海洋情報部研究報告 第 63 号 令和 7 年 3 月 14 日 REPORT OF HYDROGRAPHIC AND OCEANOGRAPHIC RESEARCHES No.63 March 2025

隠岐諸島周辺海域における自律型海洋観測装置(AOV)の GNSS 観測データを用いた LAT の算出[†]

五味渕有花*1, 松永智也*1, 土屋主税*2, 伊能康平*3, 杉山伸二*1, 藤田栞菜*1, 金 敬洋*1

Calculation for Lowest Astronomical Tide using GNSS observation data of Autonomous Ocean Vehicle (AOV) in the waters around the Oki islands[†]

Yuka GOMIBUCHI^{*1}, Tomoya MATSUNAGA^{*1}, Chikara TSUCHIYA^{*2}, Kouhei INOU^{*3}, Shinji SUGIYAMA^{*1}, Shiona FUJITA^{*1}, and Takahiro KON^{*1}

Abstract

The Japan Coast Guard's Hydrographic and Oceanographic Department has been conducting tidal observations to precisely determine datum level by using Autonomous Ocean Vehicle (AOV) and calculates the Lowest Astronomical Tide (LAT) from tide level data. In this paper, we introduce the methods of calculation for the ellipsoid height of LAT by AOV observation data and show an example of LAT computation results using AOV observation data conducted around the Oki islands. Moreover, we compare the LAT calculated from AOV observation data and Saigo tide station data to evaluate the accuracy of this method. The results show both LAT are almost the same, which reveal that this analysis method is appropriate for calculation of LAT.

1 はじめに

海洋情報部では,我が国周辺の海上交通の安全 の確保並びに海洋権益の確保を目的として精密な 最低水面の調査を行っている.調査能力向上のた めに 2016 年度から西日本海域を中心に自律型海 洋観測装置 (AOV: Autonomous Ocean Vehicle, 以降 AOV と称す)の運用を開始した. AOV は波 の上下動を動力源として自律的に移動する無人観 測機器であり,複数の観測機器を搭載し,海象・ 気象の観測を行っている (西村・他, 2017;松 永・他, 2018;伊能・他, 2021). AOV の外観お よび搭載機器の概要をそれぞれ Fig. 1 と Table 1 に示す. AOV は米国製のウェーブグライダー (Wave glider)(Liquid Robotics 社製)を採用し, 2024 年度現在,第七管区海上保安本部管内,第 十管区海上保安本部管内及び第十一管区海上保安 本部管内で各1基を海上運用し,精密な最低水面 の調査を行っている.運航オペレーションや観測 データの転送には衛星通信を使用し,24 時間リ アルタイムで観測データを取得しており,各管区 海上保安本部はホームページに30 分毎に取得 データの速報値を掲載している.

[†] Received September 10, 2024; Accepted November 12, 2024

^{*1} 沿岸調査課 Coastal Surveys Division

^{*2} 技術・国際課 Technology Planning and International Affairs Division

^{*3} 企画課 Administration and Planning Division

Fig. 1. Appearance of the AOV. 図 1. AOV の外観.

Table 1. Technical specifications of the AOV.					
表 1.	AOV の寸法,	重量,	平均移動速度,	搭載機器.	

+ 4	フロート	305 cm × 81 cm × 23 cm	
ካÆ	グライダー	213 cm × 142 cm × 21 cm	
重量	約170 kg		
平均移動速度	約1.3 kn		
	種類	観測項目	
	気象計	風向·風速, 気温, 気圧	
伏载楼里	超音波多層流向流速計(ADCP)	流向·流速	
1百 戦 1成 66	波浪計	有義波高,波向,周期	
	GNSS測定装置	高精度位置情報,潮位	
	塩分·水温·深度計(CTD)	水温·塩分	
	種類	用途	
	対水速度計	移動補助	
	AIS受信アンテナ	安全対策	
スの地域載機器	ライト	視認性向上	
てい他音戦が高	スラスター及び舵	航行制御	
	パッシブレーダーリフレクター	安全対策	
	イリジウム通信アンテナ	通信	
	イリジウムトラッカー	安全対策	

搭載した観測機器への電力を太陽光発電により 供給しているため,無補給で長期間の海象観測が 可能である. AOV は, GNSS アンテナを搭載し, GNSS アンテナの上下動から潮位を観測すること で験潮器の設置が困難な外洋に面した自然海岸付 近や離島周辺での潮汐観測を可能としている.一 方で,AOVの運用については,荒天時の観測海 域からの避航や冬季の電力不足に伴う観測データ の欠測が課題として挙げられてきた(伊能・他, 2021).伊能・土屋(2022)では観測の中断期間 中に1日~数日程度のスポット観測を行うことで 真値に近い潮汐調和定数(以下,調和定数)を算 出でき,長期間連続的に欠測した場合は翌年に中 断期間と同様の期間で観測を行うことで調和定数 が真値に近づくと報告されている.このように1 年以上の連続した潮汐観測が困難であるという課 題については,それに応じた対応をとることで解 消でき,観測データの効率的な活用につながっ た.

海上保安庁が行う精密な最低水面の調査では. 天文最低低潮面(Lowest Astronomical Tide,以 下,LAT)を求め、LATの楕円体高(地球楕円体 からの高さ)を算出している. LATとは,一般 的に考えられる天文状況と平均的な気象状況の組 み合わせのもとで起こると推定される最も低い海 面と定義され、1年間以上の潮汐観測から得られ る調和定数を用いて算出した19年以上の潮位推 算値のうち最も低い値を採用する(佐藤・熊谷, 2017). LAT の算出に用いる調和定数は、AOV の GNSS 観測データに加えて、データの評価のため に観測海域付近の常設験潮所、または簡易水位計 の潮位データも利用している. GNSS 観測データ については、GNSS 連続観測システム GARD(日 立造船株式会社.現:カナデビア株式会社製)で 精密単独測位(PPP-AR: Precise Point Positioning with Ambiguity Resolution) を用いた解析を行う ことで精密な楕円体高が求められる.本稿では, AOV が観測した GNSS 観測データから LAT を求 め、LATの楕円体高を算出する過程(Fig.2)及 び隠岐諸島周辺海域での算出結果を紹介し、解析 手法の評価を行う. そして, AOV の運用におい て抱える課題や今後の展望について述べる.

2 GNSS 観測データを使用した LAT の算出方法 2.1 GARD の機能

はじめに, GNSS 観測データの1秒値を GARD に登録し, PPP-AR 解析を行う. PPP-AR 解析と は,陸上の基準局のデータから生成される補正情 報を用いて整数不確定性を推定する機能が追加さ Calculation for Lowest Astronomical Tide using GNSS observation data of Autonomous Ocean Vehicle (AOV) in the waters around the Oki islands

Fig. 2. Flow diagram for calculating the LAT from GNSS observation data of the AOV. 図 2. AOV の GNSS 観測データから LAT の楕円体高算出のフロー図.

\$PTNL,GGK,04000.00,030617,3617.7090626,N,13326.6643506,E,3,08,2.11,EHT35.6596,M*46 \$PTNL,GGK,040001.00,030617,3617.7090106,N,13326.6639335,E,3,08,2.11,EHT34.8360,M*49 \$PTNL,GGK,040002.00,030617,3617.7089004,N,13326.6635802,E,3,08,2.11,EHT34.6511,M*4C \$PTNL,GGK,040003.00,030617,3617.7089603,N,13326.6631540,E,3,08,2.11,EHT34.0945,M*48 \$PTNL,GGK,040004.00,030617,3617.7091314,N,13326.6620317,E,3,08,2.11,EHT33.9196,M*42 \$PTNL,GGK,040005.00,030617,3617.7091739,N,13326.6620317,E,3,08,2.11,EHT33.8555,M*49 \$PTNL,GGK,040006.00,030617,3617.7093488,N,13326.6615433,E,3,08,2.11,EHT33.9460,M*40 \$PTNL,GGK,040007.00,030617,3617.7094581,N,13326.6612015,E,3,08,2.11,EHT34.3339,M*4F \$PTNL,GGK,040008.00,030617,3617.7095333,N,13326.6607903,E,3,08,2.11,EHT34.5263,M*4C \$PTNL,GGK,040009.00,030617,3617.7095419,N,13326.6607515,E,3,08,2.11,EHT34.6208,M*47 \$PTNL,GGK,040010.00,030617,3617.7095715,N,13326.6607517,E,3,08,2.10,EHT35.0021,M*4D

- Fig. 3. An example of a GGK file. The second row from the left; UTC time, UTC date, latitude, North or South, longitude, East or West, 2: float or 3: fix, the number of the fixed satellites, dilution of precision and height above ellipsoid.
- 図 3. GGK ファイルの一例. 2 列目から UTC 時刻 (hhmmss), UTC 日付 (ddyymm), 緯度, 北緯・南緯, 経度, 東経・西経, 2: フロート解・3: フィックス解, フィックスした衛星数, 精度低下率, 楕円体高を示す.

れた PPP である.海洋情報部では国土地理院か ら毎月提供される電子基準点データを使用し本庁 職員が補正値を作成し,管区職員がその補正値を 用いて解析を行う.解析結果は AOV に設置され た GNSS アンテナの楕円体高の時系列データが1 時間ごとに GGK ファイルとして出力される. GGK ファイルのフォーマットは UTC 時刻,UTC 日付,緯度,経度,フロート解またはフィックス 解の表記,フィックスした衛星数,精度低下率, 楕円体高の1秒値である (Fig. 3).

2.2 AOV 用スムージングプログラムによる毎正 時潮位データの取得

2.2 節から 2.4 節の処理は海洋情報部職員が作成した一連の解析用 Python プログラムによって行う. 毎正時潮位データの取得には AOV 用ス

ムージングプログラムを使用する (Fig. 2).

2.2.1 ジオイド高の補正

まず、2.1節で得た楕円体高の時系列データに 観測区域内のジオイド高(ジオイド面の地球楕円 体からの高さ)の補正をかける. AOVの観測区 域は約5km四方に設定され。AOV は観測区域内 を八の字に移動しながら観測を実施している. GNSS 観測では楕円体高が得られるが、平均的な 水面は地球楕円体ではなく概ねジオイド面と平行 である(流れが無視できる海域に限る).潮汐の 解析のためには平均的な水面からの変位をとらえ たい. ジオイド面と地球楕円体は平行ではないた め、ジオイド高は場所によって異なり、一例を挙 げれば 2020 年度に宮古島東方沖で行った観測で は、観測区域内でジオイド高に最大約0.3 mの差 があった. 平均的な海面からの変位を見るため. AOV の位置に応じて観測海域の中心地点からの ジオイド高の変位分を除去する.

2024 年 7 月現在, この補正には国土地理院が 作成した重力ジオイドモデル「JGEOID2008」を 使用している. JGEOID2008 は, 同じく国土地理 院が作成した「日本のジオイド 2011」と比較し て精度は落ちるが日本周辺海域を広くカバーして いる.

2.2.2 フロート解の除去, 観測区域外のデータの 除去並びにアンテナ高の変換

GGK ファイルのデータについて,フィックス 解かフロート解かで得られた座標の精度が異な る.フィックス解の方が精度の良い座標である. LAT を算出する際には,精度の高いフィックス 解のみ使用することにしているため,フロート解 を除去する.

次に, 楕円体高の時系列データから AOV が指 定の観測区域から外れた範囲のデータを除去する.

そして, GARD で求めた楕円体高の位置は GNSS アンテナであるため,水面の楕円体高に換 算する. AOV では共通して,アンテナポールが 60 cm,フロート上面から水面が3 cm であるこ とから, ここまでに得られた値から 63 cm 下げ た値を水面とする.

2.2.3 スムージング処理

本プログラムでは、潮汐の解析の下準備とし て、FIR ローパスフィルターを用いてスムージン グを行っている.波浪成分の除去を目的とした短 期スムージングと、AOV の動揺やアンテナのふ らつき等、潮汐以外の様々な成分の除去を目的と した長期スムージングの2段階のスムージングを 行っている.

短期スムージングで使用しているフィルター は、データに1秒でも欠測があると計算できず データ取得率が低下するため、フィルターをかけ る前に、連続10個未満の欠測に対して直前2分 間の平均値を挿入するという補完を行っている.

波浪は数十秒程度の周期を持つため、短期ス ムージングでは、補完処理後の1秒間隔の水面の 楕円体高に、1分未満の周期を除去する FIR ロー パスフィルターをかけることで波浪成分を除去 し、30 秒値を作成する.

次に,長期スムージングでは,作成した30秒 値に110分未満の周期を除去するFIRローパス フィルターをかけることで潮汐以外の成分を除去 し,毎正時潮位データを作成する.

2.3 AOV 用外れ値除去プログラムによる毎正時 潮位データの補正及び AOV 観測海域の平均 水面の取得

毎正時潮位データの補正及び平均水面の取得には AOV 外れ値除去プログラムを使用する (Fig. 2).

上記のスムージング処理を行っても,衛星の軌 道誤差,衛星時計の誤差,大気遅延などGNSS 観測に起因すると考えられる誤差は残っている. そのため,AOVの観測海域から近隣の常設験潮 所(常設験潮所が存在しない場合は近隣に設置し た簡易水位計)の潮位データを基準潮位データと し,2.2節で作成した毎正時潮位データについて, 基準潮位データから或る値以上外れた値を除去す る.除去後,AOV 観測から取得した毎正時潮位 データと基準潮位データの短期平均水面を比較 し, AOV 観測海域の永年(5か年)平均水面の 楕円体高を算出する.永年平均水面の楕円体高か ら Z₀分下げて,最低水面の楕円体高を算出する. Z₀は,「平均水面,最高水面及び最低水面一覧表」 の値を使用した.

AOV 用調和分解プログラムによる調和定数 の決定

調和定数の取得には AOV 用調和分解プログラ ムを使用する (Fig. 2).

LATの算出には、60分潮の調和定数が必要で ある. 2.3節で得た毎正時潮位データを調和分解 し調和定数を求める.一般的に潮位データが長期 間であればあるほど分解できる周波数間隔が狭く なり、精度よく調和分解できる。年周期成分 Sa 潮及び半年周期成分 Ssa 潮は年変動が大きいため 長期間の潮位データを調和分解して求める必要が ある.しかし、AOVによる観測では長期間の連 続した潮位データがないため. Sa 潮及び Ssa 潮 については常設験潮所の10年平均の調和定数を 用いることが望ましい(土屋, 2020). Sa 潮及び Ssa 潮を除く調和定数は調和分解プログラムを利 用して算出する. 土屋 (2020) では潮位データの うち連続する欠測期間が20%以下であれば調和 定数の算出への影響は小さいことが明らかになっ ている. そのため、潮位データについて最も長い 連続欠測期間が観測期間全体の20%以下である ことを確認し、解析の精度が担保できるか確認す る。精度が担保された場合。最小二乗法を用いた 調和分解を行うことで調和定数を求める.

2.5 沿岸海象データ処理プログラムによる LAT の算出

LAT の算出には沿岸海象データ処理プログラムの LAT/HAT 計算プログラムを利用する (Fig. 2). 本プログラムは,調和定数から指定した 19 年間 の潮位推算を行い,その中で一番低い潮位を LAT として算出する.潮位推算の推算時期は AOV の観測期間が 19 年間の中間となるように設 定している. この LAT/HAT 計算プログラムで得 られる LAT は,最低水面を基準としているため, 3節で算出した最低水面の楕円体高から減ずるこ とで,LAT の楕円体高を算出する.

3 観測データ

本稿で紹介する観測データは, 第八管区の AOV である「SV3-138 (ほたるいか1号)」, 「SV3-141 (ほたるいか2号)」,「SV3-233 (ほたる いか3号)」,「SV3-234 (ほたるいか4号)」が隠 岐諸島周辺海域 (Fig. 4) で観測したものであり, 観測は2017 年度から2022 年度の調査期間で行わ れた (Table 2). 隠岐諸島東方海域では全観測期 間,隠岐諸島西方海域では2022 年度のみ観測を 行ったが,西方海域で運用したSV3-234 において GNSS 観測データが収集できない不具合が発生し たため,東方海域の観測データのみを解析対象と

Fig. 4. Observation area around the Oki Islands. 図 4. 隠岐諸島周辺での観測海域.

Table 2. Survey period of each AOV. 表 2. 各 AOV の調査期間.

隠岐諸島東方海域	
SV3-138 (ほたるいか1号)	2017年5月30日~2022年6月17日のうち461日間
SV3-141 (ほたるいか2号)	2018年9月21日~2022年8月25日のうち270日間
SV3-233 (ほたるいか3号)	2019年6月13日~2022年11月21日のうち127日間
SV3-234 (ほたるいか4号)	2020年7月3日~2022年10月3日のうち303日間
隠岐諸島西方海域	
SV3-234 (ほたるいか4号)	2022年6月16日~2022年8月24日の70日間

した.

4 結果

AOV が観測した潮位データと基準験潮所との比較

AOV の潮位データから外れ値を除去するため, 島根県隠岐諸島島後にある気象庁所管の西郷検潮 所の潮位データを楕円体高に変換し,基準潮位 データとした.外れ値の条件は,通常,基準潮位 データから±30 cm に設定しているが,隠岐諸島 周辺海域は潮位変動の小さい海域であるため,本 件では基準潮位データから±15 cm 以上を外れ値 とした.外れ値の除去後,AOV と西郷検潮所の 潮位データの短期平均水面を算出して比較した. 西郷検潮所の Sa 潮及び Ssa 潮と,AOV 観測から 得た 58 分潮で,60 分潮の調和定数とした.西郷 検潮所の Sa 潮及び Ssa 潮は,気象庁のホームペー ジに掲載されている分潮一覧表の値を引用した.

各 AOV の観測期間は Table 2 のとおり. 観測 データのうち調査区域内かつ GARD でフィック ス解が得られた割合を Table 3 に示す. 最も高 かったのは 76.90%の SV3-234 だった. SV3-141 が最も低く 59.28%であった. 全体的には GNSS 観測データの約 6 割以上が解析対象であった.

AOV 外れ値除去プログラムで解析を行った結 果,除去されたデータの数は解析対象の全毎正時 潮位データ数の 5366 個のうち 82 個で全体の 1.47%となった(Table 4).解析結果において一 致度が高い結果と外れ値を多く含み一致度が低い 結果の一例を Fig. 5 に示す.Fig. 5 (a) は 2022 Table 3. Percentage of the fix and the float solutions. 表 3. フィックス解とフロート解の割合.

	フィックス解	フロート解
SV3-138	63.32%	36.68%
SV3-141	59.95%	40.05%
SV3-233	59.28%	40.07%
SV3-234	76.90%	23.10%

- Table 4.
 The number of accepted values and unaccepted values.
- 表4. フィックス解の全解析対象データに対する採用 値と外れ値の個数.

	全データ数	採用値	外れ値
毎正時の 潮位データ(個)	5366	5284	82
(%)		98.47	1.53

年3月19日18時から24日18時にかけての SV3-138 が観測した毎正時潮位データと西郷験潮 所の基準潮位データの比較であり、両者の潮位が よく一致していることが確認できる.一方で, Fig. 5(b)は2018年6月18日18時から23日 18時にかけてのSV3-138の観測データによる潮 位である. AOV の毎正時潮位データには一部欠 測が含まれるが, 6月20日13時から21時まで 外れ値が連続しており、同日5時から9時までは 許容範囲内ではあるものの基準潮位データから 10 cm 以上低い潮位が連続していることが確認で きる. Fig. 5 (c), (d) はそれぞれ Fig. 5 (a) と (b)の観測期間における基準験潮データと AOV が観測した毎正時潮位データの散布図である. Fig. 5 (a) と (b) の場合において AOV の毎正 時潮位データと基準験潮データの差の標準偏差を 求めた結果, (a) の標準偏差は 3.17 cm であった のに対し、(b)の標準偏差は7.47 cm であった. 土屋・佐藤(2021)では、西郷検潮所と鳥取県の 境検潮所との潮位差の標準偏差は5.00 cm と報告 されており, (a)の標準偏差はこれよりも小さい ため、適切な期間を抜粋すれば、データの解析手 順は妥当であると考えられる. 隠岐諸島周辺海域 で観測したデータのほとんどは Fig. 5(a)のよ うに基準潮位データと同様の潮位変動を捉えてい

Calculation for Lowest Astronomical Tide using GNSS observation data of Autonomous Ocean Vehicle (AOV) in the waters around the Oki islands

Fig. 5. (a), (b) are the tide data observed by the standard tide station and AOV. Black line shows tide data of the standard tide station. Blue dots show accepted value. Red dots show unaccepted value. Green lines show the range within 15 cm from tide data of the standard tide station. (c) is the scatter plot of tide data observed by the standard tide station and AOV in case (a). Similarly, (d) is the scatter plot in case (b).

図 5. (a), (b) は基準験潮所の潮位データ(実線・黒)と AOV の潮位データ(青点又は赤点)の比較. 青点は採 用値,赤点は不採用値. 緑線は基準験潮所の潮位データから±15 cm の範囲を示す. (c) は (a) の基準験 潮所の潮位データと AOV の潮位データの散布図を表しており,同様に (d) は (b) の場合を表している.

た. ただし, Fig.5 (b) のように基準潮位データ との相関が悪い期間も存在していたことに留意が 必要である.

4.2 LAT の算出結果と評価

最低水面の推算期間を 2008 年から 2026 年に設 定して LAT を算出した結果,最低水面を基準と して-19 cm (2020 年 2 月 10 日,2024 年 2 月 10 日)であった.この値の精度を評価するため,西 郷検潮所の潮位データから算出した LAT と比較 した.西郷検潮所の調和定数は気象庁がホーム ページに掲載している西郷の分潮一覧表の値を使 用した (Table 5). 推算期間を AOV の潮位デー タの推算期間と同期間の 2008 年から 2026 年に設 定し潮位推算を行った結果, LAT は-19 cm (2023 年 2 月 19 日, 2023 年 2 月 20 日, 2024 年 2 月 10 日) であり, AOV 観測から得られた LAT と一致した.

本 AOV 観測による LAT を楕円体高にすると 33.62 m だったが,西郷検潮所単独で求めた LAT の楕円体高は 33.81 m であり,0.19 m の差があっ た (Table 6). この差が妥当であるかを検討する ため,「ジオイド 2024 日本とその周辺」(試行版) を用いて AOV 観測海域の中心部と西郷検潮所の

- Table 5. Comparison of the harmonic Constants derived from the AOV tide data and Saigo's from TIDE-JAPAN.2023.
- 表 5. AOV の潮位データから調和分解して求めた調和 定数と TIDE-JAPAN.2023 記載の西郷の調和定数 の比較.

	AOV		西郷検潮所		
	振幅(cm)	遅角(deg)	振幅(cm)	遅角(deg)	差(cm)
Sa	16.35	160.32	16.35	160.32	0.00
Ssa	0.42	186.45	0.42	186.45	0.00
Mm	0 77	108 56	0.39	103 78	-0.38
MSf	0.52	269.33	0.24	327.30	-0.28
Mf	1.92	196.86	0.98	203 73	-0.94
201	0.25	324.89	0.00	292.24	0.07
SIG1	0.20	219 51	0.27	259.68	-0.11
01	1.01	313.67	1 38	305.00	0.11
	0.20	332.04	0.28	310 72	0.07
	5.07	323 58	5.52	32/ 31	-0.45
MD1	0.20	349.77	0.12	157.30	-0.07
M1	0.20	86.31	0.13	332 72	-0.07
	0.20	23/ 32	0.23	353 77	-0.50
DI1	0.37	100 02	0.07	260.84	-0.30
FTI D1	1.22	211 21	1.66	209.04	-0.33
Г I ©1	1.22	226.54	0.06	342.70	0.44
K 1	5.71	230.34	5.00	317 15	-1.10
	0.00	252 77	0.00	347.43	-0.71
	0.00	11/ 00	0.27	309.00	-0.41
	0.20	114.03	0.06	44.15	-0.14
	0.13	157.19	0.03	20.07	-0.10
J1	0.09	304.71	0.24	6.60	0.15
501	0.16	251.23	0.09	137.36	-0.07
001	0.51	297.22	0.22	14.22	-0.29
	0.31	/1.03	0.04	196.87	-0.27
MNS2	0.21	309.72	0.07	338.44	-0.14
2N2	0.13	39.53	0.25	22.87	0.12
MU2	0.54	356.90	0.47	14.36	-0.07
N2	1.40	40.78	1.51	52.00	0.11
NU2	0.24	/6.81	0.22	54.60	-0.02
OP2	0.06	5.61	0.10	333.37	0.04
M2	5.49	61.88	5.65	63.59	0.16
MKS2	0.03	285.26	0.03	339.37	0.00
LAM2	0.08	344.31	0.03	341.78	-0.05
L2	0.27	131.80	0.07	39.61	-0.20
T2	0.05	346.85	0.15	78.17	0.10
S2	1.80	65.41	1.98	78.40	0.18
R2	0.26	66.62	0.06	3.38	-0.20
K2	0.63	62.26	0.56	69.47	-0.07
MSN2	0.29	118.33	0.02	143.73	-0.27
KJ2	0.06	183.54	0.03	229.83	-0.03
2SM2	0.27	223.62	0.03	171.70	-0.24
MO3	0.19	14.57	0.04	167.13	-0.15
M3	0.17	211.25	0.08	30.85	-0.09
SO3	0.09	30.21	0.04	203.37	-0.05
MK3	0.10	198.09	0.05	196.95	-0.05
SK3	0.04	145.13	0.05	271.48	0.01
MN4	0.13	1.67	0.13	35.30	0.00
M4	0.23	82.30	0.25	57.65	0.02
SN4	0.02	57.32	0.02	74.75	0.00
MS4	0.05	35.42	0.10	106.89	0.05
MK4	0.06	283.27	0.05	85.21	-0.01
S4	0.17	143.42	0.02	198.85	-0.15
SK4	0.10	340.88	0.00	73.26	-0.10
2MN6	0.05	65.10	0.02	237.12	-0.03
M6	0.10	190.64	0.03	247.93	-0.07
MSN6	0.09	186.91	0.02	278.11	-0.07
2MS6	0.12	317.60	0.05	301.67	-0.07
2MK6	0.15	275.76	0.02	279.05	-0.13
2SM6	0.06	34.71	0.02	357.63	-0.04
MSK6	0.09	321.92	0.01	355.38	-0.08

Table 6. LAT, the earth ellipsoid height of LAT and the geoid height.

表 6. LAT, LAT の楕円体高及びジオイド高.

	LAT(m)	LATの楕円体高(m)	ジオイド高(m)
西郷	-0.19	33.81	34.12
隠岐諸島東方海域	-0.19	33.62	33.90
差	0	0.19	0.22

ジオイド高を取得した. その結果, 観測海域中心 は 33.90 m, 西郷検潮所は 34.12 m であり, ジオ イド高の差は 0.22 m であった (Table 6). 西郷検 潮所側が高くなるジオイドの傾斜が存在している ことから, 前述の LAT の楕円体高の差はジオイ ド高の差に起因すると考えられる.

以上の結果から,今回の AOV 観測による精密 な最低水面調査の LAT の解析手法は妥当であっ たと考えられる.ただし,潮差が比較的小さい隠 岐諸島周辺海域であるため,LAT の値も一致し やすいという要素もある.今後は潮差の大きい瀬 戸内海や九州西岸部においても AOV と近隣の験 潮所にどの程度の差が生じるか検証する必要があ る.

5 結論

本稿では、AOV 観測による LAT の算出方法と、 その実例として 2017 年度から 2022 年度に行った 隠岐諸島周辺海域での精密最低水面調査の結果を 紹介した. AOVの導入により, 験潮器の設置が 困難な海上での潮汐観測が可能となった. AOV の GNSS 観測データを GARD で PPP-AR 解析に かけフロート解を除去したのちにスムージング処 理を施すことで毎正時潮位データが取得される。 毎正時潮位データの精度を評価するため近隣験潮 所の潮位データを基準潮位データとし、外れ値の 除去を行った.得られた毎正時潮位データから調 和定数を算出し、LATを計算した. このAOV に よる LAT の楕円体高を、西郷検潮所による LAT の楕円体高と比較したところ、ジオイド傾斜とほ ぼ一致しており、本稿で紹介した LAT の算出手 法は妥当であると考えられる.

2024 年 7 月現在, AOV による観測は, 第八管 区及び第九管区では完了したが, 第七管区, 第十 Calculation for Lowest Astronomical Tide using GNSS observation data of Autonomous Ocean Vehicle (AOV) in the waters around the Oki islands

管区及び第十一管区では継続している. 今後も精 密最低水面調査を進め, 日本海から南西海域を中 心に LAT の調査を行っていく.

謝 辞

本稿の作成にあたり AOV 観測に携わった第八 管区海上保安本部の皆様には現場作業及び資料整 理に尽力していただきましたこと厚くお礼申し上 げます.最後に,匿名の査読者には,適切で丁寧 なご助言をいただきました.ここに感謝の意を表 します.

文 献

- 伊能康平・杉山伸二・金 敬洋・土屋主税・野澤 理香・小河原秀水・吉 宣好・中山浩一郎・ 永蔵克己・内村 忍(2021)自律型海洋観測 装置(AOV)の運用と観測の現状,海洋情 報部研究報告, 59, 126-142.
- 伊能康平・土屋主税(2022)潮汐調和分解のため の最適観測パターン,海洋情報部研究報告, 60,51-73.
- 海上保安庁(2023)平均水面,最高水面及び最低 水面一覧表,https://wwwl.kaiho.mlit.go.jp/ TIDE/datum/index.pdf.
- 気象庁, 分潮一覧表 西郷, https://www.data. jma.go.jp/kaiyou/db/tide/suisan/harms60.ph p?stn=SA&year=2024&tyear=2024.
- 国土地理院(2024)日本のジオイド2024日本と その周辺(試行版).
- 松永智也・山崎哲也・糸井洋人・加藤弘紀・増田 貴仁・西村一星・土屋主税・佐藤勝彦・田中 友規・野坂琢磨・石田雄三・下田 力・楠本 仁麦(2018)自律型海洋観測装置(AOV) の運用,海洋情報部研究報告,56,68-78.
- 中川弘之・宮原伐折羅・宗包浩志(2020)精密単 独測位(PPP-AR)を用いた GNSS 定常解析 システムの開発,国土地理院時報,133,77-86.
- 西村一星·增田貴仁·糸井洋人·土屋主税·加藤 弘紀·松坂真衣·佐藤勝彦·田中友規·野坂

琢磨・石田雄三(2017)自律型海洋観測装置 (AOV)の運用に向けて,海洋情報部研究報 告,54,74-83.

- 佐藤 敏・熊谷 武 (2017) 日本沿岸の Lowest Astronomical Tide について,海洋情報部研 究報告, 54, 84-94.
- 土屋主税(2020)欠損の多い潮位データの最小二
 乗法による調和分解,海洋情報部研究報告, 58, 109-125.
- 土屋主税・佐藤 敏(2021)潮高改正に単一の常
 設験潮所を使用できる範囲,海洋情報部研究
 報告, 59, 190-203.

要 旨

海上保安庁海洋情報部では、精密な最低水面を 調査するため自律型海洋観測装置 AOV による潮 汐観測を行っており、得られた潮位データから天 文最低低潮面 LAT を算出している.本稿では AOV による GNSS 観測データから LAT の楕円体 高を算出する手法及び隠岐諸島周辺海域での観測 データを用いた LAT の算出結果を示した.また、 AOV による LAT の精度を検討するため、西郷検 潮所の潮位データから算出した LAT と比較を 行った.その結果、LAT はほぼ一致しており、 実施した AOV の GNSS 観測データを用いた LAT の解析手順が妥当であることを示した.