曳航式塩分水温深度測定装置 (バットフィッシュ)について

上野義三 ・ 石井春雄 ・ 道田 豊 海 洋 調 査 課

"BATFISH "

A Depth Controllable Towed Body for Collecting CTD Data

Yoshizo Ueno, Haruo Ishii and Yutaka Michida Ocean Surveys Division

1. はじめに

曳航式塩分水温深度測定装置(以後曳航式CTDと呼ぶことにする)は、船舶から曳航される曳航体によ り、塩分・水温・深度の値を連続的に自動計測するもので「バットフィッシュ」の愛称を持つ観測機器であ る。第1表にその規格・性能・諸元の一覧表を、第1図に全体構成のブロックダイヤグラムを示す。この観 測機器は、計測センサーが搭載されているバットフィッシュ曳航体、曳航ウインチ、曳航体コントローラ、 CTDコントローラ、データ処理装置、および記録機器から構成されているもので、測量船「拓洋」に搭載 され、西太平洋海域共同調査観測でその威力が発揮されている。

この観測機器の心臓部であるバットフィッシュ曳航体は、カナダのベッドフォード海洋研究所で約10年の 研究および実験期間を要して開発され、ギルドライン社が商品化したもので、曳航体の深度調節をあらかじ め設定したプログラムにより極めて安定した姿勢を保ちながら水中運航ができるように設計されているのが 特徴である。この観測機器を用いることにより、その運用面で多少の問題点はあるものの、海水の表面層か

第1図 曳航式CTD構成図

第1表 曳航式CTD規格·性能·諸元一覧表

1. バットフィッシュ 曳航体	2-2 曳航ケーブル (ローチェスタ 7日2)
1-1 寸法重量	イ使用量
全 長 1.33 m	全 長 750 m (重量 1230kg)
高さ0.94 m	フェアリングなし 400 m
翼 長 1.25 m	フェアリング付き 350 m
空中重量 80 kg (センサー搭載なし)	口 構 造
1-2 曳航深度及び速度	導体 #22AWG 7/0.010 "
運用深度 船舶速度 必要曳航ケーブル長	すずめっき銅線
100 m以内 5~10kn 300 mフェアリングなし	絶縁体 0.012"ポリエチレン 中心6導体。
300 m以内 5~10kn 300 mフェアリング付き	外側1導体
200 mフェアリングなし	結束テープ 組み糸, ダクロン
400 m以内 5~10kn 600 mフェアリング付き	第一 外被 18/0.032"
注) ウインチの巻代及び海面迄の分として更に50	Galv. Impr. Plow Steel
mのフェアリングなしのケーブルが必要	第二 外被 18/0.044"
曳航最小速度 3 kn	Galv. Impr. Plow Steel
曳航最大速度 10kn	侵蝕 防止 フエロコート 5878
最大降下速度 1 kn	ハ特性
最大上昇速度 5 m/sec	直 径 (0.323 ") 0.82 cm
最大センサ搭載可能重量 23kg	空中 重量 (180 lbs/Mft) 25.6 kg/100 m
深度保持精度 ± 2 % F S	水中 重量 (144 lbs/Mft) 20.5 kg/100 m
追跡遅延時間(距離) 8 sec又は12m	フェアリング付き空中重量 45.9 kg/100 m
曳航速度9knで上昇又は下降1.5m/secの場合	破断力 (9,200 lbs)
8 sec又は 8 m	直流 抵抗 (2.42 Ω/Mft)
曳航速度14knで上昇又は下降1m/secの場合	分布 容量 (50 µµ F/ft at 1kHz)
指令信号反応時間 3~5 sec	使用 温度 (-65°F~300°F)
	最小曲げ直径 43cm
	フェアリング付きの場合 91cm
2 曳航ウインチ	インヒーダンス 350 (1)
2-1 ウインチ (MODEL N8680)	現机 加里 連続運転時 1000 kg
寸 法 171.4(L) 152.0(W) 140.0(H)	取入時 1350 kg (但しる $ \psi$ l) 対) 任期中は 原文に記されている 世俗でもる
ドラム径 70cm	住) 括弧内は、原文に記されている単位である。
美効出力 重出力 max 770 kgf	$3 \text{ CTD} \mathcal{T} \Box - \mathcal{T}$ (MODEL 8707)
静出力 max 2000 kgf	3-1 寸法重量
重量 $350 kg (ケーフル含ます)$	全 長 0.97 m
走出速度 0~1m/sec (2.5 cm/sec)	但 径 0.13 m
油重入刀 5/1/min	里 重 14 kg (空中)
他広入J 140 kg/cm・cm 付屋如日 由皖過声:コーニン イブ(MODEL 0250)	3-2 側正安系及ひ規格
11 周部品 現航宿車・ローフジェイブ(MODEL 8650)	电导度 水温 深度
可法 370.0(L), 12.0(W), 14.0(H),	- 例廷範囲 U.1~40 ppt -2~30°C 6000 dbar
里重 180 kg	相

第1表 曳航式CTD規格・性能・諸元一覧表

電導度 水温 深度	オーデオ信号再生
分解能 0.001 ppt 0.0005°C 0.01%FSP	周波数レスポンス 40Hz~12kHz±3 db
安定度 ± 0.002 ± 0.002 ± 0.005	ハイインピーダンス(INPUT)>100 kΩ
ppt/6月 °C/30日 °C/6月	ローインピーダンス (OUTPUT)
応答速度 50msec以内 50msec以内 50msec以内	100 kΩ 0.5 V Sig.
計測センサ 4 電極方式 銅抵抗線 ストレンケージ	オーデオ信号データフォーマット
センサ定数 10mS/35ppt15°C 46Ω/0°C	記録コード NRZI 方式
その他 オーバースケール保証値50%	ビットレート 4800 ビット/sec
dentage The 11	サイクルタイム 40 msec
4 曳航体コントロールユニット	5-5 デジタル信号出力
(MODEL 88100)	パラレ出力 TTLレベル正論理
4-1 パネル面操作	データ情報 4ビット チャンネル・アドレス
手動深度制御 各ダイヤルを手動調節	1ビット リード・コマンド
自動深度制御 上限深度及び下限深度を設定	12ビット バイナリ・ワード
上昇率 0~1m/sec	データ・サイクル 電導度,水温,深度,ほか
下降率 0~5m/sec	6 要素 40 msec
海底検知機限界 10m	Seela
4-2 パネル面表示	6 データ処理装置
曳航深度及び自動制御系コントロール電流	測定モード 定深度運航および可変深度運航
	演算処理 塩分および音波伝播速度
5 CTDプローブ・コントロールユニット	出力データ 塩分(アナログレコーダ用)
(MODEL 87102)	全データ(作表プリンタ用)
5-1 寸法 重量	カセット磁気テープ 1600 bpi JIS準拠 2基
48.2(W), 38.1(D), 17.8(H), 14kg	$1 \vee 9 - 7 = -7$ RS $- 232$ C, GP $- IB$
5-2 パネル面表示	きかない、 たまたのである しょう パント ゲキャ
水比(深度) 単位 % 5桁LED	Cills C (Continuovity) : 21 M .
FS 100.00 分解能 ± 0.01	in a contraction of the contract
水 温 単位 °C 6桁LED	12 D (Deck: 649) 2 2 84
FS 40.0000 分解能 ± 0.0005	NEACTON METOANT META-PLAN
	- target to a second second and
FS 1.00000 分解能 ± 0.00002	
3-3) $T = 9$ 信写田刀 ($T < 7 < 7 < 7 < 7 < 7$ と同時) 水 T (源度) R C · 5 00 V 100 α + 01 α	
水正(休度) FS・5.00 V, 100 % ± 0.1 %	1999年1月11日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日
小 值 F 5 · 5.00 V, 25 % ± 0.025 C	10~21」「学生で、「大学にの演算」。 かいいたちょうきょう
単學皮比 FS.5.00 V, 100 % ± 0.001	(など)にもとない(単純なため、 結構器 でもちち尾虎の
	日本 医生物 医生物 网络拉斯 网络金属加亚 医白白 医白白白白白白白白白白白白白白白白白白白白白白白白白白白白白白白白
ネーノネ16万四月	AS BIRGH - VO - HIRDIGHT HAVE BUTTER
ノークテャンネル及びクロックテャンネルの	There is an in the second s

ら深度 300 m層までの塩分・水 温の観測を連続的に行うことが 可能で,従来の点又は線に相当 する観測と比べほぼ面の観測に 近い豊富なデータ量が得られる ことから海況解析や水塊解析が 容易になり,また従来観測でき なかった微細構造なども明示し てくれるなど海洋観測に寄与す る貢献度は大きいと言える。以 下にその構造および概要を各部 について述べよう。

2. バットフィッシュ曳航体 バットフィッシュ曳航体は、 船舶から曳航されながら船上か らの指令信号により決められた 深度を運航する所謂キャリア(運 搬用具)であって測定のための センサーは、別途曳航体に搭載 する必要がある。したがって搭 載するセンサーの種類により違 った目的の観測機器になり得る わけである。本稿で述べる機器 では、C (Conductivity:電気 伝導度)、T (Temperature:水 温)、D (Depth:深度)を計測

するセンサーを搭載しているので曳航式CTDと称することになる。なおメーカーの説明によれば、バット フィッシュ曳航体に搭載可能なセンサーとして前記CTDセンサーの他に pH(水素イオン濃度),DO(溶 存酸素)、バリオセンス・フルオロメータおよびプランクトン・カウンターがあるということである。

一般に海中を曳航する海洋調査機器は種々あるが、曳航体を安定して曳航するには、かなり高度な技術が 必要とされている。深度のコントロールを要しない直径が10ないし20cm程度の円柱形をした曳航物であれば 流体抵抗も比較的単純なため、無調整でもある程度の曳航はできるが、外部にセンサーを搭載し深度コント ロール付きとなると曳航体に可動する翼が必要となり形も大型となるのでその姿勢制御に困難性を伴う。従 来の類似機器では曳航速度約4~6ノットが限度であったが、本曳航体ではオペレーションになんら難しい 操作を必要とせず、メーカーテストでは、最大曳航速度14ノットを記録し、ユーザーが使用する保証安全速 度は10ノットとなっているのは、他に例をみない素晴らしい規格と言えよう。次にこのメカニズムを説明し たい。 機体構造は、強化グラスファイバー、ステンレス及び耐蝕アルミニュウムから成っている。常用の安全運航 深度は、曳航速度10ノットで300 mであるが、14ノットで600 mまで実験済である。オプション装置として、 音響測深儀と結合して使用する海底検知装置があり、この装置を付加することにより浅海での曳航体接触事 故を避けることができるが本稿の装置には付属していない。

バットフィッシュ曳航体の外観は第2図のようであり、その主翼は、第3図のシステム図に示すように油 圧力によって連続的に調節される。このシステムの主要部分は、曳航による水流によって回転するインペラ ーの動力により運転される油圧ポンプから流出される油量がサーボバルブ(電子式油圧制御弁)及びダブル シリンダー(2作用2回路の油圧切替え弁)を作動させて主翼を上下させる。安全弁は、70barにセットさ れており、サーボバルブ系で使用される余剰の圧力をバイパスして逃がすようになっている。全体の油圧制 御は、曳航体先頭部の海水取入れ口に接続されている可変容量の貯水タンクの水圧により制御される。この ように、上昇下降に伴う翼の調節動力源はすべてインペラーの回転による油圧ポンプで賄われているので、 船上から改めて電源等のエネルギー源を供給する必要がない。わずか0~10mA程度の少ない電流で深度変 更等のコントロールが可能となっている。ただし、低速曳航(3/ット以下)のときはコントロールに必要 な油圧量が得られないので下限曳航速度3/ット以上で運航する必要があることはいうまでもない。なお、 固定深度運航の信号が出た時は、現在深度と指令深度との差を深度比較器で検知し、自動的にサーボバルブ が働き一定深度を保つようになっている。

バットフィッシュ曳航体の最尾部上方には,第4図に示すような2つの補助翼がついている。垂直安定翼 と水平安定翼がこれである。垂直安定翼は傾斜した曳航体を垂直に修正するための翼で,水平安定翼は曳航 体が傾斜した度合いを検知するための翼である。この2つの安定翼は,曳航体全体の重心位置よりも上方に

あって自由に回転するようになっており、この翼にかかる水流 圧の中心が自由回転軸のより近くにあり重力の中心点はより遠 くにあることが必要である。このような構造の安定翼を付加す ることにより、曳航体にローリング及びヨーイングによる回転 力が加わった時でも正しく姿勢を修正することができる。すな わち、曳航体が傾斜した時は、重力の作用により水平安定翼が 傾斜した方向に回転する。このとき垂直安定翼に加わる水流圧 により曳航体の傾きと反対の側に回転する力が加わり傾きは修 正される。この重力を巧に利用した簡素なメカニズムは、重力 制御安定化装置と呼ばれるベッドフォード海洋研究所の所有す る特許であるが、曳航体内部に非常に重いバラストを積載した のと同等な効果を、強い水圧流によって得られ、この効果によ り曳航体の姿勢を自動的に制御し安定化しているものである。

安定翼の大きさは、水圧流による力の作用方向が効果的に働くように、また曳航体自身の持つローリング 及びヨーイングの固有周期より高い固有振動周期を持つように、更に水流による乱流発生が小さくなるよう 研究され、決定されている。

3. 曳航体用ウインチ,曳航ケーブル及びコントローラ バットフィッシュ曳航体を運用するには、専用の曳航ウインチが必要である。ウインチには、全長 750 m の曳航ケーブルが巻かれているが、この内、曳航体に近い方から350 mがフェアリーダ付きとなっており、 あとの400 mには付いていない。このフェアリーダは、第5 図に示すように流線形をしたひれ状の羽でこれ を曳航ケーブルに付けて水圧抵抗を減じ、曳航体の潜航深度をだせるようにしたものである。フェアリーダ は、曳航ケーブルの振動を防ぐ働きもあってこれ無しでは曳航体を100 m以深に潜航させることはできない 重要な部品である。曳航ケーブルは、信号伝送線も兼ねており曳航体への指令信号及びCTDセンサーから の計測データが伝送される。なお、フェアリーダ付きの曳航ケーブルは、最小曲げ直径が91cmとなっている

のでこれに見合った専用の曳航滑車が必要である。

バットフィッシュコントローラは、曳航体に深度制御のための指令信号を出す装置である。深度制御は手 動または自動で操作ができる。手動操作では、パネル面にある10回転可変抵抗器の調節で指令信号が送られ る。一定深度を保ちながら航走させるときは、指定の目盛りに合せるだけでよい。自動操作では、深度の上 限と下限の値、および上昇率と下降率の値をそれぞれの10回転可変抵抗器のダイヤルで設定する。曳航体の 現在深度および指令信号電流は、パネル面のメータに表示されると同時にアナログレコーダにも記録される。

4. CTDプローブおよびコントローラ

CTDプローブは、曳航体に搭載され、それぞれC (Conductivity:電気伝導度)、T (Temperature:水 温)、D (Depth:深度)のセンサーにより3要素の測定を行い、CTDコントローラにデータを伝送する。

Cセンサーは、4 電極方式を採用しており電極間の距離は約5 cm両極セル間のセル定数は35ppt 15°C に 於て10mmS(ミリジーメンス)となっている。Tセンサーは、細銅線をコイル状に巻いた測温抵抗体が採用 されている。Tセンサーとしては一般的に白金抵抗体を使用するのが通常の方式であって、本装置のように 銅を用いるのは珍しいことである。白金は温度センサーとしては一級品であるが、レスポンス(応答速度) の早いものが作りがたく特に 100 mm sec 以内のものは難しい。これらの点で細銅線を採用した模様である。 Dセンサーは、常識どうりのダイヤフラムとストレンゲージの組合わせで400 d-barまで測定可能である。 さらに、50%の深度超過がゆるされる仕様となっているので600 d-barまで降下してもセンサーが壊れるこ とはない。これら3種のセンサーのレスポンスは、50mm sec に統一されているがこれは重要なことである。 この測定装置の目的である塩分を求めるには、CTD3要素の値から演算しなければならないが、このとき、 厳密な測定上の同時性が必要であるからである。CTD3センサーの中で1番レスポンスの遅いTのセンサ ーを精度を落とさず如何に早くするかがCTD計測器の一つの問題点でもあり、この早さがそのままCTD プローブの上昇および降下可能速度に反映することになる。ちなみに本CTDプローブの降下速度規定値は、 2m/sec 以内となっている。

CTDコントローラは、CTDプローブからデータを受け取り、符号解読および誤り検出等をした後、デ ータ処理装置、記録装置へと転送する役割を持っている。CTDプローブからは、FSK方式(周波数偏位 方式を使用した2進数値化符号)のデジタル信号でC、T、Dの各データが順次直列に並んで送られてくる。 転送速度は4.8 Kビット/秒で、スキャン・レート(1グループデータの更新時間間隔)は40mm秒となってい る。なおCTD信号は、1データ・サイクルにつき2回測定されるのでスキャン・レートを20mm秒にするこ ともできる。受信用データバッファとして16ワードのレジスタが用意されており、最初の1ワードはチェッ クワードで、2ワード目から15ワード目まで1要素のデータにつき夫々2ワードを使用して都合7チャンネ ルのデータが入るようになっている。なお最後の16ワード目は常に空白が入り使用しない。通常はCTDの 3データがはいり、残りのチャンネルには空白が入るが、オプションのセンサーを装備したときはこの空白 部分にオプションデータがはいる。スキャン・レートを200 mm秒にしたときは、前半のCTDデータと後半 のCTDデータが1列に入る様式となり、オプションデータの入るチャンネルが無くなる。1つのワードは、 4ビットのワードアドレス、1ビットのエラービットおよび12ビットの計測データで構成されている。CT Dプローブでは、1要素当たりのデータ信号としてデジタル18ビット(10進数5桁に相当)を割り当ててい るがデータ転送の際これを2つに分割して送ってくるのでCTDコントローラ側では夫々2つのワードを割 り当てて処理している。(第6図参照) CTDコントローラのオプション機構として低価格のオーデオ用カセットレコーダの使用が可能である。 このレコーダを使用すると、CTDプローブからのFSK信号がダイレクトに記録ができるのでその記録を 使用してバックアップ用データとすることができるのは勿論のことであるが、異常データがでたときの解析 用、機器が故障したときの診断用および機器のランニングテスト用と幅広く活用できるので便利である。

5. データ処理装置および記録装置

データ処理装置では、データの管理を行うと共にCTDの3要素から塩分および音波伝搬速度を演算して CTDのデータに加え、各記録機器に出力する。記録機器としては、記録密度1600 bpiのデジタルカセット 磁気テープ装置、6チャンネルのアナログレコーダ、印字作表用プリンターおよびFSK信号記録用のカセ ットレコーダが用意されている。デジタルカセット磁気テープ装置は、2基あって1基は鉛直モード用他の 1基は水平モード用となっている。鉛直モードは曳航体が上昇および下降するときに使用するモードで、リ アルタイムに連続したすべてのデータを記録し、一方、水平モードは曳航体が一定深度を保持して運航する 時のモードで、あらかじめセットした観測時間間隔毎にその時間における瞬時データを連続10組を単位とし て記録するようになっている。

本装置以外の電子機器に接続する為のインタフェースとしてRS-232 C規格およびGP-IB規格の2 組の接続用電子回路が用意されている。1985年に実施した西太平洋海域共同調査観測ではRS-232 C規格

第7図 曳航式CTD観測測点図(1985.3.13~3.14)

-76-

のインターフェースを利用してパーソナルコンピュータと接続し、観測データをフロッピーデスク媒体に転 送し記録する試みをなして成功した。このデータデスクを使用するとパーソナルコンピュータレベルで各論 的なきめの細かい部分処理または解析ができるので非常に便利に活用できる。

6. 曳航式CTDを使用した観測例

測量船拓洋は,1985年3月に本州南方海域の第7図に示す測線上で,曳航式CTDによる黒潮強流帯の横 断観測を実施した。観測期間中比較の意味で並行してXBTの観測を行ったところ水温の差は最大値で 0.2 °C程度であり全体としてかなり良く合っていた。曳航速度は8ノットとし、曳航体の運用深度を30d-barか ら230 d-barの間を自動的に昇降するようにセットした。その結果、6分ないし10分の間隔で昇降を繰り返 し第8図に示すような軌跡をたどった。(第8図は第7図中A線の曳航体の軌跡)深度方向の測線間隔は平 均して 0.8 マイルであり、従来の手法に比べて空間的に非常に密なデータが取得されたといえる。

得られたデータをもとに描いた水温及び塩分の鉛直断面図を第9図と第10図に示す。何れもA線の断面を 南西方から見た図である。この図の32°40'付近に黒潮のフロントと最強流帯の表面水温高温部(20°C以上) が明瞭に描き出されている。また、第9図の左端深度100 m付近にみられる複雑な塩分分布のように、従来 の観測手法を用いた密度では、とうていとらえられないと思われるような微細な構造が各所にみられる。こ のような微細構造に関する詳しい解析は今後の課題であるが、曳航式CTDは海洋上層の詳細な構造を把握 解析するうえで非常に有効なデータが得られ、とくに異水塊の接するような海域での成果が期待できる。

7. おわりに

曳航式CTDは、センサー搭載の曳航体を曳航するだけで自動的に観測データが得られるので観測作業の 省力化にもつながり良好な観測機器といえる。これは、前述のベッドフォード海洋研究所が開発した重力制 御安定化装置に依存する曳航技術によるものであるが、実際にこの技術を使用せず曳航体を製作するとすれ ば、おそらく3軸系のジャイロ装置を中心としたサーボ型制御系となるであろうから同等の機能を得るため には大きさ寸法は2倍以上、重量は8倍以上にもなることが予想され、著しく作業性が失われるのみならず 運航のオペレーションにも高度の技術が要求されることとなるので,通常業務用としては採用できないであ ろうと思われる。このことからすれば本曳航式CTDは画期的な観測機器と言える。しかし幾つかの問題点 もある。第一に他の観測作業との併用が困難である。精測の海洋観測では深度約 4000 mから 6000 m位まで の海水を対称とし、観測項目も多種であるから曳航式CTDですべてを賄う訳にはいかず他の観測機器によ る併用の観測が必要であるが停船した場合、曳航体の揚収・曳航の作業に時間と人手を必要とし、これを頻 繁に行うわけにはいかない。第二に曳航速度10ノットではおそい。10ノットという速度は従来型の曳航体の 機能と比較した場合は極めて高速といえるが船舶の速度が高速化している現代では巡航速度10ノットは古く, 少なくても14ノットから18ノットで曳航できる機能が欲しいと思うがぜいたくであろうか。更に改良した高 速型の曳航体が発表されることは望みたいものである。

BATFISH Underwater Towed Vehicle System GUILDLINE INSTRUMENTS OPERATING MANUAL FOR TOWING WINCH MODEL N8680 GUILDLINE INSTRUMENTS GRAVITY CONTROLLED STABILIZER CANADIAN PATENT No.892,351 Feb.8,1972

参考文献

-77-

J. G. Dessureavlt "BATFISH" a depth controllable towed body for collecting oceanographic data Ocean Engng. Vol.3,1976 pp.99-111

A. W. HERMAN and K. L. DENMAN Rapid underway profiling of chlorophyll with an in situ fluorometer mounted on a "Batfish" vehicle Deep Sea Res., 1977, Vol.24 pp.385—397
海洋科学技術センター スライド式曳航体における運動系概念設計書 昭和54年11月

報告者紹介

Yoshizo Ueno 上野 義三 昭和61年3月現在, 本庁水路部海洋調査課海洋調査官

Haruo Ishii 石井春雄昭和61年3月現在, 本庁水路部海洋調査課海洋調査官

Yutaka Michida 道 田 豊 昭和61年3月現在, 本庁水路部海洋調査課海洋調査官