マラッカ・シンガポール海峡の潮汐と潮流

筋野義三*・桑木野文章*・小田巻 実*・伊藤友孝**・熊谷武*

TIDE AND TIDAL STREAM IN THE STRAITS OF MALACCA AND SINGAPORE

Gizo Sujino*, Fumiaki Kuwakino*, Minoru Odamaki*, Tomotaka Ito** and Takeshi Kumagai*

Received 1981 August 10

Abstract

The Studies of tides and tidal streams in the Straits of Malacca and Singapore were jointly carried out by Japan and the three coastal countries, Indonesia, Malasia, and Singapore from 1977 to 1979.

According to the results of these studies, the tidal phenomena in the Straits of Malacca and Singapore can be classified roughly into four types of tides, and it cannot say that seasonal changes of the mean sea level always correspond to the variations in atmospheric pressure.

The tidal streams are of a semidiurnal type with a pattern of tide and half tide in the Malacca Strait, but are of a diurnal type in the Singapore Strait, and the time of high water in the Strait of Singapore is always correspondent to the time of slack water (West to East).

The direction of non-tidal streams in the Strait of Singapore vary in response to monsoons. By adopting the long period constituents of tidal streams (Sa, Ssa, Mm, MSf and Mf) obtained from the difference in water levels during one year between the Malacca Strait and Singapore Strait, the accuracy of tidal stream predictions in the Straits will be greatly enhanced.

1. まえがき

マラッカ・シンガポール海峡はアンダマン海と南シナ海を結ぶ全長1,000 km の海上交通の要路であるが、マラッカ海峡中央部の One Fathom Bank 以東の海域は全般に水深が浅く、海底には砂州・砂浪地形が発達しており、加えて潮流が強く、航海上の難所とされているにもかかわらず、潮汐・潮流現象把握のための総合的な観測は実施されたことは無かった。

この海峡の安全な航行のため、日本と沿岸 3 か国(インドネシア・マレイシア・シンガポール)が共同して潮汐・潮流の特性を調査し、その予報を行うことについて 4 か国の間で合意に達し、1977 年 7 月から 1979 年 10 月の間、One Fathom Bank から Horsburgh Lighthouse までの海域について、調査及び解析が行われた。

本稿では観測・解析の概要,潮汐・潮流の一般現象を述べるとともに,二,三の考察を行った結果について述べる.

^{*} 海象課 Oceanographic Division

^{**} 海洋資料センター Japan Oceanographic Data Center

2. 観測

1977年5月シンガポールで開催された技術会議において、潮汐は5か所の既存験潮所と12か所の新設験潮所で14か月間の同時観測を、潮流は6地点で2回の異なった時期にそれぞれ35日間の同時観測を行うことが決定された。第1図及び第1表に験潮所及び潮流観測点の位置を示す。

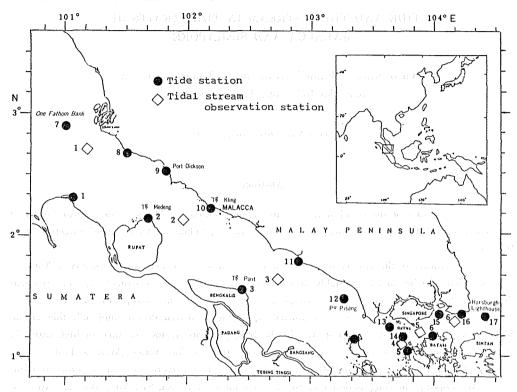


Figure 1 Location of tide stations and tidal stream observation stations

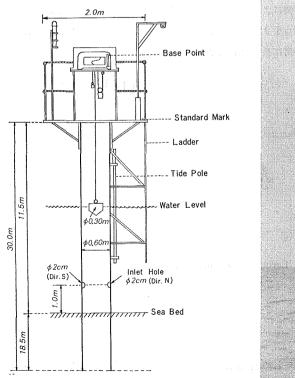
Table 1 Observation stations and positions of tide and tidal stream

No.	Tide station		F	ositi	on de	termi	ned		
1	Tg. Senebui*	02°	17'	45"	N,	101°	02'	48"	E
2	Tg. Medang*	02°	07′	24"	N,	101°	40′	00"	E
3	Tg. Parit*	01°	32′	24"	Ν,	102°	26'	33"	E
4	Pasir Panjang*	01°	07'	33"	N,	103°	20′	42"	E
5	Kepala Jernih*	01°	02′	48"	N,	103°	47′	07"	E
6	Batu Ampar*	01°	09′	59"	N,	103°	59 ′	49"	E
7	One Fathom Bank*	02°	53′	18"	N,	100°	59′	48"	E
- 8	Tg. Kabong*	02°	40′	42"	N,	101°	29′	51"	E
9	Port Dickson*	02°	31′	13"	N,	101°	47′	51"	E
10	Tg. Kling*	02°	13′	00"	N,	102°	09′	18"	E
11	Tg. Segenting*	01°	46′	24"	N,	102°	52'	48"	E
12	Pu. Pisang	01°	28′	12"	N,	103°	15'	18"	E
13	Sultan Shoal Lighthouse	01°	14'	24"	N,	103°	39′	00"	E
14	Raffles Lighthouse	01°	09′	36"	N,	103°	44'	30"	\mathbf{E}
15	Angler Bank	01°	201	42"	N,	104°	01'	54"	E

16	Τσ	Ayam*

01° 20′ 24″ N, 104° 13′ 04″ E

17 Horsburgh Lighthouse


01° 19′ 48″ N, 104° 24′ 18″ E

*: Newly established stations.

No.	Tidal stream obs. station	Position de	termined
1	Off One Fathom Bank	02° 40′ 15″ N,	101° 10′ 04″ E
2	Off Raleigh Shoal	02° 06′ 51″ N,	101° 56′ 41″ E
3	Off Tg. Segenting	01° 37′ 57″ N,	102° 43′ 30″ E
4	Phillip Channel	01° 05′ 43″ N,	103° 43′ 57″ E
5	Batu Berhanti	01° 11′ 42″ N,	103° 52′ 42″ E
6	Off Tg. Stapa	01° 17′ 23″ N,	104° 09′ 55″ E

(1) 潮汐観測

験潮所建設に必要な情報を得るため、1977年7月~8月に現地調査を行い、験潮所建設位置・設計・工法・建設期間等を決定した。1977年11月から建設に着手し、既設験潮所には OTT 型験潮器(西ドイツ製)を、新設験潮所には建設終了後ただちに長期巻フース型験潮器(日本製)を設置して予備観測を開始した。第2図に新設験潮所の代表例を示す。また、験潮所付近の地盤の強固な場所を選び水準標(B.M.)を埋設して、験潮器零位と B.M. との高さの関係を求めた。験潮所が沖合にあって水準測量が直接できない所では、海岸に仮の験潮柱を立て、これと験潮器との比較観測を行って、間接的にその関係を求めた。ただし、One Fathom Bank (No. 7)、Port Dickson (No. 9)、Angler Bank (No. 15)では英国測量艦ダンピア号及びシンガポール港湾局が設けた B.M. を使用することとした。

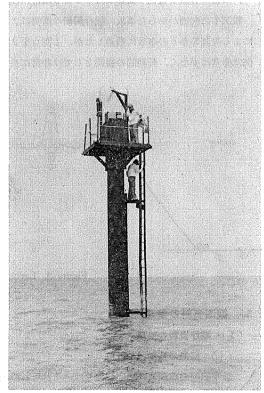


Figure 2 Sketch of newly established tide station at Tg. Senebui

験潮所建設・験潮器設置・B.M. 埋設・水準測量等には、1977年11月~1978年2月の93日間を要した。 各験潮所の本観測は、すべての験潮器が正常に作動を始めた1978年3月1日から14か月間実施した。

Horsburgh Lighthouse の既設験潮所では、北東モンスーン時期に 験潮所が波をかぶり OTT 型験潮器の使 用が不可能となるので、モンスーン時期には OTT 型をとりはずし、代りに 水圧式験潮器 (TG-4) を設置し て観測を継続した. また, Kepala Jernih 験潮所は 1978 年 6 月 ~ 1979 年 1 月の期間, 導水口につまりがあっ たため, この期間の記録は欠測として取扱った.

インドネシア担当の験潮所(No.1~6) には $1\sim2$ 名の観測員が常駐して維持管理にあたり、マレイシア担 当(No. 7~11 及び 16)及びシンガポール担当(No. 12~15 及び 17)の験潮所は毎月,月初めと中頃の 2 回見 廻りを行って維持管理した. また, 1978年5月と10月及び1979年3月にそれぞれ27日間4か国で構成され た共同チームが全験潮所を巡回して、験潮所の修理・清掃・塗装及び験潮器の調整・比較観測並びに消耗品の 補給等を実施した。

(2) 潮流観測

第1図に示す潮流観測点において, 第1次観測を 南西モンスーン期の1978年7月9日~8月21日の44日 間, 第2次観測を北東モンスーン期の同年11月8日~12月20日の42日間実施した。 設置位置が 大型船航路 に近いので,事故による欠測防止のため,観測点1,2,3,6では第3図に示す係留システム(A)(流速計1 台取り付け)を極く近い位置に2組設置した。また観測点4,5では航路が狭く2組の設置が困難なので、係 留システム(B)(流速計2台取り付け)を1組設置した.

流速計は NC-I 型自記流速計を使用し、観測層は海面下 10 m とした、設置後調査船は各観測点を順次に巡 り、異常の有無を監視し補修を行うとともに、ほぼ6日ごとに潮流記録紙の交換を行った.

観測中に漁網がからむ事故、航行船舶の衝突によって引き起こされたと考えられる事故、流速計の作動不良 による欠測等多くの事故に遭遇したが、1測点を2台の流速計で同時観測を行ったため、2台とも欠測という 例は非常に少なく、長期間の観測としては非常に良好な結果を得た.

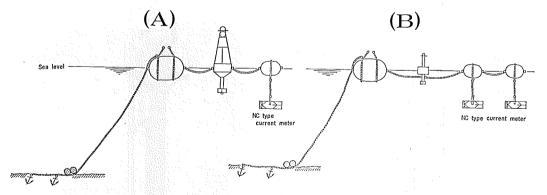


Figure 3 Layout of mooring system

3. 観測資料の整理

(1) 潮汐資料の整理

(i) 記録の整理及び読取り

験潮記録の整理及び潮高読取りは、それぞれの担当国によって行われ、その後各資料は日本に集められて チェックが行われた.

Table 2-1 Tidal harmonic constants

Place	TG. SENEBUI	TG MEDANG	TG. PARIT	PASIR PANJANG	BATU AMPAR	ONE FATHOM
Time Zone	-0700	-0700	-0700	-0700	0700	BANK -0730
Duration	Mar. 1 1978 ~	Mar. 1 1978 ~	Mar. 1 1978 ~	Dec. 1 1977 ~	Dec. 1 1977 ~	Mar. 1 1978 ~
Constituents	Mar. 5 1979 H x g	Mar. 5 1979	Mar. 5 1979	Dec. 5 1978	Dec. 5 1978	Mar. 5 1979
Constituents		Н и д	H & g	H ~ g	H & g	H κ g
Sa	cm deg. deg. 13.55 136,75 137,03	cm deg. deg. 8,85 158,98 159,27	cm deg. deg. 6, 77 159, 97 160, 26	cm deg. deg. 4,57 177,66 177,95	cm deg. deg. 12,43 278,37 278,66	cm deg. deg. 11,55 135,08 135,39
Ssa	7.47 104.57 105.15	6, 15 113, 55 114, 12	6, 88 109, 98 110, 55	5.31 93.47 94.05	3, 83 133, 22 133, 80	6,64 109,49 110,10
Mm	0.73 33,42 37,23	1.61 17.12 20.93	1.82 13.05 16.86	1.44 5.24 9.05	1.07 308.06 311.87	1.05 344.93 349.02
MSf	1.50 248.92 256.03	1,76 32,45 39,56	2,55 38,15 45,26	3, 76 43, 15 50, 27	1,52 32,53 39,64	0,76 300.06 307.68
Mf S	2, 22 31, 22 38, 91	1.98 15.48 23.17	1.07 9.09 16.78	1.50 268.36 276.04	1,79 208.89 216.57	4,39 37,10 45,34
S_1 K_1	3, 71 193, 82 197, 77 11, 48 22, 00 26, 24	3, 92 213, 99 217, 32 5, 20 104, 24 107, 86	4.31 227.30 229.86 16.43 146.31 149.15	3,89 236,69 238,34 26,49 147,97 149,91	1.40 213.56 214.56 28.82 98.90 100.19	3, 25 176, 09 187, 60 17, 20 7, 61 19, 43
P_1	4.87 22.47 26.14	1.95 77.89 80.94	4.49 138.70 140.97	8, 14, 142, 02, 143, 39	8,73 89.86 90.57	6.21 5.25 16.45
π,	0.70 115.95 119.32	0.84 142.07 144.82	1.03 143.60 145.59	1, 12 116, 31 117, 39	0.59 86.51 86.94	0.62 44.96 55.84
ç ⁵ 1	0.83 154.18 158.70	0, 91 157, 82 161, 73	0.71 165.53 168.67	0.30 105,60 107,83	0.44 63.36 64.94	0,44 108,75 120,87
ϕ_i	0,41 55,01 59,83	0.20 89.12 93.32	0.26 147.17 150.59	0,32 236,39 238,90	0.84 278.10 279.96	0,93 85,57 98,00
M,	0.41 169.70 170.09	0.19 242,97 242,75	0,53 298,83 297,83	1, 17 297, 23 295, 33	0.66 39.46 36.91	0.59 120.15 127.85
J_1	0.18 126.92 134.46 2.71 52.93 60.98	0. 28 97. 28 104. 21 2. 27 65. 33 72. 76	0,42 84,50 90,65 2,02 80,17 86,82	0, 25 151, 17 156, 42 1, 35 98, 85 104, 60	0.34 94.07 98.66 1.62 82.20 87.30	0. 12 156. 60 171. 95 3. 20 40. 25 56. 14
Z ₁	0.43 170.97 171.91	0.53 174.05 174.37	0.56 166.16 165.70	0, 19 103, 04 101, 68	0.27 91.13 89.12	0. 23 184. 74 193. 01
O _i	9.91 140.51 137.07	18,79 138,29 134,22	25.08 130.87 126.02	25.92 112.86 107.11	29.48 52.81 46.42	4,61 149,96 153,54
MP_1	1.61 4.78 1.91	1.03 351.36 347.87	0,89 295,25 290,99	1,75 269,33 264,16	0,10 303,83 298,01	1.64 3.77 7.97
SO ₁	2.14 117.16 128.51	1,03 115,57 126,30	0, 63 22, 89 32, 85	1,98 348,24 357,29	0.54 350.16 358.56	2.34 110.31 129.74
00,	1.62 54.13 66.05	0,78 67,00 78,31	0.49 140.07 150.60	0.68 160.48 170.11	0.49 232.72 241.69	1.80 34.45 54.49
Q_i	0.24 112.65 105.90 0.66 143.98 136.72	0.81 111.14 103.78	1.08 110.78 102.64 3.01 96.39 87.74	1. 12 112, 40 103, 36	1.15 42.84 33.14	0.39 135.18 135.22
φ ₁	2.78 248.74 238.18	1.94 113.38 105.50 3.58 247.87 236.69	3, 86 248, 20 236, 25	3, 98, 71, 08 61, 52 2, 60 252, 15 239, 29	5, 49 18, 09 7, 88 0, 41 218, 28 204, 77	0.42 212.56 212.06 1.85 251.91 247.87
2Q,	0.70 167.94 156.87	0.75 156,19 144.51	0.65 157.29 144.83	0, 43 205, 94 192, 58	1. 26 356. 25 342. 24	0.36 238.76 234.17
S_2	58,34 185,46 193,37	37, 16 211, 66 218, 33	32, 59 291, 44 296, 56	43, 31 347, 78 351, 09	30.52 353.63 355.63	61.80 166.16 189.16
T_2	3,76 173,42 181,04	2.57 210.81 217.19	2,56 281,02 285,84	3.01 341.27 344.29	1.58 16.54 18.26	2.78 156.89 179.59
R ₂	0.65 237.69 245.88	0.50 195.26 202.22	0.24 298.46 303.86	0.69 304.44 308.04	1.01 309.51 311.80	0,55 315,89 339,20
$egin{array}{c} K_2 \ L_2 \end{array}$	16.95 180.20 188.68 5.30 137.14 141.74	10.73 207.65 214.89	9.41 291.05 296.74	13, 45 344, 99 348, 87	8,59 349,58 352,16	17.71 163.96 187.59
λ_2	3,54 115,58 119,67	2.88 172.61 175.97 2.01 162.64 165.50	3,39 261,61 263,43 1,98 249,87 251,18	4, 61 303, 25 303, 26 2, 65 298, 65 298, 15	2.42 311.15 309.85	4, 88 123, 95 143, 42
MSN ₂	2.15 342.03 353.75	1. 22 16.08 26.56	1.19 111.52 120.45	2.02 158.18 165.30	2. 17 309. 46 307. 65 0. 76 172. 67 178. 48	2.34 98.20 117.12 1.10 319.62 346.71
KJ_2	0.67 69.23 81.53	0.24 75.96 87.01	0.07 287, 16 296, 67	0,52 244,47 252,17	0.48 212.65 219.05	1.04 358,37 26,08
M_2	117.59 142.62 143.42	74, 83 170, 92 170, 47	72,07 250,48 248,49	94, 41 301, 99 298, 19	76, 08 303, 88 298, 78	124.58 124.50 139.89
2SM ₂	3, 24 12, 06 27, 08	2, 19 42, 75 56, 53	1,87 140,51 152,74	3, 20 193, 19, 203, 61	1.86 211.96 221.08	2,46 350,04 20,67
OP ₂	0.88 185.80 186.02	0.36 260.13 259.11	0,57 282,31 279,73	0, 80 171, 36 166, 98	3.04 151.50 145.81	0.48 261.12 275.89
MKS_2 N_2	0.94 191.51 192.88 22.25 136.82 133.81	0, 10 213, 37 213, 50 13, 65 163, 08 158, 82	0. 98 93, 59 92, 17 13, 07 242, 39 236, 59	1, 84 76, 87 73, 64 17, 37 292, 92 285, 31	2, 79 100, 53 96, 00	0.74 310.98 326.99
ν ₂	4.14 134.51 132.00	2.83 158.97 155.23	3, 12 234, 94 229, 64	3, 77 281, 70 274, 60	14.41 282.21 273.30 2.52 279.87 271.46	23. 26 118. 18 129. 48 4. 49 107. 93 119. 79
112	5, 14 188, 81 182, 49	1,86 228,47 220,91	2,92 351,34 342,23	3, 89 33, 58 22, 67	0.72 80.81 68.59	5. 32 155, 70 163, 47
$2N_2$	3,48 121,31 114,49	2, 27 152, 78 144, 72	2,74 231,76 222,14	3, 10 276, 59 265, 16	2, 32 269, 61 256, 89	3, 36 100, 72 107, 94
MNS_2	1,39 197,40 187,28	0,48 230,45 219,09	0,64 351,53 338,61	0,99 19,18 4,46	0, 69 50, 13 34, 10	1,02 150,86 154,55
OQ ₂ SK ₃	1.09 58.34 47.64 1.27 103.98 116.13	0.54 88,03 76,09	0, 73 169, 16 155, 67	0,62 213,59 198,29	0.67 234.58 217.97	0.69 43.02 46.09
MK ₃	2. 11 55, 53 60, 56	0.69 200.97 211.26 1.79 181.35 184.52	1.04 301.30 309.26 2.20 257.40 258.25	0, 93 76, 19 81, 44 2, 87 25, 45 23, 59	0.49 113.12 116.42 2.07 64.46 60.65	0.69 42.40 77.22
SO ₃	1, 33 93, 67 98, 13	2.03 193.30 195.90	2, 21 266, 13 266, 40	2, 83 25, 72 23, 28	2.07 64.46 60.65 1.55 68.07 63.68	1.42 9.26 36.46 0.49 21.86 48.45
M_3	0, 22 353, 48 354, 67	0,39 357,33 356,67	0.15 93.80 90.80	0.60 203.36 197.66	0.04 170.58 162.92	0. 19 320, 02 343, 10
MO_3	0.92 76.25 73.60	2.45 160.97 156.46	2, 44 225, 29 218, 45	3, 30 353, 44 343, 90	1.58 15.92 4.42	0.64 3.08 22.04
S,	1.14 294.16 309.97	0.71 9.18 22.52	0, 47 133, 11 143, 34	0.88 260.07 266.69	0.21 340.59 344.61	0.53 227.75 273.77
SK,	0.66 279.94 296.33	0.42 358.37 12.28	0.13 114.51 125.31	0.57 218.90 226.10	0.26 247.70 252.29	0.20 182.65 229.28
MS_{\bullet} MK_{\bullet}	5, 48 231, 30 240, 00 2, 01 220, 12 229, 39	3.33 324.22 330.45 1.06 313.43 320.23	2,86 103,82 106,94	5.57 212.65 212.16	2, 15 334, 59 331, 49	2.06 168.95 207.35
SN.	1.03 251.23 256.12	0.66 328.02 330.44	0.88 83.70 87.39 0.44 94.80 94.11	1.63 210.59 210.67	0.97 285.48 282.96	0.69 157.45 196.46
M,	5, 57 192, 82 194, 42	3, 38 285, 54 284, 65	3, 22 64, 82 60, 82	0.87 218.50 214.20 5.56 169.73 162.12	0.13 330, 20 323, 29 2.07 299, 31 289, 10	0.56 179.94 214.25 1.82 134.62 165.40
MN,	2, 18 186, 43 184, 21	1.27 275,64 270,94	1, 23 49, 98 42, 18	2, 08 156, 66 145, 25	0.43 289.27 275.25	0.73 129.21 155.90
2SM _s	1,51 338.58 355.19	1.01 51,53 64,42	1,02 230,62 238,85	1,01 91,50 94,32	0.67 202.07 200.98	0,48 198,53 259,93
MSK ₆	0, 95 339, 92 357, 10	0.64 47.41 60.87	0.72 224.00 232.81	0.71 78.17 81.57	0.45 183.08 182.57	0.31 170.25 232.27
2MS _{ii}	4,00 294,06 303,55	2,47 2,38 8,16	2.90 180,77 181,89	2,78 34,52 30,23	1.63 135.44 127.23	1, 34 134, 46 188, 24
2MK, MSN ₀	1, 39 300, 05 310, 12 1, 27 296, 59 302, 27	0,87 3,31 9,66 0,72 6,86 8,83	1,03 178,95 180,64 0,81 179,43 176,74	0.96 29.86 26.14	0.57 135.74 128.11	0.31 122.77 177.17
M_6	2.68 258.91 261.30	1,54 327,77 326,44	1.92 141.72 135.73	0.85 36.68 28.58 1.81 349.14 337.73	0.48 141,26 129,24 1.00 84.07 68.76	0,31 147,38 197,07 0,84 91,36 137,52
2MN ₆	1.59 252.28 250.85	0,87 319,29 314,15	1, 10 130, 25 120, 45	1,00 335,53 320,31	0,49 71.13 52.01	0.32 95.95 138.03

Place	TG. KABONG	PORT DICKSON	TG. KLING	TG. SEGENTING	PU. PISANG	SULTAN SHOAL LIGHTHOUSE
Time Zone	—0730 Mar. 1 1978 ∼	—0730 Mar. 1 1978 ∼	—0730 Apr. 6 1978 ∼	—0730 Mar. 1 1978 ∼	—0730 Mar. 1 1978 ~	—0730 Mar. 1 1978 ∼
Duration	Mar. 5 1979	Mar. 5. 1979	Apr. 10 1979	Mar. 5 1979	Mar. 5 1979	Mar. 5 1979
Constituents	Н к д	H x g	H & g	H & g	H K g	Н к д
Sa	cm deg. deg. 9,21 147,35 147,66	cm deg. deg. 9,60 156,32 156,63	cm deg. deg. 7, 15 158, 79 159, 09	cm deg. deg. 6,58 163,71 164,02	cm deg. deg. 2.86 176.05 176.36	cm deg. deg. 5.74 221.85 222.16
Ssa	6,59 105,66 106,28	5, 95 115, 86 116, 47	5, 94 102, 40 103, 01	5, 64 107, 25 107, 86	5.57 105.44 106.06	5.87 106.16 106.78
Mm	1, 25 16, 08 20, 17	1,90 10,03 14,11	1,70 20,24 24,33	1.77 20.62 24.71	1,85 18,51 22,59	1,62 29.68 33,76
MSf Mf	1, 27 17, 65 25, 27 2, 68 25, 49 33, 73	2.54 25.67 33.29 2.07 28.31 36.54	1,91 30,39 38.01 1,26 349.00 357,23	2,84 38.82 46.44 0,81 8.09 16.33	3.31 44.03 51.65 0.74 358.70 6.93	3. 12 53, 42 61, 04 0. 28 57, 43 65, 66
S	3, 54 202, 13 213, 14			4,03 231,28 240,90		2,69 236,82 245,67
K,	8. 14 28, 92 40, 23	3. 60 208, 50 219, 20 4. 68 75, 80 86, 81	3.94 220.52 230.87 8.98 139.62 150.28	18.91 147.78 157.71	3.61 238.22 247.46 23.83 148.48 158.04	26.43 142.32 151.48
P_1	3,52 29,59 40,29	2, 25 55, 98 66, 37	2.52 124.34 134.37	5, 47 141, 20 150, 52	7.18 142.46 151.40	8.08 136.53 145.07
π ₁	0,70 130,63 141,02	0.70 127.27 137.35	0.90 148.82 158.55	1.12 148.51 157.51	1.05 145.44 154.07	0.74 129.01 137.24
531	0.91 152.74 164.36	0.91 166,82 178,14	0,85 165,28 176,24	0.63 182.33 192.57	0.34 222.61 232.47	0.31 289.01 298.47
M_1	0, 32 62, 39 74, 32 0, 28 158, 17 165, 36	0.37 79.76 91.38 0.09 120.45 127.34	0. 22 124, 05 135, 32 0. 22 280, 41 286, 95	0,18 154,88 165,43 0,55 295,67 301,48	0.29 162.14 172.30 0.63 312.52 317.95	0.19 130.48 140.25 0.72 332.99 338.03
Ø,	0.17 113.18 128.02	0. 10 82. 88 97. 42	0.48 89.73 103.92	0.39 89.21 102.67	0.43 98.28 111.37	0, 36 126, 40 139, 09
J_1	2,58 54,72 70,11	2.34 61.06 76.16	2.03 73.51 88.25	1.92 84.30 98.31	1.60 91.45 105.08	0.99 99.85 113.09
ζι	0,43 177,06 184,84	0,46 193,83 201,31	0.54 174.16 181.27	0.58 154,07 160.46	0.64 136.03 142.05	0,50 97,68 103,30
O_1 MP_1	12, 92 139, 82 142, 89 1, 50 3, 77 7, 47	17. 22 139, 24 142, 01	22, 12 136, 16 138, 58	25, 75 127, 25 128, 94	26, 27 119, 01 120, 33	24,41 98,32 99,24
SO_1	1, 81 117, 08 136, 01	1. 14 358, 93 2, 32 1. 15 116, 70 135, 33	0. 94 315, 08 318, 11 0. 67 95, 01 113, 28	0, 91 293, 08 295, 39 0, 83 4, 74 22, 29	1. 24 274. 27 276. 21 1. 40 351. 73 8. 90	1.64 255.79 257.33 2.02 358.66 15.44
00,	1,35 54,67 74,22	1, 25 65, 09 84, 33	0.62 86.88 105.77	0,59 155,38 173,54	0.92 170.67 188.46	1,34 164,84 182,24
ρ_V	0,55 112,61 112,15	0.80 116.51 115.75	1.22 106.40 105.29	1.17 107.69 105.84	1,26 103,70 101,48	1.03 88.52 85.91
Q_1 σ_1	1, 12 128, 28 127, 27 3, 21 250, 07 245, 53	1,89 118,54 117,23 3,23 249,11 244,27	2,18 101,60 99,93 3,64 248,41 243,21	3, 14 89, 52 87, 13 3, 76 249, 12 243, 19	3,57 79,56 76,79 3,22 251,66 245,36	4,05 58,10 54,94
$2Q_i$	0.81 165.54 160.45	1.03 166,88 161,49	0.68 176.07 170.32	0, 59 156, 69 150, 22	0.44 160.30 153.45	2,00 256,37 249,67 0,31 194,80 187,56
S_2	50, 68 188, 91 210, 92	41,52 204,91 226,32	29. 10 239, 74 260, 43	35, 88 307, 25 326, 49	42, 17 332, 91 351, 40	39.00 354.28 11.98
T_2	2,88 191,91 213,61	2,38 204.17 225.27	2.04 232,39 252.77	2,39 299,53 318,46	3.01 333.63 351.81	2, 52 353, 16 10, 55
R_2 K_2	0,48 185,13 207,45	0, 37 188, 10 209, 81	0.44 201.25 222.25	0, 29 317, 10 336, 65	1,00 319,80 338,59	0, 78 358, 73 16, 74
L_2	15.06 185.54 208.16 3.98 145.80 164.26	11. 97 200, 39 222, 42 3,33 165,90 183, 77	8. 23 234. 86 256. 17 2. 22 212. 62 229. 77	10,59 307,28 327,14 3,40 272,35 288,05	13.31 330.92 350.02 3.89 295.71 310.67	11.92 347.68 6.00
λ_2	2,53 132,37 150,29	1, 92 148, 36 165, 68	1.77 202.91 219.52	2.57 269.19 284.35	3. 21 296, 06 310, 47	3, 82 316, 09 330, 25 2, 42 320, 29 333, 91
MSN_2	1.59 348,06 14,14	1, 13 3, 46 28, 95	0.87 49.65 74.43	1.21 120.94 144.27	1,58 149.75 172.33	1,60 173,28 195,07
KI ₂	0.51 29,76 56,46	0.31 72.83 98.93	0.31 46.38 71.77	0.26 177.13 201.07	0,32 230,88 254,06	0, 29 208, 10 230, 50
M_2 $2SM_2$	101, 30 146, 90 161, 29 2, 75 17, 62 47, 24	82, 78 163, 64 177, 43 2, 34 36, 18 65, 20	60, 33 200, 59 213, 66 1, 63 77, 11 105, 42	79, 74 264, 71 276, 33	93, 24 288, 49 299, 36	86, 82 308, 32 318, 40
OP_2	0, 18 289, 31 303, 08	0,40 260,09 273.26	0.90 248.18 260.64	2,31 156,67 183,53 0,26 203,61 214,62	2, 97 183, 28 209, 39 0, 56 259, 97 270, 22	2,87 204,12 229,44 1,15 36,23 45,69
MKS_2	0, 75 179, 55 194, 55	0,40 210,15 224,55	0, 72 111, 75 125, 44	1,31 71,19 83,43	0,82 51,89 63,38	0.08 107.92 118.62
N_2	18, 94 139, 99 150, 29	15,47 156,11 165,81	10.72 191.85 200.84	14.21 256,87 264,40	16,70 279,00 285,79	15,99 297,03 303,03
ν ₂ // ₂	3,56 130,87 141,72 3,80 187,12 193,89	2, 97 153, 49 163, 74	2, 69 189, 69 199, 22	3,59 245,46 253,54	4, 34 266, 76 274, 09	3,42 289,17 295,72
$2N_2$	3, 21 124, 85 131, 07	2.41 203.60 209.77 2.26 144.41 150.03	1.39 299, 29 304, 74 1.82 192, 03 196, 93	3,31 1,49 5,49 2,91 247,06 250,52	3, 75 19, 36 22, 61 3, 42 267, 36 270, 06	2,66 42,46 44,92 3,04 288,60 290,51
MNS_2	0,86 191,13 193,82	0.67 220.90 222.98	0.41 291.40 292.77	0, 75 358, 01 357, 93	0.87 24.99 24.16	0.76 50.69 49.06
OQ ₂	0,68 41,33 43,40	0.60 65.71 67.17	0,53 155,14 155,90	1.02 175.53 174.84	0,89 193,19 191,75	0,65 218,27 216,04
SK_3 MK_3	0,75 126,30 159,62 1,16 106,02 131,71	0.61 189.18 221.60 1.59 174.26 199.05	0. 92 252, 58 283, 92 2. 44 215, 42 239, 14	0.97 321.53 350.70	1.01 31.00 59.04	1.07 83.62 110.48
SO ₃	1, 16 147, 33 172, 41	1.87 189.12 213.30	2.44 215.42 239.14 2.55 222.55 245.66	1, 95 280, 52 302, 07 2, 05 289, 10 310, 04	2.55 351.65 12.07 2.51 351.77 11.58	3.67 26.56 45.80 3.26 31.52 50.14
M_3	0, 33 332, 41 353, 99	0.35 354.87 15.55	0.36 10.55 30.15	0.24 132.73 150.17	0,54 170,06 186,37	0.49 170.69 185.81
MO_3	1, 23 129, 33 146, 79	2, 25 158, 48 175, 05	2.88 182.16 197.65	2, 20 254, 72 268, 03	3.01 319.77 331.96	3,31 349,41 0,41
S ₄	0.74 317.78 1.79	0,73 6.04 48.85	0.58 55.05 96.43	0,56 171.46 209.94	0.92 214.72 251.70	0.68 279.37 314.77
MS ₄	0,41 310,02 354,65 3,39 277,43 313,82	0, 47 350, 75 34, 17 3, 81 322, 80 357, 99	0.36 28.40 70.40 2.80 16.51 50.27	0.32 172.25 211.35	0.59 206.38 243.97	0.28 247.27 283.28
MK,	1,00 270,20 307,21	1,00 312,66 348,46	0.99 357.87 32.25	3. 95 128, 51 159, 37 1. 15 115, 74 147, 22	5.77 171.09 200.45 1.63 167.31 197.29	4,06 237,62 265,40 1,49 239,34 267,74
SN ₄	0,61 277,10 309,40	0,68 320,21 351,32	0.49 6.80 36.48	0.52 130.51 157.29	0.75 173.10 198.38	0,59 229,59 253,29
M ₁	3,51 240,76 269,53	3,87 283,42 311,00	2, 79 339, 77 5, 91	4, 21 86, 18 109, 43	5, 89 128, 52 150, 26	4, 33 196, 50 216, 67
MN ₄	1, 37 231, 55 256, 24	1,47 271,80 295,28	1, 11 328, 14 350, 20	1,50 74,27 93,43	2, 13 118, 60 136, 26	1,66 184,59 200,67
2SM ₆ MSK ₆	0, 99 7, 99 66, 38 0, 74 3, 32 62, 33	1, 17 38, 49 95, 09 0, 75 31, 40 88, 61	0.65 154.89 209.34 0.49 164.01 219.08	0,72 269,23 319,33	0,99 31,17 79,02	0, 95 118, 69 164, 17
$2MS_6$	2,52 320,50 11,28	2,85 346,02 35,00	1, 66 113, 39 160, 23	0,45 262,07 312,78 1,91 217,24 259,72	0, 83 28, 65 77, 12 2, 91 343, 24 23, 48	0.56 107,31 153,41 2,64 55,87 93,73
$2MK_6$	1,03 321,62 13,01	0, 93 343, 13 32, 73	0.67 117.48 164.92	0,60 221,74 264,84	1, 24 342, 91 23, 76	0,85 52,91 91,39
MSN ₆	0, 78 322, 15 8, 84	0,85 353,43 38,33	0.51 114.28 157.02	0,50 222,83 261,23	0,80 343,70 19,85	0, 65 63, 34 97, 12
$M_{\mathfrak{q}}$ $2MN_{\mathfrak{q}}$	1,67 284,94 328,10 0 97 273 95 313 02	1,74 311,84 353,19	1. 25 78. 02 117. 24	1, 19 180, 16 215, 03	2, 13 302, 94 335, 55	1,69 11,23 41,47
Z/MIYG	0, 97 273, 95 313, 02	1.01 300, 14 337, 41	0,74 65.97 101.10	0, 67 170, 90 201, 67	1, 19 289, 59 318, 12	0,91 1,39 27,55

Duration Mar. 1 1978 ~ Mar. 5 1979 Mar. 1 1978 ~ Mar. 5 1979 Dec. 1 1977 ~ Dec. 5 1978 Mar. 1 1978 ~ Mar. 5 1979 Mar. 1 1978 ~ Mar. 5 1979 Mar. 1 1978 ~ Mar. 5 1979 Mar. 1 1978 ~ Mar. 5 1979 Mar. 5 1979 Mar. 1 1978 ~ Mar. 5 1978 Mar. 1 1	KEPALA JERNIH		
Camelinessee N	alue		
Second May M	nths)		
Section Sect	g 		
May 1,27 32,58 38,50 0,80 18,31 2,24 2,17 1,17 2,17	-		
May	6 64.7		
Math	0 43.0		
5. 2.0 283.72 217-8 1.12 214.62 283.69 6.79 183.83 207.29 6.40 18.00 218.39 17.00 183.89 17.00 183.89 17.00 183.89 17.00 183.89 17.00 183.89 17.00 183.89 17.00 183.89 17.00 183.89 17.00 183.89 17.00 183.89 17.00 183.89 17.00 183.89 17.00 183.89 17.00 183.89 17.00 183.89 17.00 183.89 17.00 183.89 17.00 183.89 17.00 183.89 184.89 17.00 183.89 17.00 183.89 17.00 183.89 184.89 17.00 183.89 184.89 17.00 183.89 17.00 183.89 184.89 17.00 183.89 184.89 17.00 183.89 184.89 17.00 183.89 184			
K. 27, 03 130, 03 129, 10 28, 67 87, 24 28, 13 75, 29 28, 13 75, 29 28, 13 75, 29 28, 13 75, 29 29, 13 75, 25 77, 20 75, 20 <td></td>			
Property			
5.1			
0.30 270.22 279.59 0.40 8.54 17.62 0.63 28.07 36.09 0.27 51.91 80.62 M. 0.02 60.77 0.46 0.42 28.77 38.18 0.65 38.63 38.54 0.38 36.54 0.38 38.54 0.39 36.53 35.54 0.39 36.54 0.39 3			
0. 0. 0. 0. 0. 0. 77 71.46			
Math			
9. 0.5 135 88 148, 48 0.5 150 88 163, 14 0.21 17.79 87.19 20.11 1.25 17.59 28.10 1.25 20.25 10.21 1.25 20.25 10.25 10.25 1.25 17.59 28.11 1.25 20.25 1.25 1.25 1.25 20.2			
2. 0, 42 94,65 100,18 1 0,11 97,12 102,36 0,29 115,57 120,62 0,36 44,95 40,83 2254,6 O, 25,20 83,00 38,81 29,12 48,91 44,45 9,64 11,74 12,10 27,32 10,33 41,18 14,95 MP, 1,28 265,34 226,79 0,27 228,25 299,40 O,55 3,10 1,74 6,88 23,36 0,45 30,16 307,61 0,0,5 30,00 31,02 0,53 44,18 142,96 MK, 1,74 6,88 23,36 0,45 30,16 307,61 0,0,5 30,00 31,02 0,53 44,18 142,96 MK, 1,74 6,87 23,36 0,13 12,00 1,24 16,14 16,14 16,29 6 MK, 1,74 12,17 12,1			
0. 25. 0, 42. 94, 60 10.18 0. 11 97, 12 100.28 0. 25. 0, 12 36, 08 10.18 0. 21 31 97, 12 100.28 0. 25. 0, 1.74 0. 68 23.50 0. 43 310, 68 30, 96 5 37, 44 0. 43 31.28 5 9, 40 0. 1.74 1.68 25.50 0. 70.70 0. 68 00 1.24 173.79 191, 09 0. 72 248, 12 245, 11 231, 12 0. 68 01 1.24 173.79 191, 09 0. 72 246, 11 261, 12 0. 72 3, 12 0. 72 3, 12 0. 73 31, 13 350, 07 0. 74 319, 43 350, 07 0. 74 100 0. 75 120 0. 75 120 0. 75 120 0. 75 120 0. 75 120 0. 75 120 0. 75 120 0. 75 120 0. 75 120 0. 75 120 0. 75 120 0. 75 120 0. 75 120 0. 75 120 0. 75 120 0. 75 120 0. 75 120 0. 75 120 0. 75			
MP,	0 225, 6		
SO, 1, 74 6, 68 23, 30 0.43 30, 05 307, 04 0.33 34, 28 50, 49 0.14 146, 04 162, 56 MK, 1, 72 246, 11 263, 12 0.05 51, 55 68, 38 0.47 339, 43 356, 07 MN, 1, 5 208 Q. 4.44 44, 85 41, 90 5, 67 13, 29 9, 88 62 32, 13, 78 1, 21 1, 52, 255, 15 MN, 3, 5 32, 33 36, 50 36, 22 24, 219, 60 1, 40 0.88 36, 35 36, 11 36, 35 35, 55 13, 08 29, 40 346, 23 3, 16 23, 65 342, 29 22, 26, 63 34, 78 24, 78 24, 78 24, 78 34, 78 4, 78 4, 78 4, 78 4, 78 4, 78 34, 78 1, 13 38, 53, 36, 36 38, 53, 36, 36 36, 84, 22, 22, 34, 387, 60 1, 13 29, 22, 34, 346, 15 4, 22, 22, 23, 34, 346, 15 4, 22, 22, 23, 34, 346, 15 4, 22, 22, 23, 34, 346, 15 4, 22, 23, 34, 346, 15 4, 22, 23, 34, 346, 15 4, 22, 23, 34, 3			
OO, 1. /4 6. 8 21. 73.79 19.10 0.72 21.61 23.31 3.05 59.5 68.39 0.4 10.23 36.607 AMV, 1.1.5 20.0 1.05 70.70 68.00 1.24 25.02 22.82 1.19 16.96 13.78 1.21 1.52 365.15 M. 3.8 21.2 QL 4.44 44.86 41.60 5.67 13.22 9.68 6.27 3.2 35.5 56.60 365.278 341.78 M. 3.8 22.0 42.16 66.88 99 36.00 36.63 35.55 36.86 36.55 13.00 88 30.33 10.90 36.278 341.78 22.00 35.5 35.60 36.60 36.73 381.83 30.48 39.20 36.53 35.53 31.60 30.20 36.53 35.53 34.20 37.73 39.11 39.20 38.53 38.40 30.80 39.20 30.73 39.21 30.20 30.30 30.20 30.30<			
01			
Qb. 4.44 44,85 41,60 5,67 13,22 9,68 6,27 3,21 359,48 5,69 36,23 35,21 NN, MS, and and an analysis of the property of the	3 195.1 2 222.8		
## 1.64 245.11 238.32			
\$\begin{align*} \begin{align*} \begi	8 269.6		
T2 2.16 530, 58 17.19 1.47 331.2 2.8 68 22.2 23.10 2.8 31.2 2.8 32.4 337.6 9 1.13 297.2 22.3 1.10 2.2 23.10 2.5 6.5 0.8 31.4 33.7 6.9 3.7 6.52 0.24 61.85 78.72 0.37 56.53 73.03 2.2 2.3 75.6 53 73.03 33.6 3.8 9.3 1.9 2.2 3.0 4.6 2.2 2.7 3.3 3.9 1.8 3.1 3.9 3.2 2.7 3.3 3.2 2.6 3.08.45 3.2 2.3 3.6 1.6 3.2 2.2 3.3 3.6 1.6 3.2 2.2 2.3 3.3 3.6 3.1 3.3 3.6 3.2 3.6 3.2 3.6 3.2 2.2 3.6 3.2 3.6 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	3 33, 4		
$ \begin{array}{c} T_2 \\ R_2 \\ 1.06 \\ 369.98 \\ 17.19 \\ 1.47 \\ 316.71 \\ 30.28 \\ 316.71 \\ 30.27 \\ 31.36 \\ 30.34 \\ 2.80 \\ 37.30 \\ 30.21 \\ 30.28 \\ 30.34 \\ 30.28 \\ 30.34 \\ 30.28 \\ 30.30 \\ 30.34 \\ 2.84 \\ 325.78 \\ 30.91 \\ 30.30 \\ 30.34 \\ 2.84 \\ 325.78 \\ 30.91 \\ 30.30 \\ 30.34 \\ 2.84 \\ 325.78 \\ 30.91 \\ 30.30 \\ 30.34 \\ 2.84 \\ 325.78 \\ 30.91 \\ 30.30 \\ 30.34 \\ 2.84 \\ 325.78 \\ 30.91 \\ 30.30 \\ 30.34 \\ 2.84 \\ 325.78 \\ 30.91 \\ 30.30 \\ 30.34 \\ 2.84 \\ 325.78 \\ 30.91 \\ 30.91 \\ 30.92 \\ 30.91 \\ 30.91 \\ 30.92 \\ 30.91 \\ 30.92 \\ 30.92 \\ 30.91 \\ 30.92 \\ 30.92 \\ 30.92 \\ 30.92 \\ 30.92 \\ 30.92 \\ 30.92 \\ 30.91 \\ 30.92 \\ 30$			
R ₇ 1.06 336.53 364.36 0.28 349.27 6.52 0.24 61.85 78.72 0.37 65.53 73.03 2.5M _c L ₂ 3.50 316.36 330.34 2.84 325.78 339.18 2.50 308.45 321.48 1.80 314.95 327.61 A ₂ 2.37 313.55 326.99 1.66 321.20 334.08 1.03 321.23 336.60 1.00 320.53 332.64 MSN ₂ 1.37 175.07 196.67 0.93 194.92 215.94 1.03 195.21 215.86 0.61 228.47 228.74 KL ₂ 0.28 216.76 238.89 0.28 173.35 306.67 64.95 291.66 300.61 156.48 283.67 228.74 MSN ₂ 0.50 76.32 86.81 1.39 47.62 57.55 0.88 9.25 18.81 0.99 218.15 327.34 MS ₂ 0.50 76.32 86.86 <td></td>			
L ₂ 3, 50 316, 36 330, 34 2, 84 325, 78 339, 18 2, 50 308, 45 321, 48 1, 80 344, 95 327, 61 λ ₂ 2, 37 313, 55 326, 99 1, 66 321, 20 334, 05 1, 40 323, 12 335, 60 1, 00 320, 53 332, 64 MSN ₄ 1, 37 175, 07 196, 67 0, 93 184, 92 215, 94 1, 03 195, 21 215, 86 0, 61 208, 47 228, 74 M ₂ 82, 97 309, 07 318, 97 75, 14 297, 35 306, 67 64, 95 291, 66 300, 61 56, 45 326, 35 322, 22 22M ₂ 2, 42 204, 77 229, 90 1, 66 292, 30 301, 101, 35 1, 54 37, 74 45, 70 MKS1 0, 50 76, 32 86, 84 1, 39 47, 62 57, 55 0, 58 9, 25 18, 81 0, 99 318, 15 327, 34 N ₂ 1, 25 294, 48 300, 84 <th< td=""><td></td></th<>			
A _z 2, 37 313, 55 326, 99 1, 66 321, 20 334, 05 1, 40 323, 12 335, 60 1, 00 320, 53 332, 64 MSN _z 1, 37 175, 07 196, 67 0, 93 194, 92 215, 94 1, 03 195, 21 215, 86 0, 61 208, 47 228, 74 KL _I 0, 28 216, 76 238, 98 0, 28 127, 35 148, 99 0, 56 149, 08 170, 35 0, 39 137, 68 185, 67 M _S 2, 44 204, 77 229, 90 1, 66 209, 20 233, 75 1, 23 218, 73 214, 29 0, 99 224, 40 248, 21 OP _T 3, 38 8, 29 6 0, 58 135, 18 143, 89 9 89 25 18, 81 0, 99 318, 15 327, 34 M _S 15, 25 26, 30 302, 11 14, 70 277, 55 282, 78 12, 85 266, 67 273, 53 11, 131 260, 01 264, 49 J ₂			
$ \begin{array}{c} MSN_{2} \\ KJ_{2} \\ O.28 \\ 216.76 \\ 238.98 \\ O.28 \\ 1217.35 \\ 148.99 \\ O.56 \\ 149.08 \\ 170.35 \\ 0.61 \\ 209.16 \\ 300.61 \\ 309.37 \\ 368 \\ 529.22 \\ 229.22 \\ 229.22 \\ 240.47 \\ 229.90 \\ O.58 \\ 1.52 \\ 250.30 \\ 302.11 \\ 14.70 \\ 277.55 \\ 262.78 \\ 1.28 \\ 250.28 \\ 240.48 \\ 2.90 \\ 280.48 \\ 2.92 \\ 280.45 \\ 280.48 \\ 2.92 \\ 280.45 \\ 280.48 \\ 2.92 \\ 280.45 \\ 280.48 \\ 2$			
$ \begin{array}{c} KJ_c \\ M_z \\ 82.97 309.07 318.97 \\ 75.14 297.35 306.67 \\ 64.95 291.66 300.61 \\ 64.95 291.66 300.61 \\ 56.46 283.65 292.22 \\ 2SM_z \\ 2.44 204.77 229.90 \\ 1.66 209.20 233.75 \\ 1.23 218.73 242.92 \\ 0.99 224.40 248.21 \\ 0.99 224.40 248.21 \\ 0.99 244.80 248.21 \\ 0.90 244.80 248.21 \\ 0.90 244.80 248.21 \\ 0.90 244.80 248.21 \\ 0.90 318.15 327.34 \\ 0.50 76.32 86.84 \\ 1.39 47.62 57.55 \\ 0.58 9.25 18.81 \\ 0.99 218.15 327.34 \\ 0.50 76.32 86.94 \\ 1.39 47.62 57.55 \\ 282.78 128.5 268.67 273.53 \\ 1.28 268.67 273.53 \\ 1.29 280.07 285.80 \\ 1.90 280.77 285.80 \\ 1.90 280.77 285.80 \\ 1.90 280.77 285.80 \\ 1.90 280.77 285.80 \\ 1.90 280.77 285.80 \\ 1.90 280.77 285.80 \\ 1.90 280.77 285.80 \\ 1.90 280.77 285.80 \\ 1.90 280.77 285.80 \\ 1.90 280.77 285.80 \\ 1.90 280.79 285.90 \\ 1.90 280.77 285.80 \\ 1.90 280.77 285.80 \\ 1.90 280.77 285.80 \\ 1.90 280.77 285.80 \\ 1.90 286.69 1.90 286.69 \\ 1.90 280.77 285.80 \\ 1.90 286.79 286.99 1.90 270.99 1.90 1.$			
$ \begin{array}{c} M_{*} \\ S2, 97 & 309, 07 & 318, 97 \\ S2, M_{*} \\ \end{array} \begin{array}{c} 2.44 & 204, 77 & 229, 90 \\ 0.58 & 135, 18 & 143, 89 \\ 0.58 & 135, 18 & 143, 89 \\ 0.82 & 93, 03 & 101, 35 \\ 0.58 & 9.25 & 18, 81 \\ 0.99 & 318, 15 & 327, 34 \\ 0.99 & 187, 194,$			
2SM ₂ 2.44 204.77 229.90 1.66 209.20 233.75 1.23 218.73 242.92 0.99 224.40 248.21 OP ₂ 0.83 73.68 82.96 0.58 135.18 143.89 0.82 93.03 101.35 1.54 37.74 45.70 MKS ₂ 0.50 76.32 86.84 1.39 47.62 57.55 0.58 9.25 18.81 0.99 318.15 327.34 1.24 2.25 1.25 296.30 302.11 14.70 277.55 282.78 12.85 268.67 273.53 11.39 260.01 264.49 11.25 294.48 300.84 2.90 282.90 288.68 2.29 280.45 285.86 1.90 280.77 285.80 11.39 260.01 264.49 11.30 12.85 292.35 48.46 50.74 0.52 89.04 90.74 0.96 149.67 151.00 1.03 169.48 170.43 11.39 260.01 264.49 12.85 289.279 1.81 281.04 2.17 264.15 265.30 1.63 249.50 250.28 1.26 255.09 255.50 14.85 20.0 0.47 73.55 71.16 0.49 74.70 71.94 0.21 86.32 83.19 0.20 2.62 188.81 19.00 280.77 285.80 1.26 250.28 1.26 250.92 259.18 19.85 268.67 273.53 1.28 242.90 280.45 285.86 1.90 280.77 285.80 1.28 249.50 250.28 1.26 250.90 255.50 14.85 249.50 250.28 1.26 250.90 255.50 14.85 249.50 250.28 1.26 250.90 255.50 14.85 249.50 250.28 1.26 250.90 255.50 14.85 249.50 250.28 1.26 250.90 255.50 14.85 249.50 250.28 1.26 250.90 255.50 14.85 249.50 250.28 1.26 250.90 255.50 14.25 262.90 255.18 14.25 249.50 250.28 1.26 250.90 255.50 14.25 262.90 255.18 14.25 249.50 250.28 1.26 250.90 255.50 14.25 262.90 255.18 14.25 249.50 250.28 1.26 250.90 255.50 14.25 262.90 255.18 14.25 249.50 250.28 1.26 250.90 255.50 14.25 262.90 255.18 14.25 249.50 250.28 1.25 262.90 255.18 14.25 249.50 250.28 1.25 262.90 255.18 14.25 249.50 250.28 1.25 262.90 255.18 14.25 249.50 250.28 1.25 262.90 255.18 14.25 249.50 250.28 1.25 262.90 255.18 14.25 249.50 250.28 14.25 249.50 250.28 14.25 249.50 250.28 14.25 249.50 250.28 14.25 249.50 250.28 14.25 249.50 250.28 14.25 249.50 250.28 14.25 249.50 250.28 14.25 249.50 250.28 14.25 249.50 250.28 14.25 249.50 250.28 14.25 249.50 250.28 14.25 249.50 250.28 14.25 249.50 250.28 14.25 249.50 250.28 14.25 249.50 250.28 14.25 249.50 250.28 14.25 249.20 250.28 14.25 249.20 250.28 14.25 249.20 250.28 14.25 249.20 250.28 14.25 249.20 250.28 14.25 249.20 250.28 14.25 249.20 250.20 250.28 14.25 249.20 250.20 250.28 14.			
$\begin{array}{c} OP_{2} \\ MKS_{2} \\ 0.58 \\ 373.68 \\ 82.96 \\ 0.58 \\ 13.9 \\ 47.62 \\ 57.55 \\ 0.58 \\ 9.25 \\ 18.81 \\ 0.99 \\ 318.15 \\ 327.34 \\ 10.99 \\ 328.68 \\ 10.99 \\ 328.68 \\ 10.99 \\ 328.68 \\ 10.99 \\ 328.68 \\ 10.99 \\ 328.68 \\ 10.99 \\ 328.68 \\ 10.99 \\ 328.68 \\ 10.99 \\ 328.68 \\ 10.99 \\ 328.68 \\ 10.99 \\ 328.48 \\ 10.99 \\ 328.49 \\ 329.49 $			
MKS ₂ 0.50 76.32 86.84 1.39 47.62 57.55 0.58 9.25 18.81 0.99 318.15 327.34 N ₂ 15.25 296.30 302.11 14.70 277.55 282.78 12.85 268.67 273.53 11.39 260.01 264.49 ½ 3.26 294.48 300.84 2.90 282.90 288.68 2.29 280.45 285.86 1.90 280.77 285.80 ½ 2.35 48.46 50.74 0.52 89.04 90.74 0.96 149.67 151.00 1.03 169.48 170.43 2N_2 2.80 279.31 281.04 2.17 264.15 265.30 1.63 249.50 250.28 1.26 255.09 255.50 MNS2 0.68 53.81 52.00 0.47 73.55 71.16 0.49 74.70 71.94 0.21 86.32 83.19 OQ2 0.62 2188.08 15.55 52.02 70			
$\begin{array}{c} \nu_{1} \\ \nu_{2} \\ \nu_{3} \\ \nu_{6} \\ \nu_{6} \\ \nu_{6} \\ \nu_{6} \\ \nu_{7} \\ \nu_{8} \\$			
P2 2.35 48.46 50.74 0.52 89.04 90.74 0.96 149.67 151.00 1.03 169.48 170.43 2N2 2.80 279.31 281.04 2.17 264.15 265.30 1.63 249.50 250.28 1.26 255.00 255.50 MNS2 0.68 53.81 52.00 0.47 73.55 71.16 0.49 74.70 71.94 0.21 86.32 83.19 OQ2 0.62 198.08 195.66 0.48 191.79 188.79 0.43 207.43 204.60 0.25 262.92 259.18 SK 0.89 81.69 108.27 0.34 121.72 147.43 0.66 121.54 146.69 0.37 138.52 163.11 MK3 3.07 33.43 52.39 1.75 52.02 70.11 1.79 73.16 90.08 0.86 69.38 85.74 M3 0.37 177.29 192.14 0.11 125.27			
$2N_2$ 2.80 279, 31 281, 04 2.17 264, 15 265, 30 1, 63 249, 50 250, 28 1, 26 255, 50 MNS_2 0, 68 53, 81 52, 00 0, 47 73, 55 71, 16 0, 49 74, 70 71, 94 0, 21 86, 32 83, 19 OQ_2 0, 62 198, 08 195, 66 0.48 191, 79 188, 79 0, 43 207, 43 204, 06 0, 25 262, 92 259, 18 SK, 0, 89 81, 69 108, 27 0.34 121, 72 147, 43 0, 66 121, 54 146, 69 0.37 138, 52 163, 11 MK, 3, 07 38, 64 56, 98 1, 44 54, 99 72, 47 1, 79 73, 16 90, 08 0.80 69, 38 85, 74 M, 0, 37 177, 29 192, 14 0, 11 125, 27 139, 24 0, 19 204, 85 218, 27 0, 07 8, 99 21, 84 MO3 2, 54 356, 19 6, 9			
$\begin{array}{c} MNS_2\\ OQ_2\\ O, 62\ 198.08\ 195.66\\ O, 48\ 191.79\ 188.79\\ O, 34\ 207.43\ 204.06\\ O, 43\ 207.43\ 204.06\\ O, 25\ 262.92\ 259.18\\ O,$			
$\begin{array}{c} OQ_2\\ SK_3\\ O.89\\ 81.69\\ 108.27\\ O.34\\ 121.72\\ 147.43\\ O.66\\ 121.54\\ 146.69\\ O.37\\ 138.52\\ 163.11\\ O.37\\ 148.77\\ 149.77$			
SK3 0.89 81,69 108.27 0.34 121,72 147,43 0.66 121,54 146,69 0.37 138,52 163,11 MK3 3.07 33,43 52,39 1.75 52,02 70,11 2.31 73,47 91,00 1.28 67,89 84,87 SO3 2.77 38,64 56,98 1.44 54,99 72,47 1,79 73,16 90,08 0.80 69,38 85,74 M3 0.37 177,29 192,14 0.11 125,27 139,24 0.19 204,85 218,27 0.07 8.99 21,84 MO3 2.54 356,19 6.92 1.07 6.96 16,81 1.63 31,23 40,53 0.64 21,41 30,15 SK, 0.16 281,71 317,36 0.07 147,43 181,92 0.08 272,63 306,37 0.04 23.07 56.07 MS4, 3.20 259,43 286,85 1.93 344,39 10.65 1.71 0.44 25.95 1.29 34,30 59.06			
MK ₃ 3.07 33.43 52.39 1.75 52.02 70.11 2.31 73.47 91.00 1.28 67.89 84.87 SO ₃ 2.77 38.64 56.98 1.44 54.99 72.47 1.79 73.16 90.08 0.80 69.38 85.74 Ma 0.37 177.29 192.14 0.11 125.27 139.24 0.19 204.85 218.27 0.07 8.99 21.84 MO ₃ 2.54 356.19 6.92 1.07 6.96 16.81 1.63 31.23 40.53 0.64 21.41 30.15 SK ₄ 0.62 288.46 323.49 0.14 0.33 34.21 0.18 16.20 49.33 0.17 74.07 106.45 SK ₄ 0.16 281.71 317.36 0.07 147.43 181.92 0.08 272.63 306.37 0.04 23.07 56.07 MS ₄ 3.20 259.43 286.85 1.93 344.39 10.65 1.71 0.44 25.95 1.29 34.30 59.06 <tr< td=""><td></td></tr<>			
SO3 2.77 38.64 56.98 1.44 54.99 72.47 1.79 73.16 90.08 0.80 69.38 85.74 M3 0.37 177.29 192.14 0.11 125.27 139.24 0.19 204.85 218.27 0.07 8.99 21.84 MO4 2.54 356.19 6.92 1.07 6.96 16.81 1.63 31.23 40.53 0.64 21.41 30.15 S4 0.62 288.46 323.49 0.14 0.33 34.21 0.18 16.20 49.33 0.17 74.07 106.45 SK4 0.16 281.71 317.36 0.07 147.43 181.92 0.08 272.63 306.37 0.04 23.07 56.07 MS4 3.20 259.43 286.85 1.93 344.39 10.65 1.71 0.44 25.95 1.29 34.30 59.06 MK4 1.19 263.82 291.85 1.11 288.49 315.36 1.13 306.42 332.55 0.74 320.21 345.59			
Ma 0.37 177. 29 192. 14 0.11 125. 27 139. 24 0.19 204. 85 218. 27 0.07 8. 99 21. 84 MO3 2.54 356. 19 6. 92 1.07 6. 96 16. 81 1. 63 31. 23 40. 53 0. 64 21. 41 30. 15 S4 0.62 288. 46 323. 49 0. 14 0. 33 34. 21 0. 18 16. 20 49. 33 0. 17 74. 07 106. 45 SK4 0. 16 281. 71 317. 36 0.07 147. 43 181. 92 0.08 272. 63 306. 37 0.04 23. 07 56. 07 MS4 3. 20 259. 43 286. 85 1. 93 344. 39 10. 65 1. 71 0. 44 25. 95 1. 29 34. 30 59. 06 MK4 1. 19 263. 82 291. 85 1. 11 288. 49 315. 36 1. 13 306. 42 332. 55 0. 74 320. 21 345. 59 SN4 0. 45 248. 98 272. 31 0. 13 317. 68 339. 85 0. 20 0. 54 21. 96			
S4 0.62 288.46 323.49 0.14 0.33 34.21 0.18 16.20 49.33 0.17 74.07 106.45 SK4 0.16 281.71 317.36 0.07 147.43 181.92 0.08 272.63 306.37 0.04 23.07 56.07 MS4 3.20 259.43 286.85 1.93 344.39 10.65 1.71 0.44 25.95 1.29 34.30 59.06 MK4 1.19 263.82 291.85 1.11 288.49 315.36 1.13 306.42 332.55 0.74 320.21 345.59 SN4 0.45 248.98 272.31 0.13 317.68 339.85 0.20 0.54 21.96 0.16 28.06 48.74 M4 3.37 218.57 238.37 1.79 304.67 323.31 1.71 329.20 347.09 1.42 2.71 19.86 MN4 1.21 205.81 221.52 0.60 285.18 299.73 0.76 313.01 326.81 0.53 352.18 5.24			
SK4 0.16 281.71 317.36 0.07 147.43 181.92 0.08 272.63 306.37 0.04 23.07 56.07 MS4 3.20 259.43 286.85 1.93 344.39 10.65 1.71 0.44 25.95 1.29 34.30 59.06 MK4 1.19 263.82 291.85 1.11 288.49 315.36 1.13 306.42 332.55 0.74 320.21 345.59 SN4 0.45 248.98 272.31 0.13 317.68 339.85 0.20 0.54 21.96 0.16 28.06 48.74 M4 3.37 218.57 238.37 1.79 304.67 323.31 1.71 329.20 347.09 1.42 2.71 19.86 MN4 1.21 205.81 221.52 0.60 285.18 299.73 0.76 313.01 326.81 0.53 352.18 5.24 2SM6 0.80 143.76 188.69 0.46 200.56 243.75 0.49 202.53 244.61 0.28 217.60 258.55			
MS4 3.20 259.43 286.85 1.93 344.39 10.65 1.71 0.44 25.95 1.29 34.30 59.06 MK4 1.19 263.82 291.85 1.11 288.49 315.36 1.13 306.42 332.55 0.74 320.21 345.59 SN4 0.45 248.98 272.31 0.13 317.68 339.85 0.20 0.54 21.96 0.16 28.06 48.74 M4 3.37 218.57 238.37 1.79 304.67 323.31 1.71 329.20 347.09 1.42 2.71 19.86 MN4 1.21 205.81 221.52 0.60 285.18 299.73 0.76 313.01 326.81 0.53 352.18 5.24 2SM6 0.80 143.76 188.69 0.46 200.56 243.75 0.49 202.53 244.61 0.28 217.60 258.55 MSK6 0.40 135.33 180.88 0.31 176.99 220.80 0.36 190.36 233.05 0.29 187.82 229.39			
MK ₄ 1. 19 263.82 291.85 1. 11 288.49 315.36 1. 13 306.42 332.55 0. 74 320.21 345.59 SN ₄ 0. 45 248.98 272.31 0. 13 317.68 339.85 0. 20 0.54 21.96 0. 16 28.06 48.74 M ₄ 3. 37 218.57 238.37 1. 79 304.67 323.31 1. 71 329.20 347.09 1. 42 2.71 19.86 MN ₄ 1. 21 205.81 221.52 0. 60 285.18 299.73 0. 76 313.01 326.81 0. 53 352.18 5.24 2SM ₆ 0. 80 143.76 188.69 0. 46 200.56 243.75 0. 49 202.53 244.61 0. 28 217.60 258.55 MSK ₆ 0. 40 135.33 180.88 0. 31 176.99 220.80 0. 36 190.36 233.05 0. 29 187.82 229.39 2MS ₈ 1. 99 78.78 116.09 1. 18 129.69 165.26 1. 11 141.16 175.61 0. 69 145.45 178.78 2MK ₆ 0. 58 79.50 117.42 0. 45 121.96 158.15 0. 48 128.35 163.43 0. 36 138.72 172.67 MSN ₆ 0. 52 91.61 124.84 0. 30 145.49 176.98 0. 33 147.73 178.10 0. 23 155.56 184.81			
SN ₄			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
MN_4 1, 21 205, 81 221, 52 0, 60 285, 18 299, 73 0, 76 313, 01 326, 81 0, 53 352, 18 5, 24 $2SM_6$ 0, 80 143, 76 188, 69 0, 46 200, 56 243, 75 0, 49 202, 53 244, 61 0, 28 217, 60 258, 55 MSK_6 0, 40 135, 33 180, 88 0, 31 176, 99 220, 80 0, 36 190, 36 233, 05 0, 29 187, 82 229, 39 $2MS_6$ 1, 99 78, 78 116, 09 1, 18 129, 69 165, 26 1, 11 141, 16 175, 61 0, 69 145, 45 178, 78 $2MK_6$ 0, 58 79, 50 117, 42 0, 45 121, 96 158, 15 0, 48 128, 35 163, 43 0, 36 138, 72 172, 67 MSN_6 0, 52 91, 61 124, 84 0, 30 145, 49 176, 98 0, 33 147, 73 178, 10 0, 23 155, 56 184, 81			
2SM ₆ 0.80 143.76 188.69 0.46 200.56 243.75 0.49 202.53 244.61 0.28 217.60 258.55 MSK ₆ 0.40 135.33 180.88 0.31 176.99 220.80 0.36 190.36 233.05 0.29 187.82 229.39 2MS ₆ 1.99 78.78 116.09 1.18 129.69 165.26 1.11 141.16 175.61 0.69 145.45 178.78 2MK ₆ 0.58 79.50 117.42 0.45 121.96 158.15 0.48 128.35 163.43 0.36 138.72 172.67 MSN ₆ 0.52 91.61 124.84 0.30 145.49 176.98 0.33 147.73 178.10 0.23 155.56 184.81			
MSK ₆ 0.40 135.33 180.88 0.31 176.99 220.80 0.36 190.36 233.05 0.29 187.82 229.39 2MS ₆ 1.99 78.78 116.09 1.18 129.69 165.26 1.11 141.16 175.61 0.69 145.45 178.78 2MK ₆ 0.58 79.50 117.42 0.45 121.96 158.15 0.48 128.35 163.43 0.36 138.72 172.67 MSN ₆ 0.52 91.61 124.84 0.30 145.49 176.98 0.33 147.73 178.10 0.23 155.56 184.81			
2MS ₆ 1, 99 78, 78 116, 09 1, 18 129, 69 165, 26 1, 11 141, 16 175, 61 0, 69 145, 45 178, 78 2MK ₆ 0, 58 79, 50 117, 42 0, 45 121, 96 158, 15 0, 48 128, 35 163, 43 0, 36 138, 72 172, 67 MSN ₆ 0, 52 91, 61 124, 84 0, 30 145, 49 176, 98 0, 33 147, 73 178, 10 0, 23 155, 56 184, 81			
MSN ₆ 0.52 91.61 124.84 0.30 145.49 176.98 0.33 147.73 178.10 0.23 155.56 184.81			
0.23 133,30 104,01			
$M_6 = \{1.18, 34.26, 63.95, [-0.62, 81.71, 109.66, [-0.54, 100.14, 126.98, [-0.37, 107.03, 109.69, [-0.47, 109.68]]\}$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			

(ii) 欠測の補間

短期間の欠測は、その前後の日の験潮曲線を時刻線を合わせて重ね、内挿法により補間した。また、長期 間の欠測の場合は、前後の月の資料を1か月調和分解し、その調和定数の平均値を用いて推算して補間した・ この際の日平均水面の変化については、最寄り験潮所の資料を用いて補間した.

(ii) 調和分解

原則として1978年3月1日から369日間の資料を用いて、最小二乗法により調和分解を行い60分潮を算 出した。ただし、次の験潮所については、欠測期間及び井戸導水口の不良期間があったため、計算開始日が 他と異なり、それぞれ以下のとおりとした。

4 Pasir Panjang

6 Batu Ampar

:1977年12月1日から369日間

16 Tg. Ayam

10 Tg. Kling

: 1978年4月6日から369日間

5 Kepala Jernih : 導水口不良のため, 9か月間だけの資料しか得られなかったので T.I. 法によ る1か月調和分解を各月ごとに実施して29分潮を算出し、それらの9か月平

均値を調和定数とした.

各験潮所の調和定数を第2表に示す.

(2) 潮流資料の整理

(i) 記録の整理及び読取り

観測記録は調査船上でただちに整理し、20分ごとの流向・流速の読取り及び北方・東方成分の分解計算と 作図が行われた、また、分凍曲線図から調和分解に必要な毎時の流速が読み取られた。

(ii) 採用資料の決定と欠測の補間

各観測点で同時に得られた2組の観測記録のうち、記録の連続性の良好な一方を採用した、採用した記録 で欠測がある場合は、もら一方の記録で補間した。また、2台の流速計がともに欠測の場合は、前後の記録 から内挿によって補間した.

(富) 調和分解 网络山口 电电线设备机 物料

第1次観測については1978年7月16日~8月16日の32日間,第2次観測については1978年11月12 日~12月13日の32日間の資料を基に T.I. 法による調和分解を行い,29分潮と恒流を求めた. 第1次・第 2次観測によって得た2組の調和定数を比較すると、日周潮とそれより短い周期の定数はほとんど同じ値で あるので、それぞれの観測点の二つの調和定数のベクトル平均値をもって調和定数とした。この平均調和定 数を第3表に示す、なお、長周期潮及び恒流については第6節で述べる方法により求められた値である。

4. 潮汐現象に対する考察

(1) 平均水面の季節変化

各験潮所における月平均水面の変化を第4図に示す.

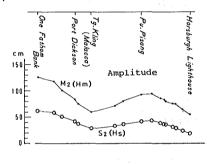
この図から明らかなように隣接する験潮所においては、ほぼ同傾向の変化を示しているが、マラッカ海峡中 央部の One Fathom Bank とシンガポール海峡東口の Horsburgh Lighthouse では変化の様相が大きく異なる. マラッカ海峡においては、5月と10月に最高が、2月に最低が現れているが、シンガポール海峡においては $7 \sim 8$ 月に最低,12 月に最高が現れ,高低差は約 $20 \sim 35$ cm である。また,マラッカ海峡においては8 月に顕

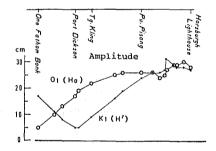
Horsburgh Lighthouse

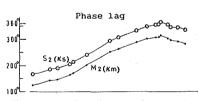
X: Inferred

Figure 4 Monthly mean sea level

Table 3 Harmonic constants of tidal stream


1 2 1	St	1	St	. 2	St	. 3	St.	4	St.	Zone	: - 07 St	
)ir. 300° : :)ir. 305°		. 5 Dir. 292°	Main Di			oir. 238°		. 0 Dir. 258°
Constituents	v	к	V	. к	v	K	v	к	ν	к	V	К
	(kn)	(°)	(kn)	(°)	(kn)	(°)	(kn)	(°)	(kn)	(°)	(kn)	(°)
Sa Ssa	0.079 0.016	297.8 298.1	0.061 0.012	287.7 301.1	$0.088 \\ 0.017$	297.1 296.6	0.256 0.017	285.9 186.1	0.360 0.020	286.0 196.7	0.282 0.013	286.1 199.4
Mm MSf Mf	0.010 0.011 0.032	234.6 212.3 221.3	0.009 0.015 0.027	224.1 215.5 221.7	0.008 0.003 0.023	254.4 93.1 220.3	0.038 0.085 0.043	213.5 212.1 112.7	0.044 0.087 0.060	231.6 222.5 182.9	0.031 0.053 0.051	235.0 225.3 188.0
QI O1 MI K1 J1 OO1 P1	0.024 0.220 0.016 0.314 0.017 0.042 0.104	153.1 187.5 65.2 214.4 180.7 257.1 213.2	0.022 0.178 0.003 0.287 0.004 0.061 0.095	147.1 168.9 108.8 219.8 53.0 251.4 218.6	0.024 0.162 0.019 0.258 0.023 0.019 0.085	74.8 123.0 135.6 222.4 24.5 276.7 221.2	0.126 0.882 0.013 1.104 0.058 0.145 0.364	349.8 13.8 232.9 56.3 278.8 109.7 55.0	0.284 1.628 0.089 1.672 0.072 0.140 0.550	353.0 23.1 51.8 61.0 310.3 180.8 59.7	0.129 0.745 0.051 0.791 0.038 0.019 0.260	351.1 24.0 32.9 59.0 291.2 100.5 57.7
μ2 N2 ν2 M2 L2 S2 K2 2SM2	0.015 0.219 0.043 1.118 0.042 0.521 0.142 0.030	221.4 319.3 319.1 325.1 330.6 0.9 1.6 209.4	0.017 0.226 0.044 1.206 0.058 0.551 0.150 0.055	211.8 11.3 11.0 12.0 358.4 49.2 49.9 298.8	0.012 0.197 0.038 1.019 0.050 0.486 0.133 0.042	206.5 36.8 36.5 49.6 65.6 94.8 95.5 303.3	0.020 0.186 0.036 0.699 0.031 0.207 0.057 0.012	190.9 265.1 264.5 283.7 276.1 309.0 309.5 188.7	0.053 0.282 0.054 1.087 0.052 0.426 0.117 0.031	254.1 237.7 236.9 239.1 227.0 256.8 257.6 356.0	0.014 0.193 0.038 0.812 0.038 0.325 0.089 0.024	229.7 228.1 227.5 233.3 244.3 270.1 270.9 21.4
MO3 M3 MK3	0.027 0.009 0.011	297.6 78.2 322.0	0.040 0.011 0.044	356.1 215.8 23.3	0.047 0.019 0.038	77.0 264.5 121.5	0.025 0.011 0.051	128.0 34.3 303.1	0.087 0.014 0.073	221.3 15.1 252.2	0.022 0.019 0.036	309.3 48.9 351.8
MN4 M4 SN4 - MS4	0.025 0.059 0.004 0.051	342.9 343.3 157.1 34.6	0.017 0.052 0.022 0.061	156.8 162.0 214.9 196.9	0.015 0.047 0.005 0.051	221.0 241.4 38.3 276.9	0.015 0.050 0.011 0.041	170.7 186.3 142.8 221.1	0.034 0.048 0.026 0.028	75.4 104.6 119.6 145.7	0.016 0.026 0.015 0.005	136.6 169.4 195.6 179.3
2MN6 M6 MSN6 2MS6 2SM6 Current	0.008 0.010 0.008 0.014 0.001 0.087	333.3 206.7 20.6 278.6 143.9	0.011 0.012 0.009 0.017 0.014 0.094	266.7 273.7 272.0 293.7 337.1	0.007 0.007 0.014 0.029 0.007	12.0 114.0 76.6 88.6 158.3	0.011 0.015 0.010 0.015 0.004 0.334	112.6 62.9 68.3 173.5 5.2	0.011 0.020 0.027 0.029 0.017 0.008	228.0 221.1 32.5 295.1 358.2	0.007 0.008 0.006 0.017 0.008 0.021	5.3 262.3 321.3 26.0 335.0
	1978 M A	M J J A	S 0 H	1979 0 J F	M A	1978 M	A M J		ș o	ר ס א 1979		Ą
One Fathe	/ /	\sim				mb {+1000}	Kua1a	Lumnu		1 1 1	1 1.	cm
Tg. Senebi		~ ^				06 ·	/ A	ւսաքս.	. ~			· 20
Tg.Kabong	' /	~ ^	~`\ `\		7	10	1		<u> </u>		<u> </u>	ź- 0
Port Dick Tg. Medan					<i></i>	12 · 14 ·	One F	athom	Bank			·- 10 ·-20
Tg.Kling						06.	Malacca	a				. 20
Tg. Parit	××/			<u> </u>		08	1			\		: 10
Tg. Segenti	ing —					10	тд. к	11				0 10
Pu. Pisang						14 :	±g• K	rriid				·- 2 0
Pasir Pan						06.	Singap	ore Ai	irport			20
Sultan Sh	oal	^				08 -	Kar Para			1	*** * *** * * *	; 10
Lighth Raffles					_	10°~ 12•	The second	1000	76 d d (*****	~	0 10
Raffles Lighth			~~	1		14 •	_	ler Ba	ink ly mea	n air		·- 20
Batu Amp	\sim		/	×	_				ly mea			41 C


Figure 5 Air pressure and Mean sea level


著な上昇がみられ、この上昇は東方に移るに従って徐々に小さくなって、マラッカ海峡とシンガポール海峡の境界付近では判然としなくなり、シンガポール海峡ではこの時期は最低となる。平均水面に変化を与える最大の要因は気圧変化である。World Meteorological Organization 発表の気圧変化と平均水面変化の比較図を第5図に示す。マラッカ海峡においては、気圧と平均水面との間にある程度の相関が見受けられるが、7月から10月の間の平均水面の凹凸は気圧以外の影響によるもののようである。シンガポール海峡における平均水面は気圧変化と相反した変化を示している。

(2) 潮 型

インド洋側、すなわち、マラッカ海峡北西部では半日周潮型であり、南シナ海・東インド諸島では日周潮型である。このような潮型の異なる二大海域の間に位置するマラッカ・シンガポール海峡には場所により種々な潮型が現れる。潮型判断の指標として通常 $(H'+H_0)/(H_m+H_s)$ 及び $\kappa'/15^\circ$ $-\kappa_m/29^\circ$ が用いられる。静力学的潮汐論によれば S_2 潮の半潮差 (H_0) は M_2 潮の半潮差 (H_m) の約 0. 46 倍であり, O_1 潮の半潮差 (H_0) は K_1 潮の半潮差 (H') の約 0. 71 倍である。マラッカ海峡における H_0/H_m は 0. 34 から 0. 50 の間にあり,第 6-1 図に示すとおりほぼ理論値と 合致するが, H_0/H' は One Fathom Bank の 0. 27 を除けば、3. 66 から 0. 86 の間にあり H_0 が非常に大きい。第 6-2 図に示すとおり,Port Dickson 付近では H' が著しく減少している。

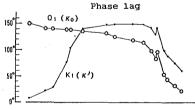


Figure 6-1 Distribution of M2 & S2

Figure 6-2 Distribution of K₁ & O₁

また、Port Dickson 以西の海域においては K_1 潮と O_1 潮の遅角、すなわち、 κ' と κ_0 が大きく異なるので、 $\kappa'/15^\circ-\kappa_m/29^\circ$ により潮型を判断することは不適当である.そこで K_1 潮と O_1 潮の合成潮の遅角(κ_1 とする)を求めて、 $\kappa_1/14.5^\circ-\kappa_m/29^\circ$ と $(H'+H_0)/(H_m+H_s)$ を計算し、それぞれの 分布を 第7図に示す.図の上段は日周潮と半日周潮の振幅比であり、下段は両潮が最高となる時間差である.

これらの値から同海峡の潮型は次の4つに大別される.

- a 半日周潮型で潮高の不等が小さい (One Fathom Bank 付近).
- b 半日周潮型で潮高の不等が高潮に現れる (Pu. Pisang 付近).
- c 混合潮型で潮高の不等が高・低潮共に現れ、高高潮の次に低低潮が起きる(Raffles Lighthouse 付近).
- d 混合潮型で潮高の不等が低潮に現れる(Horsburgh Lighthouse).

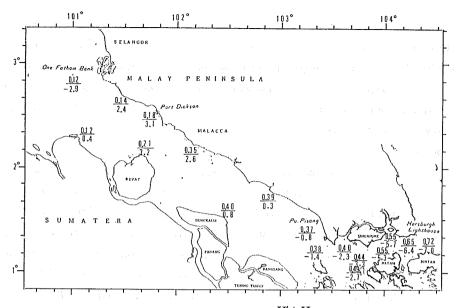


Figure 7 Distribution of the values of $\frac{H'+H_0}{H_m+H_s}$, $\frac{\kappa_1}{14.5^{\circ}} - \frac{\kappa_m}{29^{\circ}}$

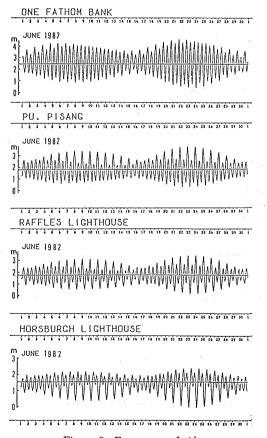


Figure 8 Four types of tide

第8図はマラッカ・シンガポール海峡の潮型の種類を示すものである.

(3) 同時潮図と等潮差図

観測地点 17 か所の潮汐調和定数 (M_2, S_2) を用いて、同時潮図及び等潮差図(大潮差)を描き 第 9-1、9-2 図に示した。

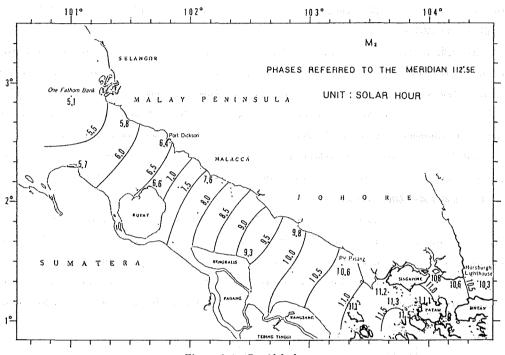


Figure 9-1 Co-tidal chart

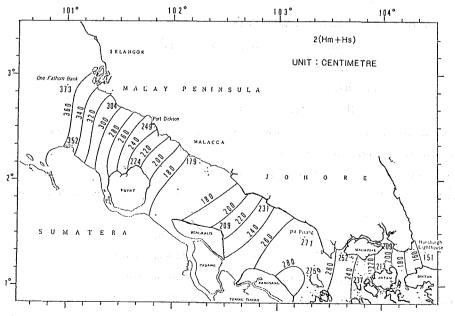


Figure 9-2 Co-range chart

作図方法はマレー半島側及びスマトラ島側のそれぞれについて、横軸に各験潮所間の距離を、縦軸に東経112°30′の子午線に準拠した各験潮所の潮時又は潮差をとって、各点を通る平滑曲線を画き、その平滑曲線上で潮時は30分間隔、潮差は20cm間隔の地点を読みとり、同時潮線・等潮差線が海岸線と交わる点を決定した.

同時潮線及び等潮差線は海域を 3 km 平方のメッシュに分け、メッシュ交点の水深と海峡両端 (Penang 及び Horsburgh Lighthouse) の潮汐調和定数を使って、潮汐波の進行について数値シミュレーションを行い、その 結果に基づいて画いた.

同海峡の潮汐について支配的な分潮である M₂ 潮の峰は、月の標準子午線(112°30′E)上経過5.1 時間後に One Fathom Bank を通過してシンガポール海峡に向かう。一方、南シナ海からの M₂ 潮の峰は上経過10.3 時間後に Horsburgh Lighthouse を通過し、11.5 時間後に Raffles Lighthouse 付近でインド洋から東進したものと会合する。すなわち、One Fathom Bank 付近が高潮のとき、Raffles Lighthouse 付近はほぼ低潮であり、Horsburgh Lighthouse 付近では低潮1時間後である。大潮差は One Fathom Bank 付近が3.7 m で最も大きく、東進するに従って小さくなり Malacca 付近で1.8 m と最小になるが、その後再び大きくなり Pu. Pisang 付近で2.8 m となる。その後は徐々に減少して Horsburgh Lighthouse 付近では1.5 m となる。

(4) 主要分潮の場所による変化

マラッカ・シンガポール海峡では主要分潮の振幅及び遅角は第6図に示すように場所によって異なり、その変化の型は M_2 潮と S_2 潮とはよく似ているが、 K_1 潮と O_1 潮とは大きく異なっている。このことから海峡内の潮汐は片側の大洋の潮汐波のみによって支配されているものではないことが想像できる。

モデル的に、この海峡を幅及び深さが一様で両端にそれぞれ潮汐がある二つの大洋を連結する海峡とみなし、小倉氏が備後灘〜紀伊水道に適用した算式を用いて、海峡内の M_2 潮と K_1 潮の振幅と遅角の算出を試みた、海峡内の振幅・遅角は次式で求められる。

$$H=H_1\frac{\sin\frac{\sigma}{c}(L-x)}{\sin\frac{\sigma}{c}L}\cdot\cos(\sigma t-\kappa_1)+H_2\frac{\sin\frac{\sigma}{c}x}{\sin\frac{\sigma}{c}L}\cdot\cos(\sigma t-\kappa_2)$$

Η1, Η2, κ1, κ2: 両端における潮汐調和定数

 $c: \sqrt{gh}$ (g: 重力の加速度 h: 平均水深)

σ: 分潮の速度

L: 海峡の全長

x: 任意点の一端からの距離

調査対象海域は、西側をスマトラ島の Sigli とマレー半島の Ko Phuket を結ぶ線、東側をスマトラ島の Sungai Guntung から西側の線に平行に引いた線とし、この2線間の全長約1,000 km の海域とした。同海域の潮汐に影響を及ぼしているのは地勢的に見て、西側はスマトラ島寄り、東側はスマトラ島南東部のドリアン海峡の潮汐であると考えられることから、同海域付近一帯の定数分布図を画き、その分布図から両端での潮汐定数を次のとおり決定した。

西側を起点として約53 km ごとに計算地点を設け、平均水深をパラメータとして計算を行った結果、平均水深として20.7 m の場合が観測値に最もよく相似した。 計算結果と分布図から求めた 観測値とを 第10 図に示

す. 計算値には振幅・遅角ともに観測値との相違が見られ、海峡幅が狭まり、水深が浅くなる海域から両者の振幅の峰・谷の位置がずれ始めている. しかし、海峡内における振幅・遅角の分布パターンは類似したものが得られた. この海域の特徴である Port Dickson 付近での K_1 潮の振幅が減少する現象は、この計算結果にも現れている. また、海峡一端にのみ潮汐があるとして計算を試みた結果は、観測値の分布パターンと類似するものは得られなかった. このことから、両端からのそれぞれ別の一端を腹とし他端を節とする振幅・位相共に異なる二つの定常波の組み合わせで海峡内の潮汐は作られていると考えられ、二つの定常波の組み合わせは一般に進行波となることがマラッカ海峡の潮汐現象でも適用されるものと考えられる. この計算は海底摩擦・過粘性等を無視し、かつ、一様な幅・深さをもった海域としての仮定のもとに実施したものである.

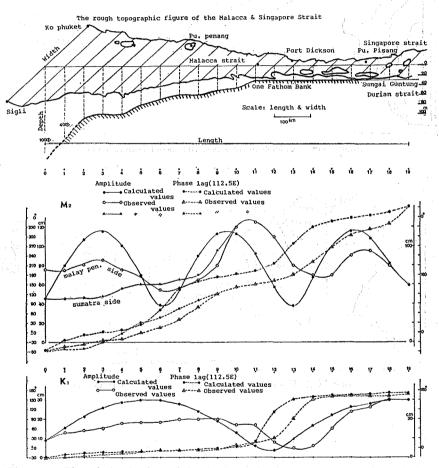


Figure 10 The calculated values of Amplitude & Phase lag using OGURA's method in the strait of Malacca and Singapore

(5) 潮汐シミュレーション

平均水深・平均海峡幅を用いた小倉氏の式による潮汐計算では、減衰係数等の不確定要素が多かったので、 実際の地形及び水深を考慮した潮汐シミュレーションを実施することとした。このシミュレーションは現在完 結していないが、若干の成果について述べる。

シミュレーションのスキームは、スタッガードスキームを用い、物理パラメータは次のとおりにした.

a. 重力加速度 980 cm/s b. 海水密度 1.02 g/cm³ c. 海底摩擦係数 2.5×10⁻³ d. 水平粘性無視

e. 地球自転の効果は赤道付近であることから無視 f. 10'×10'(18.5 km) メッシュ

計算の範囲 (第 11-1 図) は、マラッカ海峡のインド洋側からシンガポール海峡及び ドリアン海峡に至る海域とし、両端に付近の実測調和定数から内挿して潮位を与えた. 計算された M₂ 潮と K₁ 潮の同時潮時・等潮差を第 11-2 図及び第 11-3 図に示す.

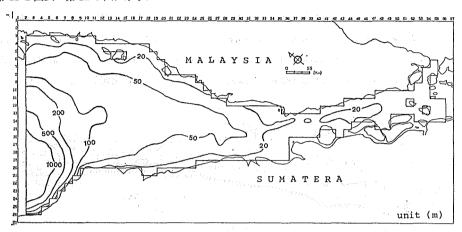


Figure 11-1 Calculated area and the model bottom contour

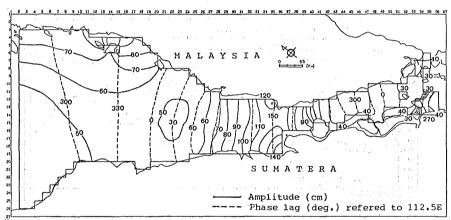


Figure 11-2 Calculated Co-tidal and Co-range chart of M2

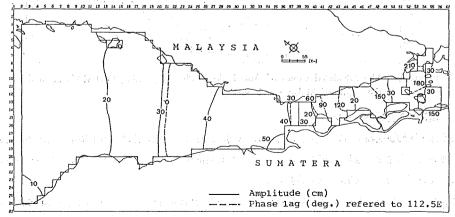


Figure 11-3 Calculated Co-tidal and Co-range chart of Ki and Co-range chart of Ki

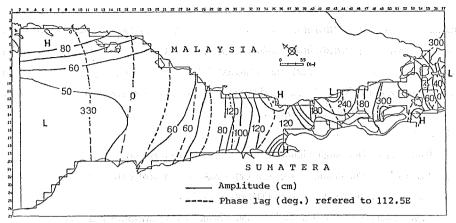


Figure 11-4 Co-tidal chart and Co-range chart of M2

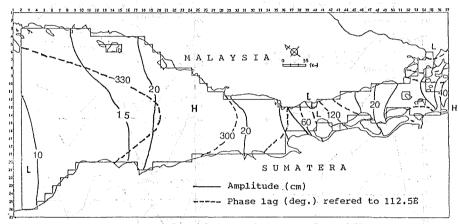


Figure 11-5 Co-tidal chart and Co-range chart of K1

 M_2 潮の実測半潮差(第 11-4 図)は、インド洋側で約 80 cm、マラッカ海峡を南東に進むにつれて増加し、One Fathom Bank 付近で 125 cm 程度の極大となり、次に Tg. Kling で極小となった後シンガポール海峡に向かって増大する。南シナ海に入ると潮差は小さい。計算結果(第 11-2 図)では、One Fathom Bank 付近で潮位が極大となる点はよく一致しているが、その後、南シナ海側に減少してゆくのみで、シンガポール・ドリアン海峡の西側で大きくなることがない。

Ki 潮の実測半潮差(第 11-5 図)は、マラッカ海峡内では大体 20cm 内外であるが、計算(第 11-3 図)では 30cm から 40cm となってしまっている。また、One Fathom Bank 付近で同時潮線が密になる様子はよく似ているが、シンガポール付近では似ていない。特にドリアン海峡方向に進むはずの潮時が、シンガポール海峡方向に抜けてしまう。

以上のように、現在の段階では一部の現象、すなわち One Fathom Bank 付近の潮汐などはよく似ているものの、シンガポール海峡付近ではあまりよく合っていない。これはシンガポール・ドリアン海峡が異なる潮型の接合海域であり、しかも多くの島が点在する浅い海であることに起因しているものと考えられ、境界条件の設定方法や局所的な計算分解能について更に検討する必要があることを示している。

人名英格兰 医多种动物 经收益 医多种性 医多种性 医二氏性 医二氏性

(6) 1か月調和定数の季節変動

各観測点について、1か月調和分解を各月ごとに行って得た主要分潮の振幅変化を第12-1,12-2図に実線 で示す、図中の横線は1年の調和分解から求めた各分潮の振幅の値である、この図から各分潮とも季節により 大きな変動があること、また、その変動の様子は観測点により異なることが認められる. これらの季節変動は 何に起因するかの検討を試みた. まず代表 4 観測点を選び, 各分潮の変動曲線についてフーリエ解 析 を 行っ た. その結果を第4表の First stage の欄に示す.

これにより次のことがいえる.

M2 潮 Batu Ampar, Horsburgh Lighthouse で1年周期変動が卓越する.

S₂ 潮 Tg. Medang, Pu. Pisang で1年周期変動が卓越し,半年周期変動は各地ともに認められる.

K₁ 潮 Tg. Medang, Pu. Pisang で1年周期変動が卓越する.

O₁ 潮 変動は比較的小さいが、Tg, Medang, Pu. Pisang で半年周期変動が卓越する.

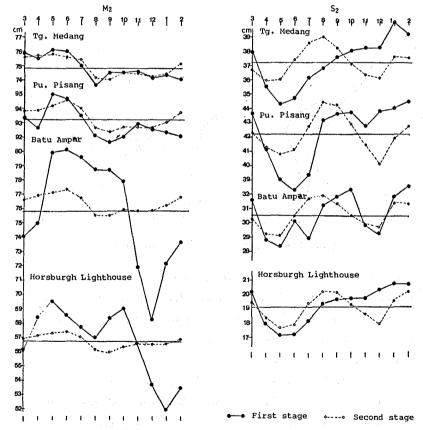


Figure 12-1 The seasonal variation of the amplitude of M2 and S2

調和分解を行って求められる分潮数及びその分潮の精度は計算期間の長短により異なる.ある分潮間での速 度差が非常に小さい場合は、短期間のデータではそれらの分潮は分離できず、独立の定数として求めることは できない、すなわち、二つの分潮間の相合周期が、その計算期間に少なくとも1回は含まれることが必要であ る.M2, S2, K1, O1 分潮について速度差の小さい分潮を表にまとめると第 5 表のとおりである.S2 潮と K2 潮 及び K₁ 潮と P₁ 潮の間では,ともにその速度差は 0.°082 で相合周期は約半年であるが, K₂ 潮, P₁ 潮はとも

に天文潮であり、平衡理論からそれらの振幅比により短期間の場合でもその分潮の影響を補正したりえ求められるので、ここでは一応除外して考えることにする. なお、Table 5 にある M_2 分潮に対する MA_2 (引数は M_2 +Sa)、 MB_2 (引数は M_2 -Sa) 分潮は IHB Report (Merriman, 1981) で定義づけられているものであり、ここに掲げた分潮は 1 か月調和分解では算出されない分潮である.

そこで MA_2 , MB_2 分割を含めた 110 分割を最小二乗法により求める プログラムを作成し、第 5 表に示した 各分割の振幅・遅角を算出した。その結果を第 6 表に示す。なお第 6 表の値はほぼ第 4 表の季節変動の周期成分と対応していることが認められる。

次に,第5表の分潮を除いた他の分潮による1か年推算を行い,その毎月の推算値について1か月調和分解を行って,前述と同様に主要分潮の変動曲線を作成し,フーリエ解析を実施した.その成果は第12-1,12-2 図の破線及び第4表の Second stage 欄の値である.

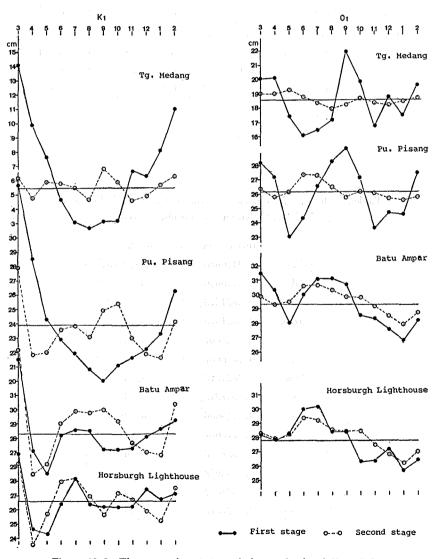


Figure 12-2 The seasonal variation of the amplitude of K1 and O1

Table 4	The result of the Fourier Expansion for	the seasonal variation
	of the principle constituents	

			First		Second Stage				
	Period (Year)	Tg. Medang	Pu. Pisang	Batu Ampar	Horsburgh Lt.	Tg. Medang	Pu. Pisang	Batu Ampar	Horsburgh Lt.
	1	0.8 ^{cm}	0.7 ^{cm}	4.9 ^{cm}	2.6cm	0.9 ^{cm}	0.9 ^{cm}	0.8 ^{cm}	0.5 ^{cm}
M ₂	1/2	0.6	1.1	0.8	2.0	0.3	0.3	0.2	0.3
	1/3	0.2	0.3	1.9	0.3	0.3	0.4	0.3	0.4
S ₂	1	2.1	2.5	0.9	1.2	0.8	0.9	0.5	0.5
	1 2	1.0	1.6	1.4	1.1	1.1	1.5	1.1	1.3
	1/3	0.2	0.3	0.9	0.4	0.3	0.2	0.3	0.2
	1	4.1	4.5	1.1	0.5	0.2	0.1	0.2	0.3
K ₁	1 2	1.2	2.0	1.5	1.1	0.4	1.5	2.2	0.7
	1 3	0.9	1.6	1.4	1.2	0.7	1.5	1.9	1.7
	1	0.7	0.5	1.4	1.7	0.4	0.6	1.0	1.2
O ₁	1-2	2.1	2.6	1.1	0.4	0.2	0.3	0.2	0.2
L	1 3	0.6	0.3	1.0	0.4	0.2	0.4	0.5	0.5

Table 5 The list of harmonic constituents whose speed close to the speed of M₂, S₂, K₁, O₁ constituents, respectively

		Difference in Speed	Synodic Period
	MA ₂	-0.0410686(hour)	365.2(day)
2 . A . A	MB ₂	+0.0410686(")	365.2(")
M ₂	OP ₂	-0.0821373(")	182.6(")
	MKS ₂	+0.0821373(")	182.6(")
	T_2	-0.0410667(")	365.3(")
S ₂	R_2	+0.0410667(")	365.3(")
52	2SK2	-0.0821373(")	182.6(")
	K ₂	+0.0821373(")	182.6(")
[/	S_1	-0.0410686(")	365.2(")
s + √ 	ψ_1	+0.0410667(")	365.3(")
K ₁	ϕ_1	+0.0821373(")	182.6(")
	π1	$\frac{1}{2}$ 0.1232039($\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	121.7(")
: 1	. P1	-0.0821372(")	182.6(")
O ₁	MP ₁	+0.0821373(")	182.6(")

Table 6 Harmonic constants of	f the p	rinciple	consti	tue	nts (N	Λ_2 , S_2 ,	Kı,	O_1)
and the constituents	whose	speed	close	to	the	speed	of	the
principle constituents,	respect	ively						

								. 22	
		Tg. N	ledang	Pu. F	isang	Batu	Ampar	Horsbu	rgh Lt.
		H(cm)	$\mathcal{H}(^{\circ})$	H(cm)	$\mathcal{H}(^{\circ})$	H(cm)	κ(°)	H(cm)	K(°)
la de la la	M ₂	74.8	170.9	93.2	288.5	76.1	303.9	56.5	283.7
	MA ₂	0.7	325.3	1.4	58.4	2.7	160.4	1.7	195.3
M ₂	MB ₂	0.6	198.6	1.2	329.3	1.9	34.1	1.5	82.5
	OP_2	0.4	260.1	0.6	260 0	3.0	151.5	1.5	37.7
	MKS ₂	0.1	213.4	0.8	51.9	2.8	100.5	1.0	318.2
	S2	37.2	211.7	42.2	332.9	30.5	353.6	19.1	335.5
	T_2	2.6	210.8	3.0	333.7	1.6	16.5	1.1	297.2
S ₂	R ₂	0.5	195.3	1.0	319.8	1.0	309.5	0.4	56.5
	2SK ₂	0.2	165.9	0.2	29.5	0.9	4.2	0.1	206.7
	K ₂	10.7	207.7	13.3	330.9	8.6	349.6	6.3	329.3
	K ₁	5.2	104.2	23.8	148.5	28.8	98.9	26.7	60.7
	S_1	3.9	214.0	3.6	238.2	1.4	213.6	0.6	210.3
	ψ_1	0.9	157.8	0.3	222.6	0.4	63.4	0.3	51.9
K ₁	ϕ_1	0.2	589.1	0.3	162.1	0.8	278.1	0.6	326.3
	π1	0.8	142.1	1.1	145.4	0.6	86.5	0.9	63.3
	P ₁	2.0	77.9	7.2	142.5	8.7	89.9	9.0	58.0
11 6	01	18.8	138.3	26.3	119.0	29.5	52.8	27.9	21.6
O ₁	MP1	1.0	351.4	1.2	274.3	0.1	303.8	0.5	4.2

この結果,各分潮の季節変動成分中特に卓越している周期変動は,ほぼ除かれたものと判断される.しかし S_2 潮 K_1 潮には明らかに約半年周期変動が残っている.これらの分潮に対しては前述のように,それぞれ K_2 潮 P_1 潮の影響がなお存続しているものと考えられる.また,小さいながらも M_2 潮 O_1 潮には 1年周期変動が認められる.したがって, 1か月調和分解における各分潮は,その分潮と速度差の小さい分潮,すなわも相合周期の長い分潮が分離されず,近似した速度をもつ分潮群のその期間における平均定数として求められるものと判断される.

各分潮に影響を与えるものと考えられる分潮は次のとおりである.

M₂ 潮: MA₂, MB₂, OP₂, MKS₂

S₂ 潮: T₂, R₂

K₁ 潮: S₁

O₁ 潮: MP₁

5. 潮流現象に対する考察

マラッカ・シンガポール海峡における潮流観測は、航路に沿ったわずか 6 測点の観測であるので、同海峡の流況の大勢を把握するに止まらざるを得ない。 潮型はマラッカ海峡の 半日周潮型 $\{(H'+H_0)/(H_m+H_s): 0.26\sim 0.32\}$ とシンガポール海峡の日周潮型 $\{(H'+H_0)/(H_m+H_s): 2.18\sim 1.24\}$ の二つの潮型に大別される。

マラッカ海峡には規則正しく1日2回の南東流と1日2回の北西流があり、流向の時間的変化は小さく、ほぼ 直線上に沿岸に平行して流れる. 最強流速は 2.3~2.0 km であり、場所により若干日潮不等が異なるのみで類似 の流況となっている. 流速が最強となる時刻は St. 1 が最も早く、 東に向かうにつれて遅れるが、各地ともほぼ 高低潮時に最強流速が現れる半続潮となっている.

シンガポール海峡では月間の大半が1日1回潮であり、月の赤緯が小さいときのみ1日2回潮が現れる。流向 は沿岸地形に従ってほぼ東西に流れ, 最強流速は St. 4 が 3.5 kn, St. 5 が 5.2 kn, St. 6 が 3.0 kn である. この 海峡の潮流は日周潮型であり、潮汐は混合潮型であるため、潮汐と潮流の潮時関係は非常に複雑で定性的なこと を述べるのは困難である。ただ一ついえることは高高潮時が東流開始時刻とほぼ一致する点である。第7表に各 観測点における潮流楕円要素等を掲げる.

		M ₂	S ₂	K ₁	Oı	Main Dir.	H'+Ho Hm+Hs	- κ m	$\frac{\chi' + \chi_0}{30}$
St. 1	Η, Ι χ , ΙΙ	^{Kn} 1. 12, 0. 10 325: 1, L	0. 52, 0. 12 0. 9, L	0. 31, 0. 01 214°4, L	0. 22, — 187. 5, 'R	300°	0. 32	11. 2 ^h	13. 4
St. 2	11	1 '	,	0. 29, 0. 05 219. 8, R	0. 18, 0. 04 168. 9, R	305	0. 26	0.4	13. 0
St. 3	11			0. 26, 0. 02 222. 4, R	0. 16, 0. 04 123. 0, L	292	0. 28	1.7	11.5
St. 4	"	0. 70, 0. 16 283. 7, L	•		0. 88, 0. 19 13. 8, R	206	2.18	9.8	2. 3
St. 5	11	1. 09, 0. 01 239. 1, R		1. 67, 0. 04 61. 0, L		238	2. 17	8. 2	2.8
St. 6	"			0. 79, 0. 11 59. 0, R	0. 75, 0. 08 24. 0, R	258	1. 24	8.0	2. 8

Table 7 Elements of tidal stream ellipses

I : minor axis/major axis

II: revolving direction, L: left, R: right

マラッカ・シンガポール海峡における,夏季大潮時の潮汐・潮流推算 曲 線 を 第 13 図及び第 14 図に示す.ま た、同海域の夏季大潮期の流況を第15図に示す. この図は St. 3 における 流速最強時刻及び転流時刻を基準に 作成したものである. 各図の番号は第14図の St.3の曲線上に記した番号に対応している.

マラッカ海峡の南東流は主としてドリアン海峡を南下し、潮時によってはマレイ半島沿いにシンガポール海峡 に流入しているようである.シンガポール海峡の西流及びドリアン海峡からの北流は,それぞれ他の2海峡に向 かって分流し、この3海峡の接合域は複雑な流況を呈する海域となっている.

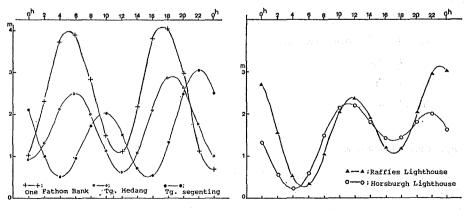


Figure 13 Tidal curve around the summer solstice

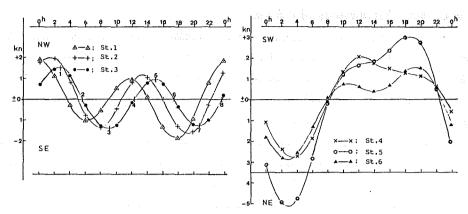


Figure 14 Tidal stream curves around the summer solstice

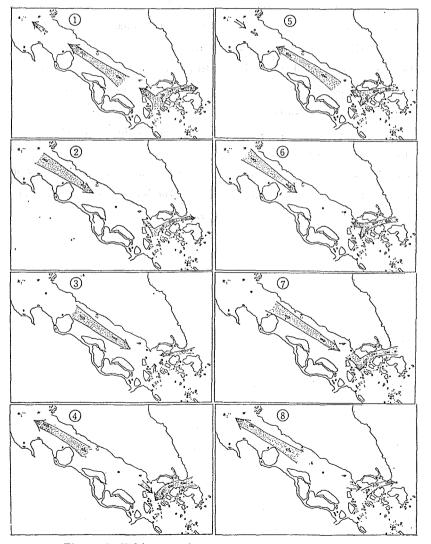


Figure 15 Tidal stream diagrams around the summer solstice

6. 恒流(海流)と長周期潮流に対する考察

マラッカ・シンガポール海峡は、インド洋・南シナ海・東インド諸島にまたがる季節風風系の地域内にあって、南西季節風期(5月~9月)と北東季節風期(11月~3月)とがある。しかし、マラッカ海峡は南部を除き、スマトラ島とマレイ半島の山系により直接的に季節風の影響を受けることが少ないと予想されるが、シンガポール海峡は季節風の影響を受けやすい地勢にある。一般に同海域の表面海流については、マラッカ海峡水路誌及び英国海軍潮汐表等に次のように述べられている。

「北東季節風による作用で発達した南シナ海の表面海流の一部は、シンガポール海峡を通ってマラッカ海峡を 北西方へ流れる。また、南西季節風期には西向するジャワ海の表面海流はカリマタ海峡を通って南シナ海に流入 するが、その一部は北西方へ分流しマラッカ海峡へ流入する。このためマラッカ海峡には1年を通じて北西方へ 流れる海流が存在する。一方、シンガポール海峡では北東風期及び南西風期には、その影響を直接受けて海流は 大きく変動し、南西流と北東流が存在する」

上記のような自然状況にあることから、潮流観測は、南西季節風期(第1次)と北東季節風期(第2次)の2回それぞれ35日間実施した。この結果、マラッカ・シンガポール海峡の恒流(日平均流)は日々の変化が極めて激しく、常時一方向に向かわずに時期により逆転する結果も見られ、シンガポール海峡における恒流の最大は北東方向に1.0kn(8月)南西方向に1.5kn(12月)が観測され、上述の型を肯定する結果が得られた。

したがって、この海域の潮流予報にあたっては、恒流の取り扱いが最重要課題となる。この恒流の取り扱いに関して次に述べる一方法を試みた。各観測点における恒流変化の模様を第16図に棒グラフで示す。仮に1年間以上の観測資料があるならば、これらの変化を長周期調和定数(Sa, Ssa, Mm, MSf, Mf)で把握できるものと考えられるが、今回はわずか2回の35日間観測資料しかないので、次のような方法で処理した。潮流観測点を挟む適当な2験潮所間の水位差と恒流との関係を調べたところ、St. 1、St. 2、St. 3 については Raffles Lighthouse と One Fathom Bank 験潮所、St. 4、St. 5、St. 6 については、Horsburgh Lighthouse と Pu. Pisang 験潮所の組み合わせに比較的良い相関が認められることから、関門海峡のように「両口に別々の潮汐がある二つの海を結ぶ細長い海峡における潮汐と潮流」(小倉、1933)の考えに基づいて、次式により各潮流観測点における1年間の仮定毎時流速を求めた。

$$V = c\sqrt{2g(h+\alpha)} \tag{1}$$

V: 流速

g: 重力加速度

h: 2 験潮間の日平均水面差

(日平均水面-年平均水面) A-(日平均水面-年平均水面) B

α: 観測点における流速と水位差の対応補正値

c: 比例定数

各水位差日変化については第16図に折線グラフで示した.

初めに各潮流観測点の日平均流速 (V) と 2 験潮所間の 日平均水面差 (h) を式 (1) に代入し、約 70 個の観測方程式から最小二乗法により c と α を求めた.

次にこれらの係数を用いて(h)に毎時の水位差を代入し、1か年の仮定流速を求めて調和分解を行い、恒流

(年平均流)と長周期調和定数 (Sa, Ssa, Mm, MSf, Mf) を求めた. これらの値は短周期調和定数とともに第3表に示した.

算出された調和定数の精度は実測値と推算値の比較 (O-P) で検討された.

推算に使用した調和定数及び恒流の組み合わせは次の3通りである.

- A: 2期間の平均調和定数と各期間の恒流(月平均流)
- B: 2期間の平均調和定数と2期間の平均恒流
- C: 2期間の平均調和定数と水位差から求めた長周期潮及び恒流(年平均流)

各観測点における O-P の標準偏差 (SD) と残差の平均値 (M) を第8表に示す.

標準偏差は恒流に特別関与されないので、三者とも大差はないが、残差の平均値に注目すると、水位差から求めた長周期潮を使用(C)することによって、各期間の恒流を用いた結果(A)に近づくことがわかる。すなわち、2回の潮流観測における年周期的変化による恒流の違いは、上述の水位差から求めた長周期潮を加味することにより解消される。第16図から分かるように、恒流(日平均流)は約15日前後で変化しているが、水位差の変化はそれほど明らかではない。これは水位差から求めた長周期潮の MSf 分潮 Mf 分潮の調和定数に大きな誤差を含んでいることを意味するものである。

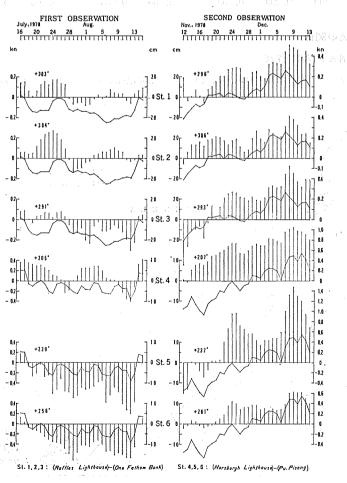


Figure 16 Variation of daily mean tidal stream and difference in water level

		A			В	C		
		First	Second		Second	First	Second	
St. 1	M	kn 0.00	-0.01	-0.10	kn 0.09	kn 0.01	kn 0.10	
	SD	0.132	0.167	0.132	0.167	0.132	0.177	
St. 2	M	0.00	-0.01	-0.06	0.05	0.02	0.06	
	SD	0.139	0.158	0.139	0.159	0.159	0.154	
St. 3	M	-0.01	-0.02	-0.13	0.11	0.00	0.11	
	SD	0.162	0.218	0.159	0.218	0.154	0.237	
St. 4	M	0.01	0.02	0.28	-0.24	-0.01	-0.09	
	SD	0.240	0.317	0.240	0.317	0.306	0.296	
St. 5	M	0.00	0.05	0.43	-0.45	0.12	-0.12	
	SD	0.458	0.583	0.484	0.633	0.500	0.580	
St. 6	M	0.01	0.02	0.29	-0.31	0.11	-0.01	
	SD	0.233	0.253	0.255	0.253	0.306	0.240	

Table 8 Mean difference values and standard deviations of (Obs.—Pre.) on the case A, B and C

7. 潮汐と潮流の関係

(1) 潮汐・潮流予報図の作成

同海峡における潮汐・潮流現象を面的に表現し、全体像を把握する一方法として次の試みを行った。

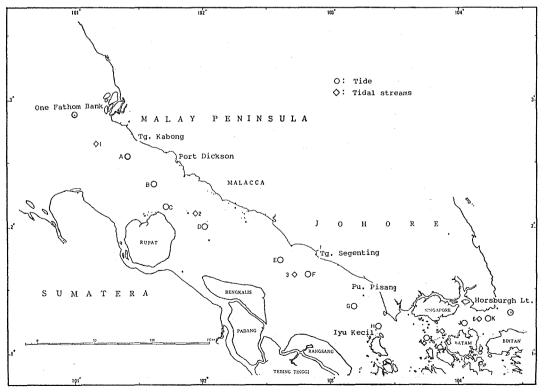
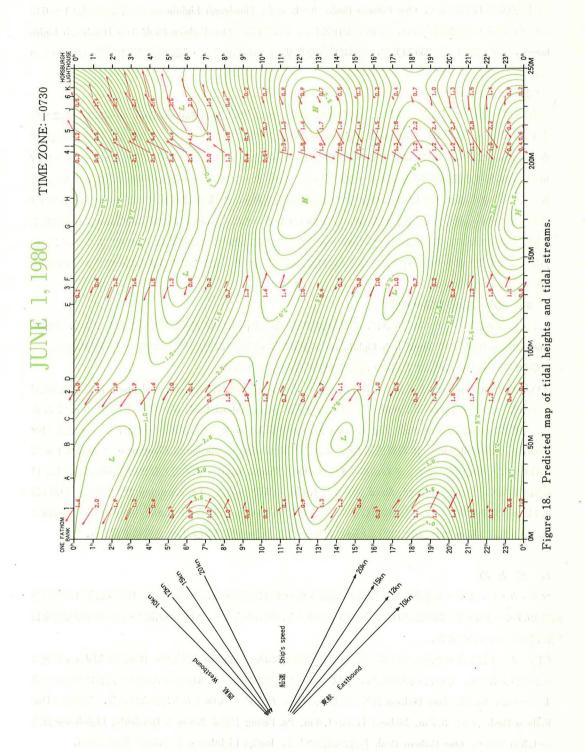



Figure 17 Stations and Points for prediction

まず、潮汐観測点における潮汐調和定数を基に日周潮・半日周潮の同時潮図及び等潮差図を描き、航路上で沿岸の潮汐観測点と潮時・潮高ともにほぼ等しい値を示すと考えられる地点を選定した。これらの地点及び潮流観測点を第17図に示す。One Fathom Bank、A~K 地点、Horsburgh Lighthouse 及び潮流観測点1~6において、潮汐・潮流推算を行い、第18図を作成した。図は横軸に One Fathom Bank から Horsburgh Lighthouse に至る航路(全長250 M)を、縦軸に時刻をとり、同海域内の潮汐・潮流の経時変化を描いたものである。

(2) 潮汐波と潮流

第18図から次のことが推察される. 等潮位の時空点を結んだ線は One Fathom Bank から H点付近までは右下がりとなり、H点から Horsburgh Lighthouse までは左下がりとなっている. その傾きは潮汐波の進行する速度を示していて、左側では 25 kn、右側では 29 kn くらいとなっている. これらはそれぞれ 16.9m と 22.7 m の水深における浅海波の進む速さと一致していて、マラッカ・シンガポール海峡の平均水深に対する速さとなっている. 次に潮流(図上矢印)は左側では高潮時に南東向き、低潮時に北西向きとなっていて、この潮汐波がインド洋から進んでくる進行波であることを示している. また、右側では高潮時に南西向き、低潮時に北東向きとなっていて、潮汐波が南シナ海からマラッカ海峡方向に抜けることを示す. つまり、このインド洋から進んでくる波と南シナ海から進んでくる波はH点付近で会合する. そしてこの合流した波はドリアン海峡方向に抜けると想像される.

(3) 潮汐・潮流予報図の利用

本図に船速線を合わせて利用すれば、船舶の航行安全及び効率的な運航計画に資することができる。本図は One Fathom Bank から Horsburgh Lighthouse に至る潮汐・潮流の常態を示しているので、同海峡を航行する船舶が途中において遭遇する潮汐・潮流の概値を知ることができる。

One Fathom Bank 付近を6月1日3時に通過し、12 kn の速度で Horsburgh Lighthouse に向かう船舶を想定すると、この船舶は次のような潮汐・潮流に遭遇する。One Fathom Bank における 潮高は2.0 m であるが、次第に水位は高まり A 地点(Tg. Kabong 沖)を潮高3.1 m で通過、以後水位は低下して H 地点(Iyu Kecil 沖)を潮高0.9 m で18時頃通過する。これより水位は高まり Horsburgh Lighthouse を 潮高2.1 m で2日0時ごろ通過する。また、この船舶は1地点(One Fathom Bank の南東方)をほぼ転流時に通過し、以後順流に乗り、2地点(Raleigh Shoal 沖)で約1.4 kn の順流、3 地点(Tg. Segenting 沖)で逆流の初期(約0.4 kn)に遭遇する。これより逆流で航行することになり、4 地点(Phillip Channel)で約1.2 kn の南西流をうけ、5 地点(Batu Berhanti)で約2.8 kn、6 地点(Tg. Stapa 沖)で約1.1 kn 逆流に遭遇する。

8. まとめ

マラッカ・シンガポール海峡における潮汐・潮流現象の詳細を把握するための調査が、日本と沿岸3か国の共同で1977年~1979年の間実施された。その結果次のことが明らかとなり、同海峡の潮汐・潮流の予報精度を格段に向上することができた。

(1) インド洋と南シナ海からの潮汐波は、半日周潮は Raffles Lighthouse 付近で、日周潮は Malacca 付近で それぞれ会合する。このため同海峡には大別して 4 つの潮型が見られる。 M_2 潮と S_2 潮との関係は理論と一致 しているが、 K_1 潮は Port Dickson 付近で著しく減少し、 H_0/H' は 3.66 となり理論と異なる。大潮差は One Fathom Bank 付近が 3.7 m、Malacca 付近が 1.8 m、Pu. Pisang 付近が 2.8 m で Horsburhg Lighthouse 付近が 1.5 m であり、One Fathom Bank 付近が高潮のとき、Raffles Lighthouse 付近はほぼ低潮である。

- (2) 平均水面の季節変動の様相は、マラッカ海峡とシンガポール海峡では異なり、その変動は気圧変動と対応しているとはいい得ない.
- (3) マラッカ海峡の潮流は半日周潮型で半続潮であり、最強流速は2.3 kn である。シンガポール海峡の潮流は日周潮型で、潮汐との関係は非常に複雑であるが、高高潮時が東流開始時とほぼ一致する。Batu Berhantiにおける最強流速は5.2 kn である。
- (4) マラッカ海峡には北西方への恒流が存在し、シンガポール海峡には北東季節風・南西季節風に対応した 恒流が存在する。マラッカ海峡側とシンガポール海峡側との水面差と恒流との間には高い相関があり、1か年 の水面差から潮流長周期分潮と恒流(年平均流)を求め、これを推算に採用することにより潮流予報の精度向 トを図ることができる。
- (5) 1か月調和定数には季節による変動がみられ、その原因はそれぞれの分潮の速度に近似した速度をもつ 分潮が完全に分離されないためである。
- (6) 潮汐シミュレーションの結果は One Fathom Bank 付近では実測値とよく一致しているが、シンガポール海峡付近ではよく合わない. これはシンガポール・ドリアン海峡が異なる潮型の接合海域であり、しかも多くの島が点在する浅い海であることに起因しているものと考えられ、境界条件の設定方法や、局所的な計算分解能に問題があったと思われる.

9. あとがき

この調査によりマラッカ・シンガポール海峡における潮汐・潮流の特性をかなり明らかにすることができた. これらの成果によって、同海峡の潮汐・潮流予報の精度は格段に向上したものと信ずる.今回の潮汐観測は沿岸部のみで行われたが、さらに数点の沖合における験潮及び同海峡の海況に大きな影響を与えていると考えられるマラッカ海峡南方のドリアン海峡において、1、2点の潮汐・潮流観測を実施しておれば、一層の好成果を得ることができたであろう.近い将来この海域の調査が行われることが強く望まれる.

この調査に種々援助を与えられた国際協力事業団及びマラッカ海峡協議会の関係各位並びに、4か国共同による長期間の観測作業に調査団長として、終始適切な指導を与えられて観測を成功に導かれた、水路技術国際協力室長渡辺隆三氏(当時)、この報告をまとめるにあたり、有益なご教示・助言をいただいた海象課長二谷頴男氏に深く感謝するとともに、観測及び資料整理に参加された4か国の技術者の方々に厚くお礼を申し上げる.

参考文献

小倉伸吉,1933:日本近海ノ潮汐,水路部報告,第7巻

土木学会,1974:土木工学における数値解析/流体解析編,サイエンス社,東京

海上保安庁, 1978: マラッカ海峡水路誌, pp. 19-22

Merriman A.G. MERRIMAN, 1981: Admiralty Method of Tidal Prediction (Form NP 159)

Refinements and Increase in Accuracy, *Int. Hydrogr. Review*, Monaco, LVIII No. 1. U.K. NAVY, 1981: Admiralty TIDE TABLES, Volume 2, pp. 248-251.