八丈島東方海域における精密地殻構造探査~2006年度第10次大陸棚調査~

西下厚志,河原木一, 倉持幸志, 及川光弘, 二大陸棚調査室

Seismic exploration in east of Hachijo-jima, the western Pacific Basin-10th Continental Shelf Survey 2006

Atsushi NISHISHITA, Hajime KAWARAGI, Koji KURAMOCHI,Mitsuhiro OIKAWA, : Continental Shelf Surveys Office

1 序論

海上保安庁は大陸棚調査の一環として,2006年10 月10日から11月2日にかけて大型測量船「拓洋」に より,八丈島東方海域でマルチチャンネル反射法 地震探査および海底地震計(OBS: Ocean Bottom Seismograph)を用いた屈折法地震探査を実施した (第1図).ここでは,本探査の概要について報告す る.

- 第1図 伊豆小笠原海溝近海海底地形図. 赤い枠 が調査海域に該当する.
- Fig. 1 Seafloor topographic features in the western Pacific Ocean. Red rectangle indicates experimental area.

探査海域は八丈島東方の伊豆・小笠原海溝の東部 に位置する(第2図).本調査の主たる目的は,伊 豆・小笠原海溝の東端から東方に延びている海山群 の地下構造がどのように遷移しているかを把握する ことにある.

2 調査概要

調査海域

八丈島東方海域 第10次大陸棚調査(「拓洋」2006/10/10-11/2) 本調査では屈折法探査・反射法探査(MGr 1)と 4本の反射法探査が設定された(第2図).

測線名 : MGr 1 両端座標:北緯32.78° 東経143.12° 北緯33.52° 東経143.96°

測線長 :約113.9 km (61.5 n.m.)

八丈島東方から伊豆・小笠原海溝を横切り拓洋第 二海山にかけての探査測線で茂木海山にちなんで MGr1と命名した. MGr1測線は任弘海山の南西方 の海山頂から始まり,任弘海山を経て,鹿島断裂帯 を横切り深海平坦面に達する形で設定されている. MGr1では、屈折法と反射法を実施した.

測線名 : MGmA
両端座標:北緯32.83° 東経141.33°
北緯32.77° 東経143.30°
測線長 : 約183.9 km (99.3 n.m.)

測線名	: MGmB	
両端座標	:北緯33.19°	東経143.55°
	北緯33.78°	東経143.58°

第2図 調査海域図. 青い線はマルチチャンネル 反射法測線を示す.

Fig. 2 Map of experimental. Blue lines indicate multi-channel seismic reflection profiles.

第3(a)図 調査海域図. 赤い点は海底地震計設 置点を示す.

Fig. 3 (a) Map of experimental area. Red circles indicate OBS locations.

第3(b)図 探查測線断面図.

測線長 :約65.9 km (35.6 n.m.)

測線名	: MGmC
両端座標	:北緯33.83。 東経143.85。
	北緯34.31° 東経143.90°
測線長	:約53.5 km (28.9 n.m.)
測線名	: MGmD
両端座標	:北緯34.17° 東経144.32°
	北緯34.20° 東経144.82°
測線長	:約45.9 km(24.8 n.m.)

MGmA~MGmD測線は,茂木海山の西方から始 まり,伊豆・小笠原海溝を横切り,茂木海山,任弘 海山,一明海山,拓洋第二海山,拓洋第三海山に至 るまでの測線となっている.

屈折法地震探查

発震船	:測量船「拓洋」
海底地震計設置間隔	:約5km
海底地震計使用台数	:20台
震源	:シングルエアガン
震源容量	: 1000 inch ³
内部圧力	: 1420 psi (9.8 MPa)
曳航深度	:9 m
発震間隔	: 200 m (90-100 sec)
測位	:単独測位GPS
GPSアンテナーエア	ガン間距離:100.3m

人工震源として, BOLT社製long life air-gun (1000 inch³:16.41)を使用し,エアガン曳航方式 を用いた.本調査では20台の海底地震計を使用し た.設置間隔は,大陸棚調査で標準としている5 km 間隔で実施した(第3図).

海底地震計の詳細については林田他[2005]のと おりである. 震源 こ シングルエアガン 震源容量:1000 inch³ (16.4 l) 内部圧力:996 psi (6.86 MPa) 曳航深度:8.5~10 m 発震間隔:50 m

マルチチャンネル反射法地震探査

船速 :4 kt

<エアガン/マルチチャンネルケーブル構成・上面図>

第4図 エアガン・マルチチャンネルストリーマケーブル配置構成図 Fig. 4 Towing geometry of the air-gun and the multi channel streamer cable.

S/V "Takuyo"

第1	表 20	06年度第10	次フ	た陸れ	<i>掤調</i> 査	行動	表.					
Table 1	Ship	operations	in	the	2006	10^{th}	Conti-					
Table 1 Ship operations in the 2006 10 th Cont nental Shelf Survey.												

日付	作業内容
第10回大陸棚調査	測量船「拓洋」 2006/10/10 - 2006/11/2
10/11	OBS揚収 (DKr1 St.4-St.11)
10/12	OBS揚収 (DKr1 St.12 - St.19)
10/13	OBS揚収 (DKr1 St.20 - St.23)
	台風避難のため館山湾に向かう
10/18	OBS投入(MGr1 St.20-St.1)
10/19	OBS位置測定(MGr1 St.1-St.20)
10/20	OBS再投入(MGr1 St.9)
	エアガン投入(1000 cubic inch)
	MGr1屈折法 入線
10/21	MGr1屈折法 出線
	エアガン揚収(1000cubic-inch)
10/21	マルチチャンネルストリーマケーブル投入
	エアガン投入 (1000cubic-inch)
10 (00	MGmA反射法入線
10/22	探鉱機収録装置フリーズしたため、再人線
	ハート5番政障のため、ケーフル揚収し、ハート5番取り外す
10 /00	マルチチャンネルストリーマケーフル投入
10/23	MGMA反射法 出線
	muri反射法 入様 エスボントリエス 温ね エスボン提加
	エアガノよりエアー漏れ、エアガノ物収 エマザン(北) (1000 subia inch)
10/24	エアカフ技入(1000 cubic men) MCr15时は 山柏
10/24	MCIIX别法 山稼 MCmB反射法 入绅 山绅
10/25	MGmC反射法 入線 山線
10/20	コンプレッサーからのパイプがつまり気味にたり 空気圧が
	$70 k_{\text{m}}/\text{m}^2 \pm \pi 1$ $h \pm h + h + h + h + h + h + h + h + h + $
	/ong/on よてしかめがらなくなりた MGmD 反射注 入線 中線
	moninの反対広 八線 山線 エアガン及びマルチチャンネルストリーマケーブル堤収
10/26	MGr1 St 9 再投入OBS位置測定及び広答したいOBS捜索
10/27	OBS揚収 (MGr1 St 20-St 14)
10/28	OBS揚収 (MGr1 St. 13-St. 06)
10/29	OBS揚収 (MGr1 St. 05-St. 01)
10/30	八丈島南方精密海底地形測量
10/31	八丈島南方精密海底地形測量

測位 : 単独測位 GPS

GPSアンテナーエアガン間距離:98~100.3m 人工震源は屈折法地震探査と同じ方式で実施し た.

収録システム	:GEOMETRICS社製
	Stratavisor NX
曳航ケーブル	:マルチチャンネルストリーマ
	ケーブル
	Innovative Transducers Inc.
	製 Stealtharray ST-48
曳航深度	:12~20 m(設定深度)
チャンネル	: 48 ch
記録長	: 14 sec with deley
サンプリングレート	: 2 msec
フィルター	
Low Cut : out	
High Cut : out	
Notch : out	
収録フォマット:	SEG-Y

使用ケーブルは全長1518mで、8セットあるア クティヴセクションにハイドロフォンセンサーが6 chずつ配置されている。収録されたアナログデータ は24 bitにA/D変換され、データ収録システム (GE-OMETRICS社製 Stratavisor NX) によりSEG-Y フォーマットで4mm DATテープに収録される.記 録長は14秒に設定しているが、水深の変化に合わせ てディレィタイムを適宜変更(2~5秒)した.

ストリーマケーブルの構成およびエアガンの曳航 方式について第4図に示す.

3 調查経過概要

大陸棚調査日程と地震探査のおおまかな流れは第 1表に示すとおりである、調査には上乗りとして、 大陸棚調査室員が3名乗船した.また、使用した海 底地震計のパーツ構成表は第2表に示す.

第2表 海底地震計パーツ構成表.

Table 2 Information of OBS components used in the 2006 10th Continental Shelf Survey.

Ct No		5+	フラッ	シャー	ビーコン				
SL. INO.		- JIJ - JID	メーカー	ID	メーカー	ID	MS		
MGr01-1	1-007	0003	太洋無線	5291513	太洋無線	3361494	2430		
MGr01-2	1-013	0025	太洋無線	5291349	太洋無線	3361392	2328		
MGr01-3	1-026	0050	太洋無線	5291386	太洋無線	3361678	2614		
MGr01-4	4-098	0039	太洋無線	5291343	太洋無線	3361505	2441		
MGr01-5	1-035	0037	太洋無線	5291564	太洋無線	3361662	2598		
MGr01-6	1-036	0038	太洋無線	5291533	太洋無線	3361568	2504		
MGr01-7	1-037	0041	太洋無線	5291221	太洋無線	3361585	2521		
MGr01-8	1-080	0107	太洋無線	5291515	太洋無線	3361336	143		
MGr01-9	6-067	1064	NOVATEC	T02-058	NOVATEC	T02-386	2764		
MGr01-10	1-099	0171	太洋無線	5291264	太洋無線	3361474	4210		
MGr01-11	2-022	0202	太洋無線	5291465	太洋無線	3361560	2496		
MGr01-12	2-070	0312	太洋無線	5291184	太洋無線	3361457	2393		
MGr01-13	3-021	0263	太洋無線	5291454	太洋無線	3361549	2485		
MGr01-14	3-068	0434	太洋無線	5291344	太洋無線	3361402	2338		
MGr01-15	4-055	0518	太洋無線	5291361	太洋無線	3361431	2367		
MGr01-16	4-025	0485	太洋無線	5291293	太洋無線	3361613	2549		
MGr01-17	4-029	0510	太洋無線	5291329	太洋無線	3361325	132		
MGr01-18	4-031	0481	太洋無線	5291108	太洋無線	3361458	2394		
MGr01-19	4-034	0499	太洋無線	5291150	太洋無線	5291150	2586		
MGr01-20	4-038	0503	太洋無線	5291411	太洋無線	5291411	112		

地震計投入及び距離測定

海底地震計は、2006年10月18日に測量船「拓洋」 によりMGr1測線に20台を設置した.各地震計の投 入予定地点と実際の投入地点の座標とのずれを記し たのが第3表である.予定地点と投入地点の差は 200 m以内に収まっており、計画から大きくずれる ことなく順調に投入された.距離測定作業時に応答 のなかったMGr1-09点に地震計を再設置した.

投入地点から調査測線に対して垂直方向に、水深 と同距離離れた海上の1点(水深が3000mを超える 場合,距離は3000mに固定)で,測量船と海底地震

7

計の斜距離を計測した.計測には船上支援装置(日 油技研工業株式会社製NRP-MC)を用いて,この測 距値と地震計に収録されたエアガンの水中直達波の 記録とを合わせて地震計着底位置の算出に使用す る.計測は測線の北東端St.20から南西側へ水深と同 距離または3,000 m離れた地点から開始し,4地点 では3,000 mの距離で測定できたが,海況悪化の影 響で,受信状態が悪いため,他の測点は測線から1 海里の地点まで近づいて測定した.

エアガン発震

発震作業は2006年10月20日にMGr1測線の屈折 法探査から実施し,屈折法探査では故障等もなく無 事終了した.反射法探査では,エアガンからの空気 漏れ,電磁弁信号ケーブルの断線の故障があり,そのたびにエアガンを揚収し,修理後再入線した.また,空気圧を80 kg/cm²で実施予定であったが,コンプレッサー不調のため,70 kg/cm²しか上昇しないため,70 kg/cm²の圧力で実施した.

マルチチャンネルストリーマケーブルは最初の反 射法探査測線MGmA測線実施中にバードの5番が 故障で稼働しなかったため,取り外したままで調査 を実施した.また,マルチチャンネルストリーマ ケーブルは当初から4個のチャンネルが故障してお り,さらに調査を開始すると極端にノイズが発生す るチャンネルが4個あったため,合わせて8ch (3, 5, 11, 17, 36, 43, 44, 48ch)のデータ収録 を停止した.

第3表 茂木海山海域における海底地震計位置座標. Table 3 Information of OBS locations for profile MGr 1.

St No	OBS No	計画打	殳入位置				投入						計画位置と	揚収					
		緯度		経度				緯度		経度			の差		緯度		経度		
		度	分	度	分	水深(m)	投入(GMT)	度	分	度	分	水深(m)	差(m)	揚収(GMT)	度	分	度	分	水深(m)
MGr01-1	1-007	32	49.9302	143	10.323	5319	2006/10/18 17:15	32	49.9362	143	10.3192	5296	12	2006/10/29 14:31	32	50.9	143	9.84	5458
MGr01-2	1-013	32	51.8844	143	12.5388	5459	2006/10/18 16:52	32	51.8873	143	12.5341	5448	9	2006/10/29 14:05	32	53.32	143	11.81	5444
MGr01-3	1-026	32	53.6796	143	14.577	5436	2006/10/18 16:29	32	53.654	143	14.5566	5441	56	2006/10/29 13:29	32	55.23	143	13.85	5381
MGr01-4	4-098	32	55.4214	143	16.5558	4940	2006/10/18 16:06	32	55.4183	143	16.574	4888	28	2006/10/29 8:43	32	56.2	143	16.2	5085
MGr01-5	1-035	32	58.455	143	20.0076	2782	2006/10/18 15:14	32	58.443	143	19.9918	2767	33	2006/10/29 7:14	32	58.93	143	19.75	2958
MGr01-6	1-036	33	0.6162	143	23.0604	1906	2006/10/18 14:41	33	0.617	143	23.0386	1914	33	2006/10/28 15:20	33	1.09	143	22.73	2097
MGr01-7	1-037	33	3.5958	143	25.869	3117	2006/10/18 14:07	33	3.5898	143	25.8236	3117	71	2006/10/28 16:00	33	4.18	143	25.47	3345
MGr01-8	1-080	33	5.5452	143	28.0962	3110	2006/10/18 13:39	33	5.5459	143	28.1076	3118	17	2006/10/28 12:55	33	6.02	143	27.91	3355
MGr01-9	6-067	33	7.494	143	30.3252	3963	2006/10/20 7:19	33	7.4872	143	30.3441	3944	31	2006/10/28 13:45	33	7.99	143	30.17	3949
MGr01-10	1-099	33	9.4422	143	32.556	3925	2006/10/18 12:39	33	9.4455	143	32.5534	3905	7	2006/10/28 10:53	33	9.93	143	32.18	3546
MGr01-11	2-022	33	11.3892	143	34.788	3740	2006/10/18 12:09	33	11.3928	143	34.7813	3731	12	2006/10/28 10:20	33	11.84	143	34.43	3489
MGr01-12	2-070	33	13.3362	143	37.0224	4856	2006/10/18 11:13	33	13.3078	143	37.0274	4861	53	2006/10/28 7:21	33	13.761	143	36.647	4796
MGr01-13	3-021	33	15.282	143	39.258	5414	2006/10/18 10:47	33	15.2766	143	39.2447	5409	22	2006/10/28 8:00	33	15.6	143	38.84	5402
MGr01-14	3-068	33	17.2278	143	41.4948	5422	2006/10/18 10:22	33	17.208	143	41.4161	5400	127	2006/10/27 15:39	33	17.672	143	41.049	5269
MGr01-15	4-055	33	19.1724	143	43.734	5824	2006/10/18 9:56	33	19.1618	143	43.7212	5810	27	2006/10/27 15:16	33	19.787	143	43.366	5858
MGr01-16	4-025	33	21.1164	143	45.9744	5722	2006/10/18 9:30	33	21.1045	143	46.0246	5697	81	2006/10/27 14:15	33	21.4	143	45.91	5692
MGr01-17	4-029	33	23.0598	143	48.2166	5668	2006/10/18 9:04	33	23.058	143	48.2167	5643	3	2006/10/27 11:02	33	23.108	143	48.161	5643
MGr01-18	4-031	33	25.0026	143	50.4606	5665	2006/10/18 8:38	33	24.9839	143	50.5068	5646	79	2006/10/27 10:30	33	24.88	143	50.62	5647
MGr01-19	4-034	33	26.9442	143	52.7064	5685	2006/10/18 8:10	33	26.9544	143	52.8079	5685	159	2006/10/27 7:45	33	26.739	143	53.065	5677
MGr01-20	4-038	33	28.8858	143	54.9534	5739	2006/10/18 7:44	33	28.8733	143	54.9832	5708	51	2006/10/27 7:15	33	28.578	143	55.165	5702

海底地震計揚収

海底地震計は,2006年10月27日から29日にかけて 20台全て揚収した.しかし,MGr1-09に設置した海 底地震計は呼び出し信号に応答がなく揚収すること ができなかった.

4 調査記録

反射法地震探査記録

第5図にマルチチャンネル反射法地震探査の断面 図を示した.

MGr1とMGmA-MGmDは, 伊豆・小笠原海溝に

沈み込む太平洋プレート上に位置する海山群を通る よう設定されている.海溝軸から幅約100 kmに渡 り,沈み込みに伴うプレートの変形による正断層が 発達しており,茂木海山が断層により大きく変形を 受けている様子が確認できる.海溝から島弧側,SP 1100-SP 1400にかけて,島弧から供給を受けたと考 えられる堆積物が厚さ約0.5 sec(以下,往復走時) にわたり分布している.その内部には東へ向けて傾 いた反射面群が記録されており,これはプレートの 沈み込みに伴う島弧側基盤の傾動によるものと推測 される.

The seismic reflection profile of MGmA

The seismic reflection profile of MGmB

The seismic reflection profile of MGmC

The seismic reflection profile of MGr1

第6図 海底地震計MGr 1-10のレコードセクション(上下動記録). reduction velocity は8 km/s.

Fig. 6 Record section for OBS MGr 1-10 (Vertical component). The reduction velocity is 8km/s.

第7図 海底地震計MGr 1-17のレコードセクション ン(上下動記録). reduction velocity は8 km/s.

Fig. 7 Record section for OBS MGr 1-17 (Vertical component). The reduction velocity is 8km/s.

屈折法地震探査記録

本調査では,MGr1測線で計21台の海底地震計を 投入し,MGr1-09に設置した海底地震計を除く20 台を揚収した.また,揚収したすべての海底地震計 からデータを回収することができた.

測線MGr1における海底地震計のレコードセク ションの例を第6,7図に示す.第6図にはMGr1-10,第7図にはMGr1-17の地震計上下動成分を示 した.

OBS (MGr 1-10) は任弘海山頂部より北東側へ

下った海山中腹のOBS(水深3905 m)である. 南西 側では比較的振幅の大きなPgがオフセット距離約 20 kmまで確認できる. また, さらに遠方にもいく つか振幅の大きな信号が確認できるが, 初動かどう かは不明である. 北東側では見かけ速度3.2-5.0 km/sのPgが, オフセット距離25 km程度まで確認 できる. また, オフセット距離25 km以遠, 走時6秒 付近に大振幅のPmPと考えられる信号が見える.

OBS (MGr 1-17) は鹿島断裂帯の北東側の深海底 に位置するOBS (水深5643 m) で,この測線中では 最もS/Nの良好なOBS記録である.南西側は約70 km,北東側は測線の北東端までPgなどの波群を確 認することができる.PmPは不明瞭ながら測線北東 端付近,走時5.5秒付近に確認できる.

5 今後に向けて

今回の調査は、測量船「拓洋」でのマルチチャン ネル反射法地震探査であったが、システム導入後7 年経過しているため、マルチストリーマケーブルに 故障しているチャンネルが多数あり、48 chのうち 40 ch しか使用できなかった.また、コンプレッサー も万全の状態ではなく、予定の空気圧を確保できな かった.そのうえ、海況も悪く、バードが1台故障 したため、6台での調査になり、マルチストリーマ ケーブルを一定深度に保つことができなかった.

今後は使用機器を万全の状態にして, 良質のデー タを取得できる環境を整える必要がある.

謝辞

本探査を通じて多大な御援助・御支援をして下 さった,測量船「拓洋」の船長及び乗組員の方々に 深く感謝の意を表します.また,当探査計画に携わ り,多くの御助言・御提言下さった大陸棚調査室及 び海洋研究室の方々に感謝の意を表します.

参考文献

林田政和, 浜本文隆, 田中喜年, 松本正純(2005):

「大東海嶺群における精密地殻構造調査」,海 洋情報部技報,**23**,33-45.

渡辺奈保子,田賀傑,西下厚志,河原木一,及川光

弘,倉持幸志,泉紀明(2007):「第1鹿島海
山および襟裳海山周辺海域における精密地殻
構造探査」,海洋情報部技報,25,40-50