TOPEX/POSEIDON 海面高度計データを用いた海流推定について

寄高博行,工藤宏之:海洋研究室 矢沼 隆,大島ゆう子:(㈱パスコ

Estimation of Ocean Current using TOPEX/POSEIDON Altimeter Data

Hiroyuki Yoritaka, Hiroyuki Kudo : Ocean Research Laboratory Takashi Yanuma, Yuko Oshima : PASCO Co. Ltd.

1. はじめに

米国とフランスの共同によるマイクロ波高度計を 搭載した TOPEX/POSEIDON 衛星は, 1992年9月 の打ち上げから当初予定の3年をはるかに上回り, 6年を過ぎた1998年10月現在においても観測を継続 しており、2000年に打ち上げが予定されている後継 機 Jason-1との間の空白期間は短くなってきてい る。水路部においてもこの高精度の海面高データを 海況把握に用いることを目的とし,科学技術振興調 整費(マイクロ波センサーデータ利用等によるリ モートセンシング高度化のための基盤技術開発:平 成4~8年度)による調査研究をはじめとして実用 に供するための研究を続けてきた(木下ほか,1996). 本報告ではこれらの研究成果をベースとして構築し た,本州南方における力学的海面高の絶対値を求め るシステムを紹介する.また,TOPEX/POSEIDON データを配布している米国航空宇宙局/ジェット推 進研究所 (NASA/JPL) が処理アルゴリズム及び フォーマットの変更を行ったことから、以前開発さ れた日本近海における海面高データを切り出すプロ グラム(寄高・西田, 1995)の改訂も含めて地衡流 を求めるまでのプログラム群を整備したので、併せ て報告する。

2. TOPEX/POSEIDON データ

TOPEX/POSEIDON 衛星の概要,配布されてい るデータの基本構造については寄高・西田(1995) に詳しい記述がある.処理アルゴリズム見直しの原 因となった TOPEX センサーによる測定値と POSEIDON センサーによる測定値の間の有意な差 についてはデータ配布当初から知られていたが、 TOPEX データの処理アルゴリズムに欠陥が発見 され、第1世代のデータ配布はサイクル132(1996年 4月観測分)で終了した.JPL ではこの欠陥を修正 するとともに、潮汐モデルを Cartwight and Ray と 拡張 Schwiderski から、TOPEX/POSEIDON デー タも利用したテキサス大学 CSR3.0.1とグルノーブ ル力学研究所 FES95.2.1に変更し、オハイオ州立大 学ジオイド OSU91A は JGM3のバージョン、平均 海面高 OSUMSS92は TOPEX/POSEIDON データ も利用した OSU95と改善された第2世代のデータ (MERGED GDR Generation B:以後 MGDR-B) を1998年1月から配布している.

3. 基本処理

(1) 切り出し

サイクル毎のディレクトリーに分けられている MGDR-Bから指定海域のデータ切り出しを行う. 大気補正等の標準補正,フラッグ判定はマニュアル (Benada,1997)に従い,2種の基準面(ジオイド 及び平均海面高)と2種の潮汐モデル(CSR3.0.1及 びFES95.2.1)による4種の残差海面高を計算す る.

(2) ノイズ除去

それぞれのパス,それぞれの残差海面高を指定緯 度毎のブロックに分割し,ブロック毎の切り出し期 間平均値及び分散を求め,標準偏差の指定倍を越え ある.

(3) 等間隔データ作成

指定した e-folding スケールと探索範囲を持つガ SSDH=($\int (\alpha - \alpha_r) dp - 30 [m^2/s^2] / g$ ウシアン・フィルターによって,指定緯度間隔のデー タとする. 標準値は e-folding スケール 5 分, 探索範 35における比容, g は重力加速度を示す. 積分は10db 囲±15分,作成緯度間隔5分としてある。

4. CTD による力学的海面高を用いたジオイド プロファイル補正

(1) CTDによる力学的海面高補間

第1図に示す日本近海におけるTOPEX/ POSEIDON 衛星軌道のうち、本州南岸黒潮域を対 象として軌道下での CTD 観測が実施されている. CTD 観測と衛星データの対応を第1表に示す. CTD データはノイズ処理を施した後に、ニールブ ラウン製 Mk III (1995年7月の観測まで) による データには、陸上検定値による圧力・水温の較正, 電気伝導度センサーと水温センサーの応答補正,電 気伝導度センサーの圧力・水温補正を実施し,±0.5

るデータはノイズとして除去する。標準値はブロッ dbの範囲の平均により1db毎のデータとした。シー ク長緯度15分, カット・オフのしきい値4倍として バード製 SBE9, ニールブラウン製 Mk IIIともに採 水データを用いて塩分を補正し,下記の式で力学的 海面高 SSDH を求めた。

ここで α は比容, α rは同じ圧力での水温0°C, 塩分 から基準面として2500dbまで行った.水深2500m以 浅の測点では10dbから最深層までの積分を行い,沖 側の測点の同じ層までの積分値との差を沖側の測点 の2500dbまでの積分値に加えた値を用いた。 30 [m²/s²] は力学的海面高を0近傍とするための 人工的な値である.

以上が力学的海面高補間のための前処理となる. CTD 観測は緯度10-30分間隔で実施されているた

パス	船舶データ年月	補正に用いたT/P海面高データ	
		サイクル番号	年月日時
10	1996年4月	132	1996年4月14日11時
		133	1996年4月24日9時
36	1995年4月	096	1995年4月24日12時
	1995年11月	116	1995年11月8日19時
		117	1995年11月18日17時
	1996年4月	133	1996年4月25日9時
		134	1996年5月5日7時
101	1995年4月	095	1995年4月24日12時
	7.15.73.56.79	096	1995年4月27日1時
	1995年4月	116	1995年11月11日9時
	a Assistant A	117	1995年11月21日7時
	1996年4月	132	1996年4月18日0時
		133	1996年4月27日22時
	1996年11月	152	1995年11月2日8時
		153	1995年11月12日6時
1112	1993年7月	029	1993年7月2日3時
		030	1993年7月12日1時
	1994年1月	049	1994年1月16日10時
		050	1994年1月26日8時
	1994年5月	060	1994年5月5日12時
		061	1994年5月15日10時
	1994年7月	066	1994年7月4日0時
		067	1994年7月13日22時
	1994年11月	078	1994年10月31日0時
		080	1994年11月19日19時
	1995年1月	085	1995年1月8日9時
		086	1995年1月18日7時
	1995年7月	104	1995年7月15日19時
		105	1995年7月25日17時
	1996年1月	122	1996年1月10日6時
		124	1996年1月30日2時
	1997年1月	158	1997年1月1日6時
		159	1997年1月11日4時
	1997年6月	173	1997年5月29日23時
		175	1997年6月18日19時
188	1994年1月	048	1994年1月9日11時
		049	1994年1月19日9時
	1994年5月	059	1994年4月28日13時
		060	1994年5月8日11時

第1表 CTD 観測と TOPEX/POSEIDON 衛星観測 の対応

わせるために3次元のスプライン補間を施す. (2) サイクル抽出及び補正値算出

CTD 観測の前後における衛星のサイクルを抽出 し、衛星による4種の残差海面高とCTD 観測によ る力学的海面高との差を各サイクルについて算出す る、その差を、CTD 観測と各サイクルの時間差をパ ラメータとして,指定した e-folding スケールを持 つガウス関数で重み付けすることにより各パスの補

第2図 TOPEX/POSEIDON パス112の残差海面高 (1994年1月).(上ジオイド基準,(下)平均海 面高基準。実線はCTD観測による力学的 海面高を、細線は CTD 観測の直前の衛星 観測(サイクル49)を, 点線は CTD 観測直 後の衛星観測(サイクル50)を示す。残差 海面高0は衛星欠測域、潮汐モデルは CSR3.0.1を使用.

め、緯度5分毎の TOPEX/POSEIDON データに合 正値を得る.標準値は e-folding スケール5日とし てある.

> 第2図に足摺岬から南南東に伸びるパス112にお ける CTD 観測による力学的海面高と, CTD 観測前 後のサイクルにおける残差海面高の出力例を示す。 これまでの研究(cf. 木下ほか, 1997)と同様に、ジ オイドには31.5-32Nの間で1m以上の誤差があ り, 平均海面高では黒潮の流路が安定しているため アノマリとしては表現されておらず、31.5-32.5N の間に1m近い誤差がある。第3図にパス112におけ る力学的海面高と残差海面高との差を4サイクル分 示す. 各サイクルで補正値が一致しない要因として は大きい順に、1)観測時期のずれによる誤差、2) 衛星の観測誤差,3)基準面の設定を含む CTD 観測 誤差。4) 潮汐モデルの誤差などが考えられる。他 のサイクルに比べて差が非常に大きいと判断したサ イクルまたは緯度帯の補正値は平均化の前に取り除 いた、補正値の分散はパス112について約7 cm. それ 以外のパスで約10cmとなった.

(3) 補正海面高による地衡流速算出

前ステップで得られた4種の補正値をもとに、全 サイクルにわたって地衡流のパスに直交する成分を 求める. CTD データを参照しているため, ジオイド 基準と平均海面高基準で補正結果は一致するはずで あるが、ジオイド基準にスパイク状のノイズが多く 見られる、ノイズがジオイド傾斜の大きいところで 生じていることから, 残差海面高の内挿に伴う誤差 と推定される。MGDR-Bに含まれている基準値を 用いる場合には平均海面高を用いた方がこの内挿誤 差を小さくできる。

第4図にパス112におけるサイクル毎の地衡流速 出力例を示す.黒潮は通常32-32.5Nを通過してい るが、サイクル88-90 (1995年2月) には流軸が南下 し蛇行が通過したことを示しており,海洋速報によ る黒潮の推定流路とも一致している。

5. ADCP による流速データとの比較

海面高データとの比較のため、JODC が保有して いる ADCP 連続データから, 1993年1月以降のデー タを,船速5ノット以上18ノット以下,加速度毎時

112.1.gc

図 TOPEX/POSEIDON パス112の CTD 観測
による力学的海面高とその前後のサイクル
における残差海面高との差(1993年7月と
1994年1月).(上ジオイド基準,(下)平均海面
高基準.差0は衛星欠測域、潮汐モデルは
CSR3.0.1を使用.

12ノット以下, 流速4ノット以下のしきい値を設けて抽出した.

それぞれのパスについて,経度±40分以内の ADCPデータを抽出し,最も近い軌道上の位置を算 出するとともに,軌道に直交する成分を計算する. 次に各月をn個(標準3個)に分割し,それぞれの 期間で緯度6分ブロック毎のADCPデータ充足率 を計算する.次に指定したADCPデータ存在幅(標 準は緯度1.5度)以上,データ充足率(標準50%)以 上のパス・期間について処理を行う.第5図にパス 112の補正海面高による地衡流速とADCPによる流 速の出力例を示す. ADCP データにはノイズも含ま れており差としては20cm/s 程度生じるが,黒潮の流 速分布はよく一致していると言える.

6. おわりに

本州南岸の主に黒潮については、TOPEX/ POSEIDON データを用いてその流路を特定できる システムが構築されたが、CTD 観測との時間差、衛 星観測誤差を含む基準海面高補正値にについては今 後も機会をとらえて検証を行う必要がある。

CTD 観測を行なっていないパスについては,

-34-

112.081-090.mc

第4図 TOPEX/POSEIDON パス112の補正後の海面高データによる地衡流速の時系列.正の流速は東北東向きを,負の流速は西南西向きを,右端の数字はサイクルを示す.平均海面高基準,潮汐モデルは CSR3.0.1を使用.

ADCP データによる流速値を参照して基準海面高 を補正することも可能であり、CTD 観測参照と同 様にプログラム群も整備したが、力学的海面高の絶 対値が不明となること、ADCP の小さくない誤差が そのまま補正値に加わることから、高精度の基準海 面高を算出するためには水温・塩分データ、潮位デー タの併用や個々の ADCP データの評価が必要とな り、今後の課題として残されている。

なお、今回整備したプログラム群は UNIX Sun OS5.4上での動作を確認しており、一連の処理は 20-60N, 120-180E におけるサイクル11~186 (1993 年1月~1997年10月)のデータに対して終了してい る。また、本システムの作図プログラム及び第2図 以降は GMT ver.3.0を利用した (Wessel and Smith, 1995).

参考文献

- Benada, J. R.: Merged GDR (TOPEX/ POSEIDON) Generation B User's Handbook Version 2.0, PO.DAAC/JPL, 124pp, (1997)
- 木下秀樹,道田豊,西田英男,寄高博行:マイクロ 波高度計軌道下のジオイドの高精度化,海洋 理工学会誌,Vol.2 No.1, 31-38, (1996)

面高データによる地衡流速と ADCP によ る流速(1994年12月中旬). ADCP 流速 0 は データのない領域.

-35-

水路部技報

Wessel, P., Smith, W. H. F.: New version of the Generic Mapping Tools released, EOS Trans. Amer. Geophys. U., 76, 329, (1995) 寄高三和子,西田英男: TOPEX/POSEIDON 衛星 データの日本近海切り出しファイルについ て,水路部技報, 13, 83-90, (1995)

Bongda, J. B. Mergeri GER (FORES) POSEBODY: Concention II Limits Clients book Version X.4 PODAAC/IPL Tabys (1997) * Frield, B.B.S. MERKE, WEIGHT / F.4 PO

WILL MALL AND THE THE COMP.

Vol. 17. 1999