.

今回の北西太平洋の海山の起源については,南 太平洋の活動的ホットスポットである同位体熱異 常域 (SOPITA: South Pacific Isotopic and Thermal Anomaly) 付近で形成されたと考えられてお り (Ozima et al., 1977; Staudigel et al., 1991; Bergersen, 1995; Koppers et al., 2003), それらの ホットスポットの軌跡から過去の太平洋プレート の各年代での回転運動のオイラー極位置が求めら れている (Duncan and Clague, 1985; Engebretson et al., 1985; Bergersen, 1995; Koppers et al., 2001). このようなプレート運動の復元は,海山 の配列とその年代系列をもとに推定されている が、古地磁気の観点からは、海山の APWP の復 元についても検証されなければならない.ここで は Koppers et al. (2001)のオイラー極とその周 りの回転運動による海山の移動から理論的に復元 した APWP の軌跡を求めた (Fig. 18).この結果 によると、80 Ma の VGP は北緯 60 度付近で、深 海掘削 (DSDP, ODP)の掘削資料の古地磁気か ら求められた 80 Ma の VGP (Sager, 2006)に比 べ緯度で約 12 度南側に位置することになる. また、100 Ma 以前から 123 Ma の間では VGP の 位置に大きな変化がないが、深海掘削資料の古地 磁気から求められた APWP (Sager, 2006)では、 その間にも約 1500 km の移動が示されており、

このような違いの原因は,天皇海山列に代表さ れるハワイホットスポットの軌跡からオイラー極 を求める際に,ホットスポットの位置が固定して いたとする仮定がその大きな原因と思われる.天 皇海山列を構成するデトロイト海山(81 My)の 現在の緯度は51.2°Nにあり,ホットスポットが 固定していたとすれば,緯度で約31°のプレート の移動が想定されるが,掘削資料の古地磁気から は,デトロイト海山の古緯度は36°Nとなり,そ の移動量は当初のほぼ半分の16°となる(Tardano and Cottrel, 1997).この結果はハワイホッ トスポットそのものの南側への移動を示唆するも のである.

ここでも両者の間に大きな差が認められる.

今回, 深海掘削 (DSDP, ODP) の古地磁気から 求められた 40 Ma から 123 Ma の APWP (Sager, 2006; Beaman et al., 2007) を再現し且つ, 今回 の海山の起源を SOPITA に復元できるオイラー 極を試行錯誤的手法で求めた. Table 4 はこのオ イラー極とその回転角をまとめた. Fig. 19 はこ のオイラー極による SOPTIA の Ruruto 火山の軌 跡とそれに伴うプレート運動に伴う APWP を復 元したもので, この極によれば, どちらもほぼ復 元できることがわかる.

北西太平洋の古地磁気に関して,最近の ODP の資料による古地磁気研究からオントンジャワ海

- Fig. 18 Calculated APWP and tracks of the Ruruto hotspot (209. 0° E, 22. 5° S) in the South Pacific Thermal and Isotopic Anomaly (SOPITA, Staudigel et al., 1991) based on the stage Euler poles by Koppers et al. (2001).
 - (a) : Calculated APWP based on the stage Euler poles by Koppers et al. (2001) are shown by open triangles.
 VGPs derived from paleomagnetic study (Sager, 2006) are also shown by star marks with ages in Ma.
 (b) : The day of Pureta bates time COPPTA based on the stars. Euler poles have been also shown by star marks with ages in Ma.
 - (b) : Tracks of Ruruto hotspot in SOPITA based on the stage Euler poles by Koppers et al. (2001).Hotspots in SOPITA are also shown with open circles, whose centers are indicated by closed small circles.

- Fig. 19 Calculated APWP and tracks of the Ruruto hotspot in SOPITA based on the stage Euler poles derived in this study.
 - (a) : Calculated APWP based on the stage Euler poles are shown by open triangles. VGPs derived from paleomagnetic study (Sager, 2006) are also shown by star marks with ages in Ma.
 - (b) : Tracks of Ruruto hotspot in SOPITA based on the derived stage Euler poles shown in Table 4.

Table 4 Euler poles for reproduction of the A	PWP de-
rived from paleomagnetism of DSDP	samples
and SOPITA origins of the seamounts	

Lat (°N)	Lon (°E)	Angle°
68.0	298.0	-34.0
20.0	260.2	-8.0
45.0	290.0	-18.0
45.0	260.6	-18.4
	Lat (° N) 68.0 20.0 45.0 45.0	Lat (° N) Lon (° E) 68.0 298.0 20.0 260.2 45.0 290.0 45.0 260.6

台(OJP)の古地磁気極の位置がそのほかの北西 太平洋の海底から求めた古地磁気極と有意な差が あることが見出されている (Riisager et al., 2003; Sager, 2006). Fig. 16 に OJP で示したのは 122 Maの OJP の古地磁気極で、同じ年代の他の 北西太平洋の海底から求めた古地磁気極に比べ約 15 度北にずれていることがわかる. OJP は今回 の解析対象海域の約20度南方に位置するが, OJP を乗せた局地的プレートが、どこまで及んでいる かについては大変興味ふかい問題である.今回の 古地磁気極では海山 54, 57, 76, 77 がこの古地磁気 極の域内に含まれる.ただ,残念ながらこれらの 海山の年代は決定されていない. OJP の古地磁気 極の変位の原因としては、海台の傾動によるとの 説 (Mayer and Taruduno, 1993), OJP を乗せた 局地的プレートの運動 (Sager, 2006), などが出 されているが、いずれも検証されたものでなはな い. この原因については小笠原海台の海山と同じ ような原因(傾動運動,非双極子磁場効果)など も考えられるが、その解明はこれからの課題であ る. 今回の海山では年代の未定な海山が多く残さ れており、それらのデータが明らかになれば本論 文でのべた未解決の課題の解明にも資するものと 期待される.

6 まとめ

大陸棚調査で求められた北西太平洋の地形,重 力及び地磁気のデータを用いて,海洋地殻の構造 とそこに分布する85の海山について体積,密 度,磁化に関する地球物理パラメーターを求め た.その結果以下のことが明らかとなった.

(1) 重力異常と地形から推定されるリソスフェ

アーの有効厚は5kmから15kmで多くは10km の値を示す.このことから,従来のマントルプ リュームによる地殻の再加熱が広範囲に生じたこ とを示唆する結果となった.

(2)海山の体積分布には 1000~2000 km³ 付近と 5000 km³ 以上に二つのヒストグラムにピークが 認められた.このようなバイモーダルなピークは プリュームテクトニクスでのマグマの規模の違い を反映していると考えられる.

 (3)海山の密度のヒストグラムでは 2700 kgm⁻³
 付近にピークが認められ、その平均値と標準偏差 は 2694±253 kgm⁻³である.

(4)海山の磁化強度のヒストグラムには顕著な 単一のピークはみとめられず,2.0~14.0 A/m におよぶバラツキが大きい分布を示す.このこと の原因については,海山の生成時での地球磁場強 度の違いや,海山の磁化をになう磁性鉱物の変成 度の程度の違い,の2つの可能性が考えられる.

(5)海山の地磁気異常の解析において地形モデ ルを用いた場合と重力基盤を用いた場合を比較す ると,多くの場合,地形モデルの方が解析精度指 数(GFR)が大きい値を示す.このことから,海 山の縁辺部に予想される重力基盤の落ち込みは フィルター処理に伴う見かけ上の構造と考えられ る.

(6)海山の深部構造にはハンレイ岩体と推定される高密度層の隆起構造が認められる.このような構造は比較的均一な密度構造を示唆する島弧型の火山との大きな違いである.

(7)海山の地磁気異常の解析において,重力異常から推定される高密度層を新たにパラメーターとして解析することにより,VGPの位置のバラッキ傾向は相対的に減少することが認められる. 特に57 N,340 E 付近には5個の海山(18,19,67,69,80)のVGPが集中しておりこれらの海山が112 Maから92 Maの間に形成されたものと推測される.

(8) 今回の解析した海山の磁化方向から求めた 古地磁気極の位置は Sager (2006) が深海掘削に より求められた海底地殻の古地磁気極の移動曲線 に概ね一致する.しかし,半沢海山(04),片山 海山(06)及び海山48のように年代値から推定 される古地磁気極とは著しくずれた位置を示すも のも存在する.この原因としてはこれらの海山の 傾動運動の影響や形成年代の誤差,極移動等が考 えられる.また数は少ないがほぼ現在の極に近い VGPを示す海山(5,9,37)が認められ,これら の海山の磁化が主に誘導磁化によることが推察さ れる.

(9) ホットスポットのオイラー極から復元した APWP は深海掘削で得られた海底玄武岩の古地 磁気的手法で求められた APWP とは一致しな い. 北西太平洋の海山の起源位置を SOPITA に 復元し,同時に古地磁気的手法から求めた APWP を説明するオイラー極とその回転角度を求めた (Table 4).

7 謝辞

本論文は長年にわたる大陸棚調査の成果を使用 してまとめられたものであり,この間,測量船で の観測作業ならびにその後のデータ処理を担当さ れた測量船船長ほか乗組員の方々及び大陸棚調査 室の関係者の方々に敬意を表します.最後に,匿 名の査読者からのコメントは論文の改訂に大変有 益であったことを記して,感謝の意を表したい. なお本論文で掲載した図面は GMT フリーソフト (Wessel and Smith, 1991)を使用した.

参考文献

- Banerjee, S. K. : The magnetic layer of the Oceanic crust-How thick is it?, Tectonophysics, 105, p. 15-27 (1984)
- Beaman, M., Sager, W. W., Acton, G. D., Lanci, L., and Pares, J. : Improved late Cretaceous and early Cenozoic paleomagnetic apparent polar wander path for the Pacific plate, Earth, Planet. Sci. Lett., 262, p. 1-20 (2007)
- Bergersen,D.D. : Cretaceous hotspot tracks through the Marshall Islands, Proc. ODP, Sci. Results, 144, p. 605-613 (1995)

- Cande, S. C., and Kent, D. V. : Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic, *J. Geophys. Res.*, *100*, p. 6, 093⁻ 6, 095 (1995)
- Duncan,R.A., and Clague,D.A. : Pacific plate motionrecorded by linearvolcanic chains. In Naim, A. E. M., Stechli, F. G., and Uyeda, S. (Eds.), The Ocean Basins and Margins (Vol.,7 A) : The Pacific Ocean : New York (plenum), p. 89-121 (1985)
- Engebretson,D.C., Cox, A., ad Gordon,R.G. : Relative motions etween oceanic and continental plates in the Pacific basin. Spec. Pap.-*Geol. Soc. Am.*, 206, p. 1-59 (1985)
- Gee, J., Staudigel, H., and Tauxe, L. : Contribution of induced magnetization to magnetization of seamounts, Nature, 342, p. 170-173 (1989)
- Grauch, V. J. S. : A new variable-magnetization terrain correction method for aeromagnetic data, *Geophysics*, *52*, p. 94-107, (1987)
- 速見浩一・永蔵克己ほか:「南鳥島西方」「南鳥 島」「南鳥島東方」の大陸棚調査速報,水路 部技報,19, p.30-50 (2001)
- Juarez, M. T., Tauxe, L., Gee, J., and Pick, T.: The intensity of the Earth's magnetic field over the past 160 million years, *Nature*, *394*, p. 878-881 (1998)
- 金田謙太郎,西澤あずさ,笠原順三:4本の屈折 法地震探査測線から求められた小笠原海台の 地震波速度構造モデル,日本地震学会講演要 旨集,p.254 (2006 a)
- 金田謙太郎,小平秀一,高橋成実,西澤あずさ, 金田義行:屈折法地震探査による西太平洋 マーカス-ウエイク海山群下の地震波速度構 造モデル,日本地震学会講演要旨集,p.257 (2006 b)
- Kaneda, K., Kodaira, S., Takahashi, N., and Nishizawa, A. : Seismic velocity model of the seamount chain on the Western Pacific basin, Proc. of annual meeting in 2007 of Japan

Geoscience Union (2007)

- 桂 忠彦,島村国雅,大陸棚調査室員一同:大陸 棚海底サンプルの地質学地球化学的研究(その1)-大陸棚調査で得られた海底サンプル の予察的研究―,水路部研究報告,30, p. 345 -381 (1994)
- Kent, D. V., Honnorez, B. M., Opydyke, N. D., and Fox, P. J.: Magnetic properties of dredged oceanic gabbros and the source of marine magnetic anomalies, Geophy. J. R. astr. Soc., 55, p. 513-537 (1978)
- Koppers, A. A. P., Morgan, J. P., Morgan, J. W., and Staudigel, H. : Testing the fixed hotspot hypothesis using⁴⁰Ar/³⁹Ar age progressions along seamount trails, Earth Planet. Sci. Lett., 185, p. 237-252 (2001)
- Koppers, A. A. P., Staudigel, H., Pringle, M. S., and Wijbrans, J. R. : Short-lived and discontinuous intraplate volcanism in the South Pacific : Hot spots or extensional volcanism ?, *Geochemistry Geophysics Geosystems*, 4, P.1-49 (2003)
- Mayer, H., and Taruduno, J. A. : Paleomagnetic investigation of the igneous sequence, site 807, Ontong Java plateau, and a discussion of Pacific true polar wander, *Proc. ODP, Sci. Res.*, *130*, p. 51-59 (1993)
- Nakanishi, M., Tamaki, K. and Kobayashi, K. : Magnetic anomaly lineations from Late Jurassic to Early Cretaceous in the west-central Pacific Ocean, *Geophys. J. Int.*, 109, p. 701-719 (1992)
- Nakanish, M., and Gee, J. S. : Paleomagnetic investigations of volcanic rocks : paleolatitudes of the Northwestern Pacific guyots, Proc. ODP, Sci. Results, 144, p. 585-604 (1995)
- 及川光弘,金田謙太郎:西太平洋海域における ブーゲー重力異常,海洋情報部技,25, p.96 -99 (2007)

鬼丸 尚,春日茂ほか:「小笠原海台東端部北

方」の大陸棚調査速報:水路部技報,12, p.101-107,(1994)

- Ozima, M. , Honda, M. , and Saito, K. : ⁴⁰Ar-³⁹Ar ages of guyots in the western Pacific and discussion of their evolution, *Geophys. J. R. Astr. Soc.*, *51*, p. 475-485 (1977)
- Ozima, M., Kaneoka, I., Saito, K., Honda, M., Yanagisawa, Y., and Takigami, Y.: Summary of geochronological studies of submarine rocks from the western Pacific Ocean, in Geodynamics of the Western Pacific-Indonesian Region, Geophys. Monogr. Ser. 11, P. 137-142, eds Hilde, T. W. C. and Uyeda, S., AGU, Washinton, DC (1983)
- Parker, R. L.: The rapid calculation of potential anomalies, *Geophys. J. R. Astr. Soc.*, *31*, p. 447-455 (1973)
- Parson, B., and Sclater, J. C. : An analysis of the variation of ocean floor bathymetry and heat flow with age, J. Geophy. Res., 82, p. 803-827 (1977)
- Riisager, P., Hall, S., Antretter, M., Zhao, X.: Palaeomagnetic palaeolatitude of Early Cretaceous Ontong Java Plateau basalts : Implications for Pacific apparent and true polar wander, Earth Planet. Sci. Lett., 208, p. 235-252 (2003)
- Sager, W. W.: Structural implications of gravity anomalies, resolution and Heezen guyots, Mid
 Pacific mountains, *Proc. ODP, Sci Res.*, 143, p. 419-429 (1995)
- Sager,W.W., : Late Eocene and Maastrichtian paleomagnetic poles for the Pacific plate : implications for the validity of seamount paleomagnetic data, *Tectonophysics*, *144*, 301-314 (1987)
- Sager, W. W., Weiss, C. J., Tivey, M. A., and Johnson, H. P. : Geomagnetic polarity reversal model of deep-tow profiles from the Pacific Jurassic Quiet zone, J. Geophys. Res., 103,

p. 5269-5286 (1998)

- Sager, W. W., and Koppers, A. A. P. : Late Cretaceous polar wander of the Pacific plate : evidence of a rapid true polar wander event, Science, 287, p. 455-459 (2000)
- Sager, W. W. : Cretaceous paleomagnetic apparent polar wander path for the Pacific plate calculated from Deep Sea Drilling Project and Ocean Drilling Program basalt cores, *Physics* of *Earth and Planetary Interiors*, 156, p. 329-349 (2006)
- Smith, W. H. F., Staudigel H., Watts, A. B., and Pringle, M.: The Magellan seamounts: Early Cretaceous record of the south Pacific isotopic and thermal anomaly, J. Geophy. Res., 94, p. 10, 501-10, 523 (1989)
- Smith,W. H. F. and Sandwell, D. T. : Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry, *J. Geophys. Res.*, 99, p. 21, 803-21, 824 (1994)
- Staudigel, H., Park, K.-H., Pringle, M. S., Rubenstone, J. L., Smith, W. H. F., and Zindler, A. : The longevity of the south Pacific isotope and thermal anomaly, Earth Planet. Sci. Lett., 102, p. 24-44 (1991)
- Takayanagi , H., Iryu, Y., Yamada, T., Oda, M., Yamamoto, K., Sato, T., Chiyonobu, S., Nishimura, A., Nakazawa, T., and Shiokawa, S.
 : Carbonates deposits on submerged seamounts in the northwestern Pacific Ocean, Island Arc, 16, p. 394-419 (2007)
- Tarduno, J. A., and Cottrell, R. D. : Paleomagnetic evidence for motion of the Hawaiian hotspot during formation of the Emperor seamounts, Earth Planet. Sci. Lette., 153, p. 171-180 (1997)
- Tauxe, L., and Staudigel, H. : Strength of the geomagnetic field in the Cretaceous Normal Superchron : New data from submarine basaltic glass of the Troodos ophiolite, Geochem.,

Geophys., Geosyst., 5, Q 02 H 06, doi : 10. 1029/2003 GC 000635 (2004)

- Tivey, M. A., Sager, W. W., Lee, S. M., and Masako,
 T. : Origin of the Pacific Jurassic quiet zone, *Geology*, 34, p. 789-792 (2006)
- 徳山英一:中部太平洋における白亜紀の火成活動: **地学雑誌**, 89, p. 31-49 (1980)
- Ueda, Y. : Study on crustal structure of Japanese Island arcs as revealed from magnetic and gravity field analysis, *Rept. Hydr. Res.*, *30*, p. 61 -174 (1994)
- 植田義夫:地形メッシュ自動分割法による重力地 形 補 正,海 洋 調 査 技 術, 15, p. 17-27 (2003)
- Uyeda, S. and Richards, M. L. : Magnetization of four Pacific seamounts near the Japanese Islands, *Bull. Earthq. Res. Inst. Univ. Tokyo, 44*, p. 179-213 (1966)
- 渡邊奈保子,西澤あずさ,森下泰成,金田謙太 郎,片桐康孝,及川光弘,加藤幸弘,外池邦 臣:西太平洋マーカス・ウエイク海山群域に おけるマルチチャンネル反射法地震探査,日 本地震学会講演要旨集, p.257 (2006)
- Watts, A. B. : An analysis of isostasy in the world's oceans, 1, Hawaiian - Emperor seamount chain, J. Geophys. Res., 83, p. 5989-6004 (1978)
- Wessel, P. and Smith, W. H. F.: Free software helps map and display data, EOS. Trans., *AGU*, 72, p. 441-446 (1991)
- Wolfe, C. J., and McNutt, M.. K. : Compensation of Cretaceous seamounts of the Darwin Rise, northwest Pacific Ocean, J. Geophys. Res., 96, 2363-2374 (1991)
- 山内明彦,春日茂ほか:「小笠原海台北東方」の 大陸棚調査速報,**水路部技報,11**, p.94-99 (1992)

和文要旨

海洋情報部では大陸棚調査調査の一環として

1992年から北西太平洋においてマルチビーム測 深機による地形調査, 音波探査, 地磁気, 重力の 測量を実施した.今回の解析対象とした測量海域 (東経144度から160度,北緯18度から30度) にはジュラ紀地磁気静穏域を含み、多くの海山が 分布している. これらのデータを用いてフリーエ ア重力異常とともに仮定密度 2300 kgm-3, 2700 kgm³のブーゲー重力異常図,地磁気全磁力異常 図を作成した. 重力異常からリソスフェアーの厚 さを幾つかの海山域で求めた結果,その厚さは5 km から 30 km の範囲におよぶが, その最大頻度 は10kmの場合であった.このような結果は本 海域が白亜紀においてマントルプリュームによる 地殻の再加熱を受けたことを示唆する.本海域に 分布する85の海山について、その体積、密度、 磁化を求めた、体積のヒストグラムではその頻度 ピークが 10002000 km³ と 5000 km³ の付近に認め られるバイモーダル型の分布を示す.海山の密度 は地形とフリーエア異常の相関解析により求め た、その密度の平均値は 2694 ± 253 kgm⁻³ でその 頻度分布は25002900 kgm³の幅を有するピーク 域を示す. 仮定密度 2700 kgm³のブーゲー重力 異常は、多くの海山の深部にはハンレイ岩体と推 定される隆起状の高密度層が存在することを示唆 する.海山の磁化強度は密度分布に反して、2A/ mから14A/mの幅広い分布を示すが、これはこ れらの海山の形成時期における地球磁場強度の変 動は大きかったことと調和的である.海山の磁化 方向から求めたVGP (Virtual Geomagnetic pole)は、海山基底部の高密度層の誘導磁化の寄 与を解析に取り込むことで、解析精度の向上とと もに海山の VGP の位置的バラツキが減少する. 求められた VGP は深海掘削資料の岩石磁気から 求められた APWP の軌跡に調和的であるが、半 沢海山, 片山海山, Scripps 海山については 80 Ma の VGP から 20 度以上も低緯度側にずれる結果と なった. この原因については、これらの海山の傾 動運動や非双極子磁場効果を考える必要がある. 北西太平洋の海山のホットスポットの軌跡から求 められたオイラー極では,古地磁気的手法で求め

られた海山の APWP を説明できないが,今回, これらの APWP と海山の生成域が The South Pacific Isotopic and Thermal Anomaly (SOPITA) と を同時に満足するオイラー極とその回転角度を求 めた.