浅海域における SEABEAM 2112の測深能力の評価

藤沢美幸,及川光弘:大陸棚調査室

The bathymetric survey performance of SEABEAM 2112 in a shallow sea area

Miyuki FUJISAWA, Mitsuhiro OIKAWA: Continental Shelf Surveys Office

1 はじめに

マルチビーム音響測深機(Multi Beam Echo Sounder以下MBES)は使用する音波の周波数に よって測深分解能が変化し,周波数が高ければデー タの分解能が上がる反面,水中における振幅の減衰 が大きくなるため,深海域での調査には使用するこ とができない.一方,周波数が低ければ水中での振 幅の減衰が小さく深海域まで測深可能であるが,そ の分分解能が低くなってしまう.また,浅海域では 1本のビームが照射される海底における面積(フッ トプリント)が小さくなるため,測深密度を高める ためには十分に短いサンプリング周期で測定する必 要がある.

現在,測量船昭洋・拓洋はMBESのSEABEAM 2112を搭載し,主に中深海海域での調査に従事して いる.SEABEAM 21112は中深海域を対象として開 発されたMBESであるため,発振周波数として比較 的長波長である12 kHzを使用している.SEABEAM 21112の中深海域における性能についてはよく検証 されているが,200 m以浅の浅海域における測深能 力はよく分かっていない.浅海域は,航行安全にも 直結するため高精度・高密度のデータが求められて いる.そこで今回,浅海域での昭洋・拓洋のSEA-BEAM 2112の測深精度の評価と浅海域調査に適し た調査方法について検証した.尚,今回はSEA-BEAM 2112の性能のみに焦点を当てており,音速度 や測位の誤差については考慮していないため,音速 度や測位については別途検証を要する.

2 仕様機器及び使用データ

今回使用した昭洋・拓洋・天洋のMBESの仕様 は下のようになっている(株式会社東陽テクニカ HP).

昭洋・拓洋 SEABEAM 2112:周波数12 kHz, ビーム数151本,ビーム角2°×2°,最大スワス幅150° 天洋 SEABEAM 1180 MK2:周波数180 kHz,ビーム数126本,ビーム角1.5°×2.8°,最大スワス幅 153°

本検証に使用したデータは次に示す調査行動で取得

Fig. 1 The survey area map. The red circle indicates the survey area.

されたデータである (第1図).

平成13年度第4回大陸棚調查 男女海盆海域(昭洋) 平成18年度第14回大陸棚調查 房総半島内房沖(昭

洋)

平成18年度ドック回航 房総半島内房沖(天洋) 平成19年度第4回大陸棚調査 房総半島野島崎沖 (拓洋)

平成19年度中越沖地震海底調查(天洋)

3 データ検証

3.1 データの密度

船の進行方向におけるデータの密度は,船速,水 深,及びサンプリング周期で決まる(第2図).通常 のMBESでは,一度の測定が終了した後に次のビー ムを発振するため,水深に応じて自動でサンプリン グ周期を調節する機能を有している.サンプリング 周期,水深,ビーム角から一本のビームのフットプ リントが求められるが,船速が速くなれば取得され るデータの間隔が広がるため,進行方向のフットプ リントの重なりに空白域を生じてしまう恐れがあ る.そこで,実際の昭洋および天洋の水深とサンプ リング周期の関係から,未測深域を生じないための 適切な船速について検討した.

第3図は水深とサンプリング周期の関係をグラフ で示したものである.200m以浅において,天洋の MBESでは水深に応じてサンプリング周期が変化す るのに対して,昭洋は浅海域ではサンプリング周期 が変化しないことが確認できる.サンプリング周期 が一定であるので,未測深域を生じない程度にデー タ密度を保つには,水深に応じて船速を変える必要 がある.

ビーム角 θ の一本のビームによるフットプリント の半径は,水深をZとおくと,Ztan θ である(第4 図).未測深域をなくすには第5図のように,次に発 射するビームのフットプリントが重なり合う必要が ある.そこで,1サンプリング周期(T)中の船の移 動距離が2Ztan θ 以下でなければならない.した がって,未測深域をつくらないための船速(V)は V \leq 2Ztan θ /T ···(1)

第3図 水深とサンプリング周期の関係

Fig. 3 The relations between the sampling interval and depth.

第4図 フットプリントとビーム角度

Fig. 4 The beam footprint corresponding to the depth.

の条件を満たせばよい. SEABEAM 2112のビーム 角は2度であり, 第3図より水深200m以浅での SEABEAM 2112のサンプリング周期は約1.5秒で一 定であるから,

 $V \leq 0.047 Z \qquad \cdots (2)$

となり, 例えば水深Z=100 (m) のときV≦4.7 (m/s) ≒ 9 knotとなり, 水深100 mの場合では9 knot以下の船速で未測深域を作らずに測深するこ とができる.

3.2 データの精度

データ精度の国際的な基準としてIHO・S44(国 際水路機関水路測量基準以下S44)がある.今回は 比較的平坦な地形である東シナ海の地形データを, マルチビームデータ処理ソフトウェアを用いてメッ シュ化し,メッシュ毎に平均水深(1メッシュ中に 含まれるデータの平均水深値)と標準偏差(1メッ シュ中の水深値の標準偏差)のデータをグラフ化し てS44の基準と比較し精度を比べた.尚,今回使用 したデータは,水深80~100 m,船速4 knotのデー タである.

S 44では、測深の基準である95%信頼度における
 許容誤差は以下の式によって定められている。
 (95%信頼度における許容誤差)
 ・・・(3)
 ただし

1 級: a=0.5, b=0.0132 級: b=1.0, b=0.023

上式の水深と標準偏差の関係をグラフにすると第 6図のようになる.尚,縦軸は水深で割り,規格化 している.縦軸の値が大きくなるほどデータのばら つきが大きく,2級ラインより下にあるのが2級の 精度を満たすデータ,1級ラインより下にあるのが 1級の精度を満たすデータということになる.ただ し,起伏の激しい地形では標準偏差が大きくなるの で,値が大きくても直ちに不良データになるとは限 らない.

次にSEABEAM 2112で取得されたデータをこの グラフにプロットした(第7図).第7図を見ると あきらかに誤差の大きい基準範囲外のデータが多く

Fig. 7 The bathymetric data and standard deviations collected by S/V Shoyo in 1999.

第8図 1999年の昭洋の測量による水深と標準偏差 (60度以上のデータを除く)

Fig. 8 The bathymetric data and standard deviations collected by S/V Shoyo in 1999 (without over 60 degree data).

含まれていた.この誤差の大きなデータを落とす方 法としてビーム射出角度によってデータを削除する ことを考えた.海洋音響学会 [2004] によるシミュ レーション結果によると,ビームの射出角度が60度 を超えると,データの誤差が大きくなる傾向があ る.そこで,SEABEAM 2112のデータのうちビーム の射出角度が60度以下のデータのみを使用してグラ フに示した(第8図).その結果60度以下のデータ のみを使用した場合,ほとんどのデータが2級以上 の精度となることが示された.

参考として浅海域対応型MBESの天洋のデータ を同じくグラフに示す(第9図).天洋は浅海域対 応のMBESを使用しているため,求められた精度は 非常によい値を示している.測量場所・船速が昭 洋,天洋で違うため一概に比較はできないが,昭洋 と天洋のグラフを比較すると,昭洋の測深精度も天 洋と同程度になると考えられる.

3.3 データ確度

データの正確さを検証するためには,既知の値を 測量し値を比較する必要がある.本検証において は,浅海域測深対応の天洋の水深データを正しい値 とし,ほぼ同一測線を走った天洋・昭洋・拓洋の水 深データの比較をすることで,昭洋・拓洋のデータ の検証を実施した.調査海域は房総半島野島崎沖の 「沖の山」において実施し,測量結果の比較を実施し た(第10図).

天洋・昭洋の比較

天洋と昭洋で観測した地形データから作成した地 形図,及び地形データが重なっている部分を拡大し て3次元表示し,両者の結果について比較した(第 11図).天洋と昭洋のデータにおいてはほぼ等しい 値が取得されていることが分かった.2船のデータ の境界に水深値の違いが見られるが,天洋のビーム が高角度側であったため天洋のデータのばらつきが 大きかったものと推測される.

天洋・拓洋の比較

昭洋のときと同じく、天洋と拓洋で観測した地形

第10図 沖の山測線上の昭洋・拓洋・天洋の測量範 囲

Fig. 10 The survey coverage of Shoyo, Takuyo and Tenyo on Oki-no-Yama survey line.

データから作成した地形図,及び地形データが重 なっている部分を拡大して3次元表示し,両者の結 果について比較した(第12図).第12図より天洋と 拓洋のデータでは地形の起伏の傾向は一致している が,水深値が平行にずれていることが認められ る,2者の水深値のずれを計測すると10m程度,天 洋の方が浅くなる傾向が現れた.起伏の大きさや位 置が一致していること,及び昭洋・天洋の水深値は 一致していることから,この水深差はおそらく拓洋 に何らかのバイアス等の誤差が含まれていることが 推測される.ただし,今回はずれの原因の特定まで はいたっていない.

4 まとめ

・SEABEAM 2112において未測深域なく測量する ための適切な船速を求める式を導出した.

・水深80~100mにおいては、4knotで精度を検証 した結果、2級程度の測深能力はあることが確認で きた.ただし60度より広角度側のデータは精度が悪 いため、現状では使用に適さない.

・昭洋は天洋との比較から,昭洋の水深値は天洋と ほぼ一致しており,浅海域でも使用可能と思われ る.

・拓洋は地形の傾向は天洋と一致しているものの,

水深値に大きなずれがあるので,ずれの原因を特定 し,適切な補正を施す必要がある.

5 謝辞

本報告の作成にあたり技術的指導や資料提供に携 わってくださった方々に感謝の意を表します.ま た,今回のデータ処理に当たり,水路協会との共同 研究で作成された「大陸棚限界画定のためのソフト ウェア開発」のマルチビームデータ処理ソフトウェ アを使用しました.

参考文献

海洋音響学会:海洋音響の基礎と応用, 169, (2004) 株式会社東陽テクニカHP, http://www.toyo.co.jp/ kaiyo/

The International Hydrographic Organization : IHO Standards for Hydrographic Surveys (4 th edition) S-44, (1997)

- 第11図 昭洋と天洋の測深結果の比較.(a)天洋の測深記録,(b)昭洋の測深記録,(c)2船を重ね合わせたもの,(d)2船の水深を3次元表示したもの.
- Fig. 11 The Difference of the Bathymetric data collected by Shoyo and Tenyo.
 - (a) Bathymetric data by Tenyo, (b) Bathymetric data by Shoyo, (c) Merged bathymetric data,
 (d) 3 D image of the merged bathymetric data.

- 第12図 拓洋と天洋の測深結果の比較.(a)天洋の測深記録,(b)拓洋の測深記録,(c)2船を重ね合わせ たもの,(d)2船の水深を3次元表示したもの.
- Fig. 12 The Difference of the Bathymetric data collected by Takuyo and Tenyo.
 - (a) Bathymetric data by Tenyo, (b) Bathymetric data by Takuyo, (c) Merged bathymetric data,
 - (d) 3 D image of the merged bathymetric data.