海底地殻変動観測における局位置解析ソフトウェアの開発

藤田雅之、佐藤まりこ:航法測地室

矢吹哲一朗:海洋研究室

Development of seafloor positioning software using inverse method Masayuki FUJITA, Mariko SATO: Geodesy and Geophysics Office Tetsuichiro YABUKI: Ocean Research Laboratory

1 はじめに

海洋情報部では,東京大学生産技術研究所との 技術協力の下,GPS 音響結合方式による海底地殻 変動観測の技術開発を行っている(浅田及び矢吹, 2001;矢吹,2002).観測システムの概念図を第 1図に示す.

このシステムにより取得されたデータの解析過 程は,大きく3つのプロセスに分けられる.一つ 目は,船の位置を求めるキネマティック GPS (KGPS)解析,二つ目は,船と海底局間の音波 の往復走時を求める音響解析,そして三つ目は, これら二つの解析結果を結合し,海底局の位置を 求める局位置解析である.

現在我々は,この最後の段階にあたる局位置解 析のためのソフトウェア「SGOBS (<u>S</u>eafloor <u>G</u>eodetic <u>OBS</u>ervation)」の開発を行っている. 本稿では,現行バージョン(Ver. 2.5)について, その基本構造を紹介すると共に,この中で行って いる音速度の補正方法について考察を行う.

第1図 観測システム.

Fig.1 Schematic Figure of the observation system.

2 局位置解析ソフトウェア SGOBS

2.1 概要

SGOBS は, KGPS 解析結果と音響解析結果を 結合して,海底局位置を決定するソフトウェアで ある.全体の解析の流れを第2図に示す.

SGOBS への具体的な入力データは, GPS アン テナ位置, 音波走時, 動揺計測パラメータ(ヘデ ィング,ロール, ピッチ), 及び海中の音速度構造 プロファイルである.

まず,動揺計測パラメータを用いて,KGPS 解 析により求められた GPS アンテナの位置を,観 測支柱のもう一方の端に取り付けた海中のトラン スデューサ位置へと変換する.このトランスデュ ーサ位置と音波走時から,音速度構造を介して, 幾何学的原理に基づき海底局位置を決定する.そ の際,局位置と共に,音速度の時間変化係数も推 定パラメータとしている.これらのパラメータの 解法としては,ベイジアン最小自乗法に基づくイ

Fig.2 Flow chart of data analysis.

ンバージョン法(松浦,1994)を適用している.

2.2 ペイジアンインバージョン法について

この手法は,正規分布をもつ誤差 e を含む観測 データ y⁰とモデルパラメータ x の間に,A を偏微 分行列とした線形の観測方程式

$$y^0 = Ax + e \tag{1}$$

が成り立つと仮定し,モデルパラメータの初期値 からの誤差分布がアプリオリに与えられる場合に, モデルパラメータ解 x が次式によって計算される というものである(松浦,1994).

$$\hat{x} = x^{0} + DA^{t}(E + ADA^{t})^{-1}(y^{0} - Ax^{0})$$
 (2)

ここで,x⁰はモデルパラメータ初期値,Dはモデ ルパラメータ解の初期値からのずれを特徴づける 共分散行列,Eはeの誤差分布を特徴づける共分 散行列である.

一般には,観測データとモデルパラメータの間 の関係は非線形であることがほとんどであるが, その場合でも真値近傍における微小な変化に対し ては線形関係が成り立つと仮定し,与えた初期値 と真値との差を解として求める.これは式(1) 及び(2)において, x⁰=0として、y⁰とxをそれ ぞれ初期値に対する 値と考えることに相当する. そして,実際の非線形の影響については、繰り返 し計算(iteration)により真値に収束させる.

ベイジアンの手法, すなわちモデルパラメータ の共分散行列 D を導入する意味は, 初期値の信頼 性に応じて拘束をかけられることである.その最 も簡単な適用例として, パラメータの固定, 推定 の選択を D の対角成分により自由に設定できる ことがある.

2.3 アルゴリズム

SGOBSの簡易なアルゴリズムを第3図に示す. 我々が展開している海底基準点では,1点につ き原則4局の海底局を東西南北に配置し,測線観 測を行っている.第4図に,海底局配置と1日の 測線例を示す.まずこれら複数局についてそれぞ

第3図 局位置解析ソフトウェアのアルゴリズム.

Fig.3 Algorism for seafloor positioning software.

第4図 海底基準局配置図と測線例.

Fig.4 Distribution of the seafloor stations with an example of one-day observation lines.

れ同一の音速度構造で局位置解を求めた後,その 残差データを用いて,一定の時間ウィンドウ毎に 音速度の時間変化係数を求める.このサイクルを 局位置が収束するまで繰り返し,最終的な局位置 解を求める.音速度係数の時間ウィンドウ幅は, 測線単位から最大1日単位まで選択できる.

このように局位置と音速度構造を分けて推定す る最も大きな理由は,それぞれの推定パラメータ 毎に,用いる走時データの取捨あるいは重み付け に違いを持たせたいことである.例えば,後に述 べる伝播距離による重み付けは,海底局毎に違う ため,全局を同時に推定することとは両立しない.

2.4 モデルパラメータと観測方程式

次に,具体的な観測データとモデルパラメータに ついて述べる.上記アルゴリズムに示したように, 観測方程式は局位置解を求める部分と音速度構造 を求める部分との2つに分かれている. (a) 海底局位置の推定

まず局位置解について,式(1)の観測データ y⁰は,例えば海底局Aについて,以下のように記 述される.

$$y^{0} = \begin{pmatrix} \Delta t_{1(A)} \\ \Delta t_{2(A)} \\ \vdots \\ \Delta t_{n(A)} \end{pmatrix}$$
 (3)

右辺は, KGPS 解析と動揺補正により求められ たトランスデューサの位置と海底局Aの初期位置 座標から音速度構造を用いて計算された往復走時 と,観測された往復走時の差(O-C)の時系列を 表している.

また式(1)のモデルパラメータxは,海底局 位置座標(ローカル座標系の3成分)の初期値か らの補正量として次のように表現される.

$$x = \begin{pmatrix} \Delta x_A \\ \Delta y_A \\ \Delta z_A \end{pmatrix}$$
 (4)

(b) 音速度構造の推定(誤差の補正手法)

海底局位置を精密に求めるためには,要求精度内 で正確な海中の音速度構造が必要である.我々の 通常の観測では,原則として一日の測距観測前と 後に CTD 観測を行い,測距観測中に XBT による 水温観測を行っている.しかしながら,これらの 観測機器の精度は十分ではなく,また,観測値(水 温,電気伝導度,水圧)から音速度を求める経験 式(例えば,Del Grosso,1974;Wilson,1962; Chen and Milleo,1977)の選択によっても有意な 違いが生ずる.さらに,音速度は時間空間で変化 するため,これらを全てカバーする観測は実際上 不可能である.したがって観測値を確定値として, これのみからセンチメートルレベルの測位を行う ことは大変困難であるといわざるを得ない.

しかしながら音波走時は距離と速度の関数なの で,走時データには距離の情報を含むと同時に, その伝播経路の速度構造の情報を含んでいる.そ こで SGOBS では,音速度構造を推定パラメータ とすることにより,誤差の補正を試みている.こ れは,GPS 測位で通常行われている大気遅延量の 推定などと同様の考え方である.

音速度構造を求める部分の観測データ y⁰は,海 底局を 4 局(A~D)とすると,例えばタイムウ ィンドウ[t_{k(A)},t_{I(D)}]について,以下のように記述さ れる.

$$y^{0} = \begin{pmatrix} \Delta t_{k(A)} \\ \Delta t_{k(B)} \\ \Delta t_{k(C)} \\ \Delta t_{k(D)} \\ \vdots \\ \Delta t_{l(D)} \end{pmatrix}$$
(5)

)

音速度構造推定におけるモデルパラメータは, 現行バージョンでは,音速度の時間変化を二次式 で表したときの係数としている.すなわち,平均 音速度の時間関数 V(t)を

$$V(t) = V(t_0) + a_0 + a_1(t - t_0) + a_2(t - t_0)^2 (6)$$

と表すと,モデルパラメータxは,その係数の補 正値として次式のように表現される.

$$x = \begin{pmatrix} \Delta a_0 \\ \Delta a_1 \\ \Delta a_2 \end{pmatrix} \quad (7)$$

式(6)で to は基準時刻, V(to)は音速度初期値の to における値である.

なお、ここで時間変化係数を定義するにあたり、 深さ方向のプロファイルの形状は時間的に一定と 仮定している.現実には浅い部分ほど時間変化が 大きいなど、この仮定は厳密には成り立っていな いと考えられるが、数値実験によると、局位置推 定結果はほぼ平均音速に依存していると言ってよ いため(佐藤及び藤田、2004)、現行精度におい ては問題ないと判断される.

また,入力データとしての音速度構造は,CTD

等の観測値から 1m 層で与えているが,プログラ ム内で,これを 200m,400m,800m,1600m, それ以深という層毎に勾配を平均化して計算して いる.この場合,局位置推定結果は,現在の数 cm という精度においては,1m 層をそのまま用いる 場合と比較してほとんど差異がないことを確認し ており,これにより計算時間が大幅に短縮される メリットがある.

ただ将来さらに高精度の議論になった場合,層 厚を含めたこれらの仮定を見直す必要が出てくる かもしれない.

2.5 データの重み付けによる誤差の軽減

音速度誤差については,上記手法で正確に補正 しようと試みてはいるが,時間関数近似の限界や 空間不均質の影響及びパラメータ分離の不十分さ 等の理由により,補正後も有意な誤差を含む場合 が少なくない.この影響は,伝播距離が長くなる ほど大きくなるため,伝播距離の長いデータの重 みを適切に下げることが,結果の改善につながる 可能性がある.

この観点から,SGOBS では,局位置推定の際, それぞれの海底局毎に,観測データの誤差行列 E の対角成分に重み付けを行えるようにしている. 具体的には,海底局への音波の入射角をとして, cosⁿの重みを用いている.

このように遠くのデータの重みを下げることに より、データの幾何学的配置が実効上改善される 効果もある.佐藤及び藤田(2004)は,音速度構 造に誤差を含む場合でも,海底局の周りのデータ の幾何学的配置が均等であれば,水平成分につい ては,誤差が相殺され,精度劣化をある程度防ぐ ことができることを示している.現在の観測方法 では,第4図に示したように,それぞれの局に対 するデータ配置は一方に偏ってしまうため,この 重み付けが有効である場合が多い.

3 音速度初期値依存性と補正ストラテジー

局位置推定を行う際に重要なことの一つは,推

定パラメータ間の分離,すなわち局位置解の一意 性の確保である.既に述べたように,SGOBS V2.5 では,音速度変化の時間二次式の係数をパラメー タとして補正する機能を有しているが,我々の取 得するデータの中に,局位置と音速度構造を要求 精度内で分離できるだけの情報が含まれているか どうか,またそれが含まれていたとして,その情 報を適切に取り出すための最善の手法はどういう ものかが問題となる.

その一つの指標に,初期値に対する依存性があ る.ある範囲で異なる初期値を与えた場合に,そ こから求められる局位置解が一意的であれば,そ の手法は一意性が確保されているといえる.逆に, 異なる初期値から求められた局位置解に有意な差 があれば,音速度と局位置のパラメータの分離が うまくできていないことを意味する.

このような観点から,ここでは音速度の初期値 を変えて局位置解を比較すると共に,現行の機能 で行える範囲で補正ストラテジーを変え,より良 い方法について検討する.

3.1 比較方法

まず, 音速度構造の初期値として次の二通りを 与えた.

- (C) 朝夕の CTD 観測値を時間で線形補間したもの
- (X) (C)について,水温のみ XBT 観測値で置き 換えて計算したもの

また, 音速度構造の補正は, 以下の4通りの方 法で行った.

(A)補正しなかった場合

(B) 測線毎に補正した場合

(C)1日毎に補正した場合

(D)まず1日毎に補正した後,これを初期値としてさらに測線毎に補正した場合

以上の初期値と補正手法を組み合わせた8通り の場合について,局位置解を求め,その結果を比 較した.

3.2 結果

ここでは比較例として,当庁が2002年5月13 日~16日の4日間,宮城県沖海底基準点で取得し た観測データ(藤田及び佐藤,2004)について行 った結果を例示する.

第5図に比較結果を成分毎に示す.またそれぞ れの場合の解析後の走時残差を第1表に示す.な お,図のプロットは,海底局4局の座標値の平均 について,CTDの初期値(C)から(D)の手法 で求めた解(DC と表記,他も同様)を基準とし て,それぞれから求められた平均座標値との差を 示している.また図のエラーバーは,局毎の差の 自乗平均値を示している.

図を見ると,補正しなかった場合(A)には, 上下成分に 50cm 程度,水平成分でも 30~40cm 程度の差が見られる.これだけを見ても,観測値 のみからセンチメートルレベルの測位を行うこと は困難であることがわかる.

次に,測線単位に補正した場合(B)には,差 はかなり小さくはなるものの,局毎の大きなばら つきを含めまだ有意な差が残っている.これに対 して,1日単位で補正した場合(C)を見ると, その差は1cmレベルとなっており,どちらの初期 値を用いても,結果はほぼ変わらない,すなわち 初期値依存性がほとんどなくなっていることがわ かる.

さらに,(C)と(B)の組み合わせ,すなわち 一旦1日単位の補正を行ってから,これを改めて 初期値として測線単位で補正した場合(D)にも, 初期値依存性は見られない.これは(C)の補正 を行った時点で,初期値がほぼ同じになるため当 然である.(C)と(D)の結果を比べると,東西 成分に約10cmの差があるが,どちらが真値に近 いかはこれだけでは判断できない.ただ第1表よ り,最後に測線毎の補正を行うことにより,走時 残差が小さくなっていることがわかる.

(C)と(D)の手法をさらに詳細に比較するため、4日間のデータを1日毎のサブセットに分け、
 得られた解を比較した.第6図、第7図は、13

- 第5図 音速度初期値及び補正ストラテジーの違い
 による局位置推定結果の比較:(a) 東西成
 分、(b) 南北成分、(c) 上下成分.
- Fig.5 Comparison of positioning results due to differences of initial values and strategies for estimation of sound velocity: (a) EW component, (b) NS component, (c) UD component for the Off Miyagi reference point.
- 第1表 音速度初期値及び補正ストラテジーの組み 合わせによる解析走時残差(msec).
- Table 1 Travel time residuals (msec) in analysesfor the combination of initial values andstrategiesfor the soundvelocitycorrection.

	(A)	(B)	(C)	(D)
(C)	0.397	0.119	0.166	0.120
(X)	0.277	0.118	0.164	0.119

- 第 6 図 音速度補正ストラテジー (C)による全日 解と1日解の比較:(a)東西成分、(b)南北 成分.
- Fig.6 Comparison of positioning results between solutions from all-day data and one-day data in the case of the strategy (C) for estimation of sound velocity: (a) EW component, (b) NS component for the Off Miyagi reference point.

日~16日までの1日解の,4日解に対する差を, 水平成分について示したものである.図から明ら かに,(D)の手法により1日解の再現性が改善さ れていることがわかる.

以上の検討結果から,(C)の手法によりほぼ初 期値依存性はなくなるが,さらに測線単位の補正 を行う(D)の手法が,より良い結果を与えると 判断される.

3.3 議論及び問題点

第8図は、5月16日の音速度補正に関して(D) の手法をとった場合の初期値,一日推定値,及び 最終の測線単位の推定値をプロットしている.こ れを見ると,まず一日単位でバイアス的な音速度 の補正がなされ,さらに測線毎にさらに細かい変 動を補正しているように見える.しかしながら, 最後の測線単位の補正曲線では,部分的には現実

- 第7図 音速度補正ストラテジー(D)による全日 解と1日解の比較:(a)東西成分、(b)南北 成分.
- Fig.7 Comparison of positioning results between solutions from all-day data and one-day data in the case of the strategy (D) for estimation of sound velocity: (a) EW component, (b) NS component for the Off Miyagi reference point.

- 第8図 音速度補正ストラテジー(D)による解析
 過程における音速度時間変化(2003 年 5
 月16日): SV0は初期値、SV1は1日補正
 値、SV2は最終の測線毎補正値.
- Fig. 8 Temporal variation of sound velocity in the analysis with the strategy (D) for May 16, 2003; SV0 is the initial values, SV1 and SV2 are ones corrected with a day through and ones finally corrected with every line, respectively.

のものとは考えにくい急激な変化も見られる.他 例では,こういった現象がさらに顕著に見られる ものもある.

現実の音速度変化は複雑であり,これをある特定の関数にあてはめて補正することには限界がある.(D)の手法の考え方は,一日の変化について 二次式で近似できない部分を測線単位の推定で補 おうとするものであり,ある程度の妥当性と有効 性をもっていると考えられるが,部分的にはデー タに含まれるなんらかの別の要因を,音速度構造 に無理矢理押し付けている可能性があることには 留意しなければならない.

他方,我々の目的は音速度構造を正確に求める ことではなく,局位置を正確に求めることにある. 例えば KGPS から求められた高さ成分に時間ド リフト誤差が含まれているとすれば,数値解析的 には音速度補正値によって吸収されてしまい,結 果を改善する可能性もある.その場合,たとえ推 定された音速度が正しくなくても,手法としては 有効と考えるべきであろう.

音速度補正手法についての本稿の検討結果は, かなりの事例で確認したが,十分な一般性をもつ かどうかは,さらに検証しなければならない.ま た音速度の補正関数については,物理的合理性を 含め,より適切なものがないか検討する必要があ る.いずれにしても完全な補正を行うことは不可 能であるが,方法の工夫により局位置推定結果の 精度,信頼性を高める努力を行っていきたい.

4 おわりに

本稿では現在開発中の海底地殻変動観測におけ る局位置解析ソフトウェアについて紹介すると共 に,音速度の補正手法に焦点を当て,その妥当性 等について議論した.現行バージョンは,現在取 得しているデータからある程度目標精度を満たす 事例が確認されており,今後の基盤となりうる段 階には達していると考えている.しかしながら, まだまだ課題は多く,さらに精度のよい安定した 結果を目指して改良を重ねていかなければならな い.

参考文献

- 浅田昭,矢吹哲一朗:熊野トラフにおける長期地
 殻変動観測技術の高度化,地学雑誌,110(4),
 529 543,(2001).
- Chen, C.T., and F.J. Milleo: Speed of sound in seawater at height pressures, *The Journal of the Acoustical Society of America*, **62**, No.5, 1129-1135, (1977).
- Del Grosso, V.A.: New Equation for the Speed of Sound in Natural Water (with Comparison to other Equations), *The Journal of the Acoustical Society of America*, **56**, No.4, 1084-1091, (1974).
- 藤田雅之,佐藤まりこ:海底地殻変動観測データ による局位置再現性の評価,海洋情報部研究報 告,40,72-78,(2004).
- 松浦充宏:インバージョン解析法,「現代測地学」 日本測地学会,477-482,(1994).
- 佐藤まりこ,藤田雅之:海底地殻変動観測におけ る海中音速誤差の局位置への影響について,海 洋情報部技報,22,42-49,(2004).
- Wilson, W.D.: Extrapolation of the Equation for the Speed of Sound in Sea Water, *The Journal of the Acoustical Society of America*, 34, No.6, 866, (1962).
- 矢吹哲一朗:海底地殻変動観測を目指した音響技術開発,水路部研究報告,38,47-58(2002).