# 最近の航空磁気測量について

小山 薫, 熊川浩一:航法測地室 植田義夫:海上保安大学校

# The Latest Airborne Magnetic Surveys

Kaoru KOYAMA, Koichi KUMAGAWA : Geodesy and Geophysics Office. Yoshio UEDA : Japan Coast Guard Academy

#### 1 はじめに

海洋情報部では、海域火山の噴火予知に資するた め、航空機による火山島及び海底火山の磁気測量を 行っている.海域の磁気測量は船舶による海上磁気 測量と航空機による航空磁気測量に分けられる. 航 空機を使用する利点は測量船の航行ができない陸域 や海域の調査を短時間に広範囲の調査が可能である 反面、測線・測点間隔や位置精度が粗くなる問題点 も抱えている.火山活動で熱せられた火山岩は キューリー点温度で消磁し、逆にそれ以下に冷却す るときは熱残留磁気を獲得する.磁化強度は火山岩 の組成により強弱が決定され、鉄分など強磁性鉱物 が多く含まれれば強くなり少なければ弱くなる. 一 般に玄武岩質を多く含む火山体は強い磁気異常を示 す. 伊豆大島, 三宅島, 阿蘇山, 桜島などが磁化強 度の非常に強い代表的な火山で、磁気異常の振幅も 大きい。地磁気の強さは距離の三乗に比例し弱くな るため、磁化の強い火山体から離れるに従い磁場は 急激に減衰する.ある一定高度で調査した火山体の 磁場分布は地表付近の磁気雑音を含まない地下構造 を示している.海洋情報部では、火山噴火予知計画 の一環として、航空磁気測量により海域火山の地下 構造を推定し、火山噴火予知の資料としている、本 稿では、航空磁気測量の手法と解析方法の紹介及び 最近得られた成果について紹介する.

#### 2 航空磁気測量の手法

(1) 使用機材(第1図)

使用する航空機は羽田航空基地所属LA701 (YS-11型機)である.搭載する磁力計は航空用プロトン 磁力計で、地磁気全磁力値を測定し、測位にはGPS 測位機を使用している. 航空機を用いて磁場を測定 する場合,航空機自身から発生する磁気雑音も測定 値に含まれることになる. LA701ではこの磁気雑音 を小さくするため、機体尾部に長さ約2.0mの非磁 性素材であるプラスチックでできた円筒形のテール スティンガーを取り付け、この先端部にプロトン磁 力計センサーを固定している. 航空機の機体磁気は それ自体の残留磁気と地球磁場によって機体に誘導 される磁気の合成である.誘導磁気は地球磁場を切 る方向によって違う. そのため測定は、磁気異常の 変化が少ない海域で8方位の観測を実施し、観測結 果を方位角による周期関数で近似している。第2図 は、2000年11月、新島上空で8方位観測により得ら れた観測値と機体磁気補正曲線である.機首方位角 Hによる機体磁気は、DF=-11.69-71.05\*cos  $(H) + 28.39 * \sin(H) + 7.20 * \cos(2H)$ 

となり,振幅は±70nTにもおよぶ.測位方式は,過 去にはオメガ受信機,ロラン受信機,対地ビデオ撮 影法,またはその組み合わせを使用してきたが1994 年からはGPSを使用している.GPSと磁力計計測部 の時間はコントロール部で制御され同じタイミング で測位と計測を実施している.航空機を使用した観





LA701 (YS11)







磁力計センサー



制御・収録部

第1図 LA701号機と使用機材 Fig. 1 Proton senser in tail stinger and Magnetometer inside LA701 (YS11).



Fig. 2 Magnetic correction of LA701.

測では測量位置の精度は、測位機器の精度と飛行速 度により左右される.180ノットで観測した場合の 1秒間の移動距離は約100mにも達し、測量精度を 確保するためには、位置精度の確保が重要な要因と なる.

(2) 観測方法

海域火山の上空を一定高度で測線間隔は0.5~1 マイルで測量し,データは,2秒毎に収録してい る.(第3図)

## (3) 計画と観測

航空磁気測量は海域火山が集中している南方諸島 と南西諸島の火山島及び海底火山を対象に実施して いる.以下に実施してきた火山島等を示す.

| 1997年 | 伊显入局,明仲嗻       |
|-------|----------------|
| 1998年 | 薩摩硫黄島,硫黄島      |
| 1999年 | 諏訪瀬島,三宅島       |
| 2000年 | 薩摩硫黄島,口永良部島    |
| 2001年 | 中之島,硫黄鳥島,三宅島   |
| 2002年 | 諏訪瀬島           |
| 2003年 | 伊豆大島,北福徳堆      |
| 2004年 | 横当島            |
| 2005年 | 薩摩硫黄島          |
| 2006年 | 福徳岡ノ場,伊豆大島     |
| 2007年 | 硫黄鳥島,硫黄島       |
| これら   | 火山体の磁気構造の時間的な刻 |

これら火山体の磁気構造の時間的な変化を解明す るため、一つの火山島等について平均5年周期で測 量している. (4) データ処理

収得されたデータ"時間,緯度,経度,高度,全 磁力値"から飛行コースを計算し機体磁気補正を施 す.次に最寄りの地磁気観測所のデータより日変化 を補正する.さらに標準磁場(IGRF)を差し引き全 磁力異常値(アノマリー)を計算をする.

この時点のアノマリーには様々な誤差を含んでお り、それを除去するため視覚的にデータを編集する 地磁気・重力等物理データ専用のGISソフト"オア シスモンタージュ"を使用している。第4図に地磁 気全磁力異常図を作成するまでのデータ処理フロー を示す。

(5) データ解析

火山体の磁気異常を解析する方法は、山体を2次 元のグリッド標高値でモデル化し、ある一定の水平 面内での磁化強度もしくは磁気基盤深度の分布を求 める2D-FFTを用いたインバージョン法(第5図) があるが、山体内部の磁化構造を求める方法として は山体を磁化強度未知の3次元角柱の積み重ねで近



Fig. 3 Track chart and Aeromagnetic Anomaly map.

似し,それぞれの角柱毎の磁化強度をCG法でトモ グラフィー的に3次元で求める方法がある.この方 法は,山体が一様に磁化しているとする仮定に替



内は WS での作業それ以外は PC での作業

第5図 2D解析フローチャート Fig. 5 2D-FFT Method. わって磁化の方向は共通として磁化強度を,山体内 部の熱的構造による変化を考慮して未知数として求 めるものである.(第6図)

(6) 火山島の3次元磁気構造図(直接法)

第7図は2000年噴火の前後,1999年と2001年の三 宅島3次元磁気構造の南北および東西の断面図であ る.2001年では火口直下の水面下300mで全体的に 磁化強度が低くなっている.

第8図は、伊豆大島の3次元磁気構造図であ る.1997年と2003年とに特段の変化は見られない. 伊豆大島については、2006年3月に航空磁気測量を 実施したので前回の噴火直後に実施したデータと併 せて解析した結果を次に述べる.

#### (7) 伊豆大島の磁気構造の変化(直接法)

1986年,2006年について3次元解析を試みた.各 年とも飛行高度が違うのでそれぞれ高度1500mに上 方接続した.地形は,500m間隔のグリッドデータを 用い高さを水深300m以浅,300m~1500m,1500m



磁化強度断面図作成フローチャート(3D 解析)

※1 地形データにマスキングする下限を追加しポリゴンデータを作成し tab 区切りの txt で保存する。 また、各層データをマージして tab 区切りの txt で保存する。

第6図 3D解析フローチャート Fig. 6 3D-Geomagnetic Tomography Method.



第7図 1999年及び2001年三宅島3次元磁気構造図 Fig. 7 3D-Geomagnetic Structure of Miyake-jima in 1999, 2001.



第8図 1997年及び2003年伊豆大島3次元磁気構造図 Fig. 8 3D-Geomagnetic Structure of Izu-Oshima in 1997, 2003.





~2500mの3層にスライスし,各層での磁化強度分 布を3次元インバージョン法により求めた.山体を 形作る第1層では,島の西側で10A/m以上の磁化 強度を示しそのピークは,2006年は1986年に比べて 4A/mほど強くなっている.(第9図)第2層では, 島を北西から南東に5A/m前後の強い磁化層が帯 状に伸びている.また本島西側に局所的に見られる 低磁化域は1986年噴火前後のマグマ活動を反映した ものと思われるが2006年では,それが3A/mほど減 少している.(第10図)第3層については,第2層と 同様な傾向を示すが全体的に磁化強度が低い.(第1 1図)

## (8) 残差磁気異常の解析(2段階法)

地磁気全磁力異常を直接,3次元構造でモデル化 する方法では,局所的に負の磁化強度が生じる不都 合や山体の持つ平均磁化強度とその内部の非均一磁 化との関連を明らかにする点で不十分であった.ま た,山体全体の大きな磁気異常のため,内部の局所 的な異常はマスクされて解析結果に顕著に表れてこ ない.このため,次の2段階解析手順を踏む.

## 第一段階(均一磁化モデル)

山体を各層のブロックに分け,そのブロックでの 磁化が同じと仮定した均一磁化モデルでの平均的な 磁化強度を求め,

# 第2段階(非均一磁化モデル)

その均一磁化モデルから計算された計算磁気異常 と観測磁気異常との差をとった残差異常を使用して 各3次元ブロックでの平均磁化強度からの磁化強度 偏差を求める. 86-mj02

06-mj02



Fig. 10 J (A/m) in 2nd layer (-300 m)h > -1500 m)

第12図は、2006年の伊豆大島の2段階方法での3 次元磁気構造図である.

第1段階:山体を300m以上,300m~0m,0m ~-300m,-300m~-1500mの4層に分け,各層 の磁化が同じと仮定した均一磁化モデルでの平均的 な磁化強度を求めた.

第2段階:その均一磁化モデルから計算された計 算磁気異常と観測磁気異常との差をとった残差異常 を使用して各3次元ブロックでの平均磁化強度から の磁化強度偏差を求めた.

その結果,伊豆大島の平均的な磁化強度は,10.5 A/mである.三原山の直下よりやや南西,白石山の 南西,カルデラ北西縁の西よりC火口付近から南 に,それぞれ相対的に磁化強度の低下域が認めら れ,それらは第2層,第3層に深くなるにつれ南西 方向にずれるものの鉛直的には連続性を持ってい る.このことから,これら低下域は熱的な消磁効果 が推察される.

このように直接法に比べ磁気構造が細部まで表現 されている.また,植田(2006)によると三宅島に ついて先に述べた直接法は逆の結果が得られている が,これに対する検証も行われており,精度的には 2段階法が優れている.磁気構造の変化を捉えるに は,山体のモデルの範囲や層分割の違いにより解析 結果が違うので各火山島に固有な標準磁気モデルを 計算しておく必要がある.



#### 3 おわりに

火山体の均一な磁化からのずれは,火山体を構成 する岩石の違いや熱消磁の影響が表現されていると 考えられる.今回の研究によりこの様な火山体内部 の磁気的構造を把握するには,3次元地磁気トモグ ラフィー法が有効であることが確認できた.航空磁 気測量を繰り返し行うことで,火山体内部の磁気構 造の変化をより精度良く捉えることは,火山活動の 予測にとって重要な課題でありこの分野での進展が ますます期待される.

## 参考文献

植田義夫,中川久穂,小野寺健英,鈴木晃,熊川浩 一,久保田隆二:2000年噴火以前の三宅島の 3次元磁気構造-地磁気トモグラフィーの試 み-,水路部研究報告,**37**,16-19,(2001) 植田義夫:三宅島の3次元磁気構造と2000年噴火に よるその変化,火山,**51**,161-174,(2006)



第12図 2006年伊豆大島3次元磁気構造図(2段階方式解析)

Fig. 12 3D-Geomagnetic Structure of Izu-Oshima in 2006 : tow step 3D-Geomagnetic Tomography Method.