海洋観測衛星1号(MOS-1)の航空機検証実験成果について

小田巻 実・土出昌一・福島繁樹・斉藤茂幸:沿岸調査課 西田浩児:海洋調査課 池田俊一・末広幸吉・増山昭博:一管区水路部

Report on the Fields Experiment of the MOS - 1(Marine Observation Satelite-1) Sensors by Airplane

Minoru Odamaki, Masakazu Tsuchide, Shigeki Fukushima, Shigeyuki Saito

: Coastal Surveys and Cartography Div.

Koji Nishida : Ocean Surveys Div.

Toshikazu Ikeda, Kokichi Suehiro, Akihiro Masuyama

: Hydro. Dept. 1 st R. M. S. Hqs.

1. 研究目的

わが国初の海洋観測衛星が昭 和62年の2月に打上られた。宇 宙開発事業団では打上げに先だ ち,各センサーの性能評価を行 うため,航空機による検証実験 を企画した。水路部では,衛星 打上げ後の利用に備え,検証協 力機関としてこの実験に参加す ることとした。参加テーマと検 証項目は次のとおりである。 <検証テーマ>

人工衛星データを用いた海洋
ダイナミックスの研究
<検証項目>

(イ) MESSR(可視近赤外放
射計)およびVTIR(可視熱赤
外放射計)測得値と現場海況の
比較

(ロ) MSR (マイクロ波放射計)
測得値と現場海氷状況の比較
この衛星にはMESSR, VTIR,

第1表 MOS-1搭載センサーと航空機用センサーの仕様

40 101444 00	1					_		
観測機器	MES	SR	VTIR		MSR			
観測目的	海面の色・土地	也利用等	海面温度等		水蒸気・氷・雪等			
観 測 波 長 (µm)	$\begin{array}{c c} 0.51 \sim \\ 0.61 \sim \\ 0.72 \sim \\ 0.80 \sim \end{array}$	0.59 0.69 0.80 1.1	$\begin{array}{c} 6 \sim 7 \\ (8 \sim 9) \\ 10.5 \sim 0.7 \\ 10.5 \sim 11.5 \\ 11.5 \sim 12.5 \end{array}$					
観測周波数 (GHz)	-			_	23.8 ±	0.2	31.4 ± 0.25	
瞬時視野 (IFOVinkm)	0.05	km	0.9 km	2.7 km	32	km	23 km	
ラジオメト リック分解能	39 dB~	15 dB	55 dB (Alb.=80%)	0.5 K	1 K (目標) 1 K (目標)		1 K (目標)	
観 測 幅 (km)	測幅 100 km(km) (1光学器につき		150	317 km				
走 查 方 式 電子走查方式		¥方式	機械走	機械走查方式				
↑ MOS - 1 用 ↓ 航空機用								
観測周波数 (GHz)	引波数 Hz)			垂直(オプション) 23.8 ± 0.2 水平偏波		水平(オプション) 31.4± 0.25 垂直偏波		
瞬時視野 (I FOV) (高度7 km) 38.3	$\Delta x \times \Delta y$ $3 \text{ cm} \times 95 \text{ cm}$		21 m 231 m		160 m			
観 測 幅 (高度 7 km)	則幅 7 km) 784 m 11		770 m	2,441 m				

MSRのほかDCS(データ中継システム)も搭載される。各センターの諸元 は第1表のとおりである。MESSRは ランドサット,VTIRはノアに対応す ると考えられる。第1図は衛星の高度 および各センサーの観測幅と航空機検 証の比較図である。

以下ではこの検証実験に参加して得 られた成果について報告する。

第1図 MOS-1衛星と航空機検証概念図

2. 研究方法と経過

リモートセンシングデータから現場 の海洋現象を描くためには,衛星の軌 道や姿勢の確定,大気や太陽反射の補

正など様々な補正処理が必要である。しかし、この処理について、知識や能力があまりないことや、補正の 技術が目的ではないことから、宇宙開発事業団から補正済みCCT(計算機用テープ)の提供を受け、現場 海洋観測結果とこの画像を比較することとした。現場観測は次の3回である。

(a) 鹿島灘(59・12・3~9) 測量船「天洋」

(b) 紋別沖(60・1・15~30)巡視船「そうや」 1月25日に航空機検証

第2図 鹿島灘観測測点図(85/07/18)

	1. T. T. T. T. M.			The second s		
st.	TIME	Sal.	SS	Chl.a	Temp.	Observer
1	7:20	34.387	1.7	1.2	19.6	
2	8:00	34.091	0.6	1.01	20.7	M.S.A. H.D.
3	8:35	33.932	1.2	2.38	21.1	
4	9:25	33.925	0.6	1.01	21.7	同時はの一マスサ
5	8:16	33.839	2.2	0.21	21.6	Tokai R.F.R.L.
6	8:50	33.704	0.7	0.23	21.9	
7	9:21	33.821	1.2	0.12	22.3	A MARKET TO LOO AND

第2表 SEA TRUTH DATA 1985 7 18 SEA SURFACE

(c) 鹿島灘(60・7・16~19)測量船「天洋」7月18日に航空機検証

(a)については天候不良のため検証実験 と同期した観測ができなかった。

CCT の処理については、中型電子計算機(NEC, ACOS - 6)と、簡易画像処理システム(PC 9800)を使用した。

研究結果……各センサーの値と現 場観測の値の比較

3-1 VTIRデータと現場海況の比較

第2図の各観測点において,現場海洋 観測を行った(一部水産庁・水試による)。 その結果は第2表のとおりである。st.4 と st.10では海面下10mに流速計を設置 して,流れと水温の連続測定を実施した (第3図)。また,第4図は,検証実験前

第3図 VTIR-BAND1 (可視域) の画像

後の海面水温分布で、日々の変化が著しく、17日から19日にかけて降温傾向にあったことがわかる。第2図のH6~H13はVTIR画像のIDナンバーで、白丸は画像の中心位置を示す。小さい白丸は低高度の画像中 心位置である。太線の四角は、各画像の大きさを示している。

第5図は、VTIRのバンド1の可視光による鹿島港の像である。陸域のカウント値(N値)は36~21,水域のN値は10~18の範囲で、海陸は明瞭に判別することができた。

第6図左はH91の画像で,NOAA衛星のAVHRR(改良型高解像度放射計)との対応を考えて,バンド1, 3,4を図化した。バンド1には,薄い雲のようなものが写っている。バンド3,4は赤外域なので海面水 温に対応するはずであるが,たいへん雑音が大きい。宇宙開発事業団の説明によれば,この雑音は航空機の 機体の振動がセンサーに影響して出ているとのことである。バンド3では,N値が104~119程度で左側が 右側よりも約10ほど高い。バンド4では,画像の中心部でN値(103~129)が高く,ノイズも大きい所が あり,両側に行くにしたがって小さくなっている。第6図右は,低高度の画像L49を図化したものである。バ ンド1では、N値は9~20で、中心部 が高い。バンド3では、H91と同じく 雑音が大きく、ラインにそって出現し ている。バンド4ではさらに雑音が大 きく斑点模様のものが出ている。

第7図は、各画像の中心部のバンド 3. 4のそれぞれの平均のN値と海面 水温測得値とを比較したものである。 海面水温は st.1 から st.7 まで徐々に 高くなっている。高高度の各画像のN 値は、せいぜい110~120の間を上下す るだけであるが各シーン内のN値の範 囲 (図中の縦線)は、それ以上の大き さとなっている。低高度の面像では, 110~130ぐらいまでの変化を示すが, 異常に高い値を無視すれば,海面水温 と同じ傾向を示している(図中の1点 銷線)。航空機の振動による雑音は衛 星になれば消えるはずなので、もっと よい対応となると思われる。ただし, 画像の中心部と周辺部の系統的な差に ついては, 衛星が打ち上げられた時に 検討する必要がある。

3-2 MESSRの測得値と現場海況 の比較

1985年7月18日の筑波の検証実験 では,第8図に示す鹿島港のMESSR の画像が得られた。防波堤などの陸域 の物標は明瞭に写し出されている。海 域のN値は10~20の範囲となっており, 海岸にうちよせる波の峰のような模様

第4図 毎日の表面水温分布の変化

が写されている。水塊分布については,全体として斑点状のちらつきが見えるだけで,明瞭ではない。鹿島 港付近では河川水などの特別な水塊も存在しないため,水塊の識別に対する有効性はわからなかった。

3-3 MSRの測得値と現場海況との比較

85年1月25日に紋別沖で海水を対象としたMSRの検証実験が行われ(第9図),巡視船「そうや」で海氷の現場観測を行った。「そうや」は,前日から紋別の北,約25マイルの地点に大氷盤に乗りあげた形で停泊していた。現場海氷観測としてMSRを搭載した航空機とほぼ同じコースを「そうや」搭載のヘリコプターによってたどり,海氷の目視観察,ビデオ撮影,赤外放射温度の測定を実施した。紋別寄りの海域では新成氷

第5図 測点4・10における水温と流れの時間変化

や板氷が分布し、一方、沖の「そうや」の付近では、大小の氷盤が分布していた。海氷の放射温度は、-13 ~-20度となっているが、新成氷では-5~-7度と高くなっていた。また、密接度の低い所では、放射温 度の記録に大きな振幅の雑音が現われていた。

第10図は,第9図に示した海域のMSR 画像で,左図が23.8 GHz,右図が31.2 GHzの記録である。図中の海氷記号は表3のとおりである。MSRのデータは16ビットバイナリーの値で記録されているが,計算機処理の都合上,上位8ビットだけを取り出して図化したので,細かな変化は消えて大局的な分布となっている。 紋別港に近い画像(A)の輝度値は,70~90の範囲で変化し,新成氷(N)の部分の値は90,板氷(Ck)・小板氷(Cs)と新成氷の混合した部分では70~80を示した。「そうや」に近い画像(A')では,輝度値は85~96と岸側の値よりも高く,値の範囲も狭くなっている。これは,沖側には新成氷がなく氷盤(Fs,Fv)が分布していることの反映と思われる。

4. まとめ

VTIRでは、航空機によるノイズが多く、海面水温が確実に得られるという確認はできなかった。MESSR では、輝度値の差が大きい事物の判別は十分可能であるが、差の小さい水塊分布の判別については不明であ る。MSRでは、海氷の特性が識別できる可能性が得られた。

第6図 VTIRの画像 (左:H91,右:L49)

以上のうち,航空機という実験手段の限界もあり,不十分な点については衛星が打ちあげられてから再検 討することとしたい。特に,人工衛星によるリモートセンシングの最大の効果は,居ながらにして広い範囲 を同時にしかも定期的に観測できるという点にある。航空機では,このような効果の確認はできない。MOS -1衛星の運用開始が目前に迫り,「宇宙からの海洋観測」の水路業務への利用について本格的に考慮する 時期が来たように思われる。

なお,この研究は科学技術庁の海洋開発研究促進費「海洋遠隔探査技術の開発研究」の一環として実施した。

第8図 MESSRの画像(撮影範囲と疑似カラー表示)

第9図 MSR 画像範囲と現場観測の位置

第3	表	凡例	流水生	分布状況	図に使	用す	る海	氷の記号
12 0	21	JUVJ	010-1-1	JUDVUDU	EI-L	113 2	0114	1

記号	用 語	記号	用 語	記号	用 語
N	新 成 氷	Y1	薄い板状軟氷	Fs	小 氷 盤
Cr	晶 氷	Y2	厚い板状軟氷	Ck	板 氷
Gr	グリースアイス	W	一 年 氷	Cs	小 板 氷
S	雪泥	W 0	薄い一年氷	Fl	大 氷 岩
Sg	スポンジ氷	W 1	並の一年氷	Br	砕け氷
Ni	ニラス	W2	厚い一年氷	L	平たん氷
Nd	暗いニラス	F	氷 盤	Η	変 形 氷
Nl	明るいニラス	Fg	巨大氷盤	H 0	いかだ氷
R	氷 穀	Fv	巨 氷 盤	H 1	氷 脈
Р	は す 葉 氷	Fb	大 氷 盤	H 2	氷 丘
Y	板状軟氷	Fm	中 氷 盤	the second	

第10図 MSR画像(アンテナスキャンのため円弧状となる)

参考文献

宇宙開発事業団(1984): MOS - 1 観測データハンドブック 宇宙開発事業団・地球観測センター(1986): MOS - 1 航空機検証実験成果報告会前刷集

報告者紹介

Minoru Odamaki 小田巻 実 昭和62年3月現在, 本庁水路部沿岸調査課沿岸調査官