日本周辺海域における海面水温変動特性

寄高博行,工藤宏之:海洋研究室 矢沼 隆:㈱パスコ

Characteristics of Variation of Sea Surface Temperature around Japan

Hiroyuki YORITAKA and Hiroyuki KUDO : Ocean Research Laboratory Takashi YANUMA : PASCO Co. Ltd.

1 はじめに

AVHRR (Advanced Very High Resolution Radiometer: 改良型高解像度放射計)が搭載された NOAA 衛星シリーズの運用が1978年に開始されて から、広域にわたる高解像度の海面水温分布は海況 把握のための資料として活用されてきた。水路部に おいても早期に APT (Automatic Picture Transmission:自動画像伝送)方式の受信装置が導入さ れ、1996年には HRPT (High Resolution Picture Transmission:高解像度画像伝送)方式の受信装置 が稼動を開始している(本下・石田, 1996)。AVHRR による海面水温には、主にチャンネル4と5の線形 結合で赤外放射量に対する大気補正を行った MCSST (Multichannel Sea Surface Temperatures: 多 チャン ネ ル 海 面 水 温: Anding and Kauth, 1970)が用いられており、その係数は漂流ブ イによって計測された海面水温に適合するように定 められている、この MCSST の係数は昼間用と夜間 用に分けられているが、全世界の平均的な値となっ ているため、日本周辺では0.5℃以上のバイアスを生 じる海域も報告されている (Kawai and Kawamura, 1997)、また、AVHRR による海面水温には雲による 欠測及び海洋速報等のための海況解析では想定して いない小さな空間スケールの現象が含まれており、 船舶等による実測海面水温と併せて解析するために は空間スケールを限定した客観解析が望まれる.こ のため、AVHRR による海面水温の実測海面水温に 対する差を月別、海域毎に特徴付けるとともに、時

空間の相関スケールを調べた結果を報告する.

2 MCSST の補正

AVHRRによる MCSST データには、水路部で 受信・解析した1997年1月~1999年2月の1日合成 データを用いた。比較データとして、海況解析用に 収集されている実測海面水温データを用い、以下の 手順でマッチアップデータを作成した。

- (1) 各日について、緯度・経度5分メッシュ内の MCSSTのうち、標準偏差の3倍以上離れた データを除去し、最高値と中央値をとる。
- (2) 各日について、緯度・経度5分メッシュの中 央から5分以内の実測海面水温を、5分をe -foldingスケールとしたガウシアンの重み 付けで平均する。
- (3) 両データが存在する日・メッシュについて MCSST-実測海面水温の水温差をとる。

作成したマッチアップデータは259,215点となった。水温差の平均値は中央値の場合で+0.26℃,最高値の場合で+1.01℃と MCSST の方が高くなっており,標準偏差はそれぞれ0.96℃,0.99℃であった。各日,緯度・経度5分メッシュのマッチアップデータを,年通日5日毎,緯度・経度2度メッシュで平均し,季節変動のみを抽出するために,

MCSST-実測海面水温

 $=\mathbf{b}_0 + \mathbf{b}_1 \sin(2\pi \cdot \mathrm{day}/365 + \mathbf{b}_2)$

と、水温差を1年周期の正弦関数に最小自乗法で フィッティングさせた.ここで day は1月3日を基

- 第1図 MCSSTと実測海面水温の差のバイアス (上:コンター間隔0.2℃),季節変動の振 幅(中:コンター間隔0.2℃)と位相(下: コンター間隔30度)
- Fig. 1 Bias (upper panel: contoured with interval of 0.2deg. C), amplitude (middle panel: contoured with interval of 0.2deg. C) and phase (lower panel: contoured with interval of 30deg.) of seasonal variation of difference between MCSST and in situ SST. -47-

点とした通日を示す. MCSST の5分メッシュデー タに中央値を採用した場合のバイアス (b_o),振幅 (b₁), 位相 (b₂) を第1図に示す. 千島列島付近と 南端域を除く殆どの海域で正のバイアスを示してお り、特に三陸沖で0.6℃以上 MCSST が高くなって いる。最高値を採用した場合にはバイアスが全域で 中央値を採用した場合よりも約0.7℃上がるが分布 パターンに大きな変化はない. 年周期変動の振幅は 北緯45度以北と30度以南でやや大きい傾向を示す が、大部分が0.2~0.6℃の範囲にある。位相は緯度 帯によって大きく異なり、北緯30度以南では30~60 度で冬季に水温差が最も大きくなり, 夏季に最小と なるのに対して、北緯40以北では逆に150~240度と 夏季~秋季に水温差が大きくなり、冬季~春季に小 さくなっている(位相の値の意味は第1表参照).こ の位相とバイアスを考慮して,太平洋と縁辺海の区 別は付けず,北緯20~30度,30~40度,40~50度の 3つの緯度帯について月別の回帰式,

実測海面水温=a₀+a₁·MCSST

をマッチアップデータから最小自乗法で求めた.中 央値に対する係数,相関係数,残差の標準偏差を第 2表に示す.月別・緯度帯別の補正により,バイア スは解消され,標準偏差も0.8℃と約0.2℃改善され る.

- 第1表 それぞれの位相に対して水温差が最大とな る日付と最小となる日付
- Table 1 Date for maximum and minimum difference in each phase.

Phase(deg)	Maximum	Minimum
0	4/3	10/2
30	3/3	9/2
60	2/2	8/2
90	1/3	7/3
120	12/2	6/3
150	11/2	5/3
180	10/2	4/3
210	9/2	3/3
240	8/2	2/2
270	7/3	1/3
300	6/3	12/2
330	5/3	11/2

	20-30N						30-40N				40-50N				
Month	N	a1	a0	r	stdev	N	al	a0	r	stdev	N	al	a0	r	stdev
Jan	6100	0.964	0.61	0.944	0.83	19903	0.953	0.56	0.973	0.75	2023	0.916	0.55	0.972	0.80
Feb	6134	0.898	2.00	0.916	0.80	20366	0.947	0.69	0.971	0.76	1734	0.918	0.64	0.965	0.83
Mar	4710	0.940	1.19	0.930	0.82	15927	0.980	0.37	0.977	0.81	1580	0.945	0.51	0.964	0.82
Apr	9208	0.955	1.08	0.948	0.83	26164	0.975	0.54	0.982	0.80	3863	0.933	0.68	0.976	0.80
May	9452	0.945	1.45	0.938	0.83	26900	0.970	0.66	0.981	0.80	4722	0.942	0.61	0.979	0.80
Jun	9432	0.939	1.69	0.924	0.83	29234	0.971	0.62	0.983	0.80	5431	0.951	0.58	0.990	0.80
Jul	8437	0.919	2.53	0.857	0.81	28121	0.971	0.65	0.973	0.80	7177	0.959	0.60	0.982	0.83
Aug	11003	0.812	5.63	0.774	0.77	36401	0.972	0.64	0.957	0.79	11341	0.920	1.43	0.966	0.80
Sep	12789	0.842	4.71	0.805	0.77	37646	0.981	0.39	0.966	0.78	13886	0.937	1.07	0.970	0.79
Oct	8773	0.890	3.26	0.863	0.79	26649	0.998	-0.08	0.975	0.75	9766	0.944	0.91	0.974	0.76
Nov	5929	0.998	0.13	0.915	0.85	17170	0.998	-0.17	0.978	0.74	5032	0.970	0.32	0.987	0.74
Dec	5587	0.988	0.09	0.946	0.85	18030	0.965	0.34	0.977	0.73	1932	0.941	0.47	0.983	0.81

第2表 各月・緯度帯におけるデータ数,回帰式の傾き,切片,相関係数と残差の標準偏差 Table 2 Number of data, gradient, intercept, correlation coefficient and standard deviation of residual.

3 MCSST の統計的性質

最適内挿法は場の統計的性質がわかっている場合 に有効な内挿法であり(*e.g.*水野, 1995),海面水温 の客観解析に用いる場合にも自己相関関数とS/N 比(シグナル/ノイズ)を求める必要がある。気候・ 海洋気象部海洋課(1996)は自己相関関数を等方的 と仮定して解析を行ったが,ここではKuragano and Kamachi (2000)が TOPEX/POSEIDON 衛星 による海面高データに適用した手法と同様に,相関 の空間的非等方性と変動の伝播を考慮した自己相関 関数を求めた。

前項で作成した MCSST の 5 分メッシュデータ を用い,500海里,±90日を探索範囲として同時相関 係数及びラグ相関係数を算出した. Kuragano and Kamachi (2000) に 做い 観測値の 自己相関関数 μ_{obs} が ガウス分布,

$\mu_{obs} = \exp(a_1 x^2 + a_2 y^2 + a_3 t^2 + a_4 y t + a_5 t x + a_6 x y + a_7)$

に従うと仮定し、反復法を用いて相関係数の分布に フィッティングする a₁~a₇の係数を求めた.ここ で、x はメッシュ中央からの東西方向の距離, y は メッシュ中央からの南北方向の距離, t は対象とす る日を基準とする時間を示す.観測値に誤差が含ま れていなければ定数項 a₇はゼロとなるが、実際には 周囲と無相関の誤差(ノイズ)が存在し、S/N 比は、

$$S/N = \sqrt{\frac{e^{a_r}}{1 - e^{a_r}}}$$

と求められる,自己相関関数の係数は5日毎,緯度・ 経度30分間隔で算出した。第2図に、同時相関(t= 0)の空間スケール、変動の伝播特性、非相関時間ス ケール、S/N 比の分布の例を示す。同時相関の空間 スケールは相関係数0.999の等値線で示しており,非 相関空間スケール(1/e)は約30倍となる.空間スケー ルの小さい低緯度で数100km, 中・高緯度で1000km以 上となり、いずれも2月より8月の方が大きい傾向 を示す.また,低緯度において北向きの伝播が顕著 であり、広域にわたる季節変動が支配的であること を示唆している.非相関時間スケールも2月の方が 長いが、両月で数100日以上となっており、探索範囲 の±90日では相関の変化は小さいと見なせる。一方, S/N 比は太平洋, 東シナ海よりも日本海, 黄海で高 く、2月よりも8月の方が全域で良く、広域にわた る季節変動に従わない中規模現象が黒潮域以南で冬 季に強くあらわれることを示唆している.

4 おわりに

MCSST の補正式を月別・緯度帯別に求め, 平均 的なバイアスと季節変動による水温差は補正できる が,残差はさらに小さい空間スケール,短い時間ス ケールの現象に支配されており,測定方式の相違か ら縮小は難しいと考えられる.また,求めた補正式 は対象とした1997年1月~1999年2月に運用されて いた NOAA-12, 14号の合成に対する式であり,現

第2図 2月17日 (左) と8月16日 (右) における同時相関スケール (非相関スケールの1/30) と伝搬速度 (上),非相関時間スケール (中:コンター間隔500日), S/N 比 (下:コンター間隔0.5)

Fig. 2 Simultaneous decorrelation scale (1/30 of decorrelation scale) and propagation speed (upper panels), decorrelation time scale (middle panels : contoured with interval of 500days), S/N ratio (lower panels : contoured with interval of 0.5) for Feb. 17 (left panels) and Aug. 16 (right panels).

在の NOAA-14, 16号に対しても漂流ブイの分布が 大きく変わらない限り適用できると考えられるが, 検証を行う必要がある.

MCSST の統計的性質については、広域にわたる 季節変動が支配的であることが示されたが、ここで 得られた相関関数を用いると中規模以下の現象は誤 差として平滑化されてしまう。海面水温の解析にお いて、数10kmまでの現象を表現するためには、圧倒 的に影響が大きい季節変動を除いて解析を進める必 要がある、

謝辞

自己相関関数の決定に際しては,気象研究所 倉 賀野主任研究官の手法を使用させていただきました.ここに感謝の意を表します.

なお, 第2図の一部の作成にはGMT (Wessel and Smith, 1998)を用いました.

引用文献

- Anding, D. and R. Kauth : Estimation of Sea Surface Temperature from Space, *Remote* Sens. Environ., 1, 217–220 (1970).
- Kawai, Y. and H. Kawamura : Characteristics of Satellite-Derived Sea Surface Temperature in the Oceans around Japan, J. Oceanogr., 53, 2, 161-172 (1997).
- 気候・海洋気象部海洋課:日本周辺海域の高分解能 海 面 水 温 解 析, 測 候 時 報, 63, 6, 287-302 (1996).
- 木下秀樹,石田雄三:海況監視衛星受信解析装置
 (Tera Scanシステム)による NOAA/
 HRPT データの処理,水路部技報,15,
 1-4 (1997).
- Kuragano, T. and M. Kamachi : Global Statistical Space-time Scales of Oceanic Variability Estimated from the TOPEX/ POSEIDON altimeter data, J. Geophys. Res., 105, 955-974 (2000).
- 水野恵介:大洋規模の海況解析と最適内挿法,海の 研究,4,3,187-208 (1995).

Wessel, P., and W. H. F. Smith : New, Improved Version of the Generic Mapping Tools Released, *EOS Trans. AGU*, **79**, 579 (1998).